

TM52F1376/78 DATA SHEET Rev 1.0

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V0.90	Sep, 2021	New release.
V0.91	Nov. 2021	 Redefine the pin change wake up interrupt. Modify Operating Current in Halt mode.
V0.91	Nov, 2021	3. Add 1376H SOP28 package type.4. Some error correction.
		 Add Product TM52F1378. Modify ADC reference voltage selection.
V0.92	Nov, 2021	3. Modify QFN28 package type. (PIN25: P3.4 →P1.1)
		4. Some error correction.
1/0.02	D 2021	1. Add 1376H SOP20 package type.
V0.93	Dec, 2021	2. Add 1376H SOP16 package type.3. Some error correction.
		 Add TM52F1378C SOP28 package type. Add TM52F1378C SSOP28 package type.
		3. Add TM52F1378C SSOI 28 package type.
		4. Add TM52F1378 QFN28 package type.
		5. Add TM52F1378 SSOP24 package type.
		6. Add TM52F1378 SOP20 package type.
V0.94	Jan, 2022	7. Add TM52F1378 TSSOP20 package type.
		8. Add TM52F1378H SOP20 package type.
		9. Add TM52F1378 SOP16 package type.
		10. Add TM52F1378H SOP16 package type.
		11. Modify LED related description.
		12. Some error correction.
		1. Add source current of LED pins.
		2. Add TM52F1376T SOP20 package type.
110.05	M 2022	3. Add TM52F1378T SOP20 package type.
V0.95	Mar, 2022	4. Modify UART pin mode control description.
		5. Modify the branch instruction cycle description in instruction set.
		6. Some error correction.
		1. Relax the operating temperature range to 105°C.
		2. Relax the high sink current to 70mA.
V0.96	Jun, 2022	3. Modify the accuracy of the FRC frequency.
		4. Modify INT0/INT1 pin mode control description.
		5. Some error correction.

DS-TM52F1376_78_E 2 Rev 1.0, 2024/05/xx

T	1						
		1. Relax the erase times of Flash program memory to 10K times.					
		2. Disable the second programming pins P0.0 and P0.1 of the tenx					
		proprietary writer (TWR98/TWR99).					
V0.97	Jul, 2022	3. Modify the package direction of the 32-pin LQFP, 28-pin QFN					
	,	and 20-pin QFN.					
		4. Add the description about Halt mode.					
		5. Some error correction.					
		1. Raise the IAP Write voltage to 4.0V.					
V0.98	Nov, 2022	2. Remove the introduction of the TM52 F1xxx series.					
	3. Some error correction.						
		1. WDT needs to be turned off when IAP writing or EEPROM					
V0.99	Mar, 2023	writing.					
		2. Some error correction.					
		1. Modify QFN20 package type. (PIN19: P0.0 → P0.1, PIN20:					
V1.0	Mar, 2024	$P0.1 \rightarrow P0.0)$					
		2. Some error correction.					

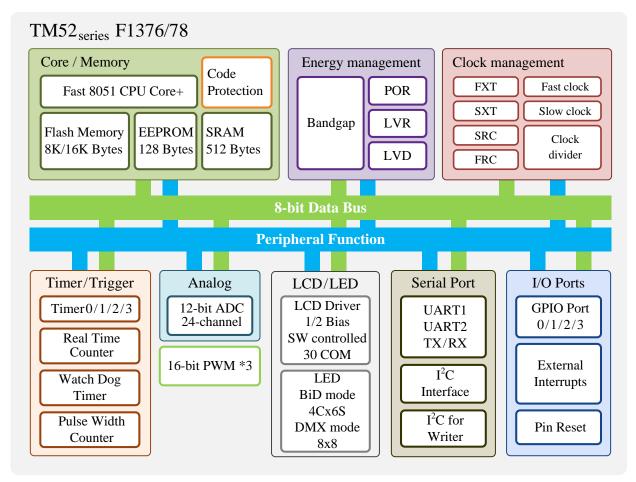
DS-TM52F1376_78_E 3 Rev 1.0, 2024/05/xx

CONTENTS

AMENDMENT HISTORY	2
GENERAL DESCRIPTION	7
BLOCK DIAGRAM	7
FEATURES	8
PIN ASSIGNMENT	12
PIN DESCRIPTION	18
PIN SUMMERY	
FUNCTIONAL DESCRIPTION	
1. CPU Core	
	20
	21
• • •	21
	22
2. Memory	23
2.1 Program Memory	23
	tition23
2.1.2 Flash ICP Mode	24
2.1.3 Flash IAP Mode	24
2.1.4 IAP Mode Access Routines	25
2.1.5 Flash ISP Mode	26
2.2 EEPROM Memory	27
•	29
3. LVR and LVD setting	
4. Reset	34
4.1 Power on Reset	34
	34
	34
	34
4.5 Low Voltage Reset	34

5.	. Clock Circuitry & Operation Mode	36
	5.1 System Clock	36
	5.2 Operation Modes	38
6.	. Interrupt & Wake-up	40
	6.1 Interrupt Enable and Priority Control	40
	6.2 Suggestions on interrupting subroutines	40
	6.3 Pin Interrupt and LVD interrupt	44
	6.4 Idle mode Wake up and Interrupt	48
	6.5 Halt/Stop mode Wake up and Interrupt	48
7.	. I/O Ports	50
	7.1 Port0~Port 3	50
8.	. Timers	56
	8.1 Timer0 / Timer1	56
	8.2 Timer2	59
	8.3 Timer3	61
	8.4 T0O and T2O Output Control	61
9.	. UARTs	62
10	0. PWMs	65
1	1. ADC	69
	11.1 ADC Channels	70
	11.2 ADC Conversion Time	71
12	2. S/W Controller LCD Driver	74
13	3. LED Controller/Driver	76
	13.1 LED Bi-Direction Matrix (BiD) Mode	76
	13.2 LED Dot Matrix (DMX) Mode	
14	4. Cyclic Redundancy Check (CRC)	81
	5. Multiplier and divider	
	6. Master I°C Interface	
	7. Slave I°C Interface	
	8. In Circuit Emulation (ICE) Mode	
	R & CFGW MAP	
	R & CFGW DESCRIPTION	
INS	TRUCTION SET	105

ELE	CTRICAL CHARACTERISTICS	. 108
1.	Absolute Maximum Ratings	. 108
2.	DC Characteristics	. 108
3.	Clock Timing	.111
4.	Reset Timing Characteristics	.111
5.	ADC Electrical Characteristics	. 111
6.	EEPROM Characteristics	.111
7.	Characteristic Graphs	.112
Pack	age and Dice Information	.115



GENERAL DESCRIPTION

TM52 series **F1376/78** are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the **TM52** executes instructions six times faster than the standard 8051 architecture.

The **TM52-F1376/78** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 8K/16K Bytes Flash program memory, 512 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD/LED driver, 3 set 16-bit PWMs, 24 channels 12-bit A/D Convertor, I²C interface and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

Note: 8K Bytes Flash program memory (TM52F1378) 16K Bytes Flash program memory (TM52F1376)

DS-TM52F1376_78_E 7 Rev 1.0, 2024/05/xx

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 8K Bytes (TM52F1378)
- 16K Bytes (TM52F1376)
- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability
- 10K erase times at least
- 10 years data retention at least

3. 128 Bytes EEPROM Memory

- 50K erase times at least
- 10 years data retention at least

4. Total 512 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 256 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

5. Four System Clock type selections

- Fast clock from 1~18MHz Crystal (FXT)
- Fast clock from Internal RC (FRC, 18.432 MHz)
- Slow clock from 32768Hz Crystal (SXT)
- Slow clock from Internal RC (SRC,130 KHz)
- System Clock can be divided by 1/2/4/16 option

6. 8051 Standard Timer – Timer 0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1
- 16-bit Timer2, also supports T2O clock output for Buzzer application

7. 15-bit Timer3

- Clock source is Slow clock or FRC/512
- Interrupt period can be clock divided by 32768/16384/8192/4096/2048/1024/512/256 option

8. UARTs

- UART1, 8051 standard UART
- UART2, the second UART, supports only Mode1 and Mode3
- With UART pin select option

DS-TM52F1376_78_E 8 Rev 1.0, 2024/05/xx

9. Three independent 16 bits PWMs with period-adjustment

• With PWM0/PWM1/PWM2 Interrupt

10. I²C interface (Master / Slave)

11. 12-bit ADC with 22 channels External Pin Input and 2 channels Internal Reference Voltage

- Internal Reference Voltage: V_{BG} 1.20V±1% @V_{CC}=5V~2.5V, 25°C
- Internal Reference Voltage: 1/4V_{CC}
- ADC reference voltage = $2.5 V/V_{CC}$

12. LCD Driver

- Software controlled COM00~07, COM10~17, COM20~25, COM30~37 (Max. 30 pins)
- 1/2 LCD Bias

13. LED Controller/Driver

- COM with Dead Time
- LED hold option
- Brightness uniform / enhancement option

Bi-direction matrix (BiD) mode

- 4C x 6S, Max. 10 pins up to 48 dots
- 3groups, 8-level Brightness

[Dot matrix (DMX) mode]

- 8C x 8S, Max. 9 pins up to 64 dots
- 8-level Brightness

14. 13 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 pin Falling-Edge/Low-Level Interrupt
- All Pin Change Wake up Interrupt from Halt/Stop mode
- UART1/UART2 TX/RX Interrupt
- LVD Interrupt
- ADC Interrupt
- I²C Interrupt
- PWM0/PWM1/PWM2 Interrupt

15. Pin Interrupt can Wake up CPU from Halt/Stop mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake up
- Each pin can be defined as Wake up interrupt pin (by pin change)

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim1$)

DS-TM52F1376_78_E 9 Rev 1.0, 2024/05/xx

16. Max. 30 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up / Pull-down can be Enabled or Disabled
- All pin with high sink (70mA@ V_{CC} =5V, V_{OL} =0.1 V_{CC})

17. Independent RC Oscillating Watch Dog Timer

• 240ms/120ms/60ms/30ms selectable WDT timeout options

18. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

19. 16-level Low Voltage Detect

4.15V/4.01V/3.87V/3.73V/3.59V/3.45V/3.31V/3.17V/
 3.03V/2.89V/2.75V/2.61V/2.47V/2.33V/2.19V/2.05V

20. 16-level Low Voltage Reset

4.15V/4.01V/3.87V/3.73V/3.59V/3.45V/3.31V/3.17V/
 3.03V/2.89V/2.75V/2.61V/2.47V/2.33V/2.19V/2.05V

21. Five Power Operation Modes

• Fast/Slow/Idle/Halt/Stop mode

22. Integrated 16-bit Cyclic Redundancy Check function

23. Multiplication and division

- 8-bit Multiplier & Divider (standard 8051)
- 16-bit Multiplier & Divider
- 32-bit ÷ 16-bit Divider

24. On-chip Debug/ICE interface

- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin

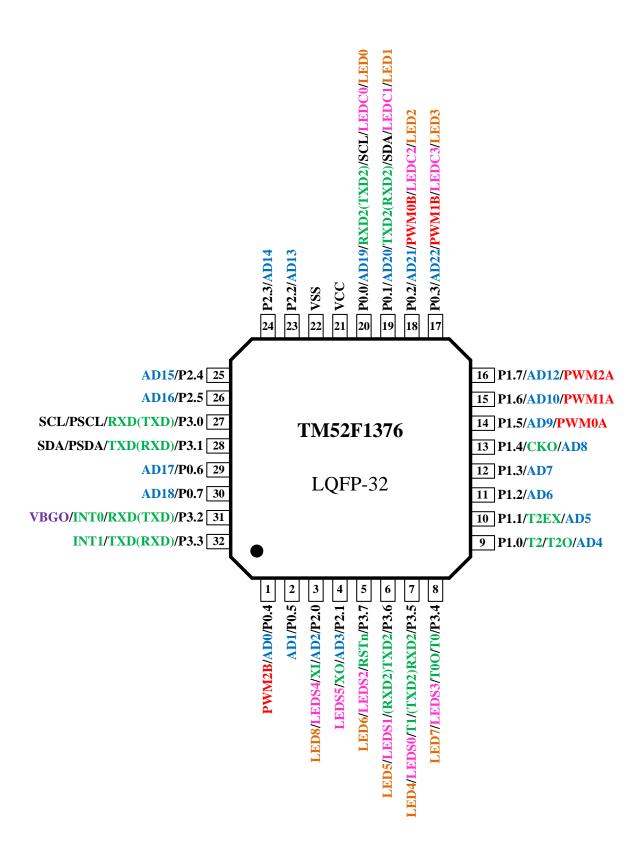
25. Operating Voltage and Current

- $V_{CC} = 2.2 \text{V} \sim 5.5 \text{V} \text{ } @F_{\text{SYSCLK}} = 18.432 \text{MHz} (-40 ^{\circ}\text{C} \sim +105 ^{\circ}\text{C})$
- $I_{CC} = 0.1 \mu A$ @Stop mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 5.5 \mu A$ @Halt mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 16\mu A$ @Idle mode, PWRSAV=1, $V_{CC}=3V$

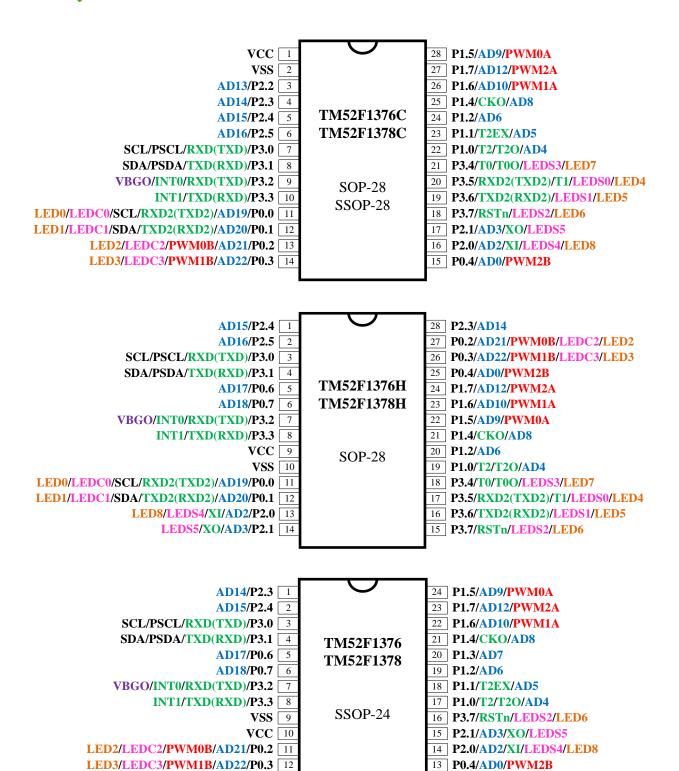
DS-TM52F1376_78_E 10 Rev 1.0, 2024/05/xx

26. Operating Temperature Range

• -40°C ~ +105°C

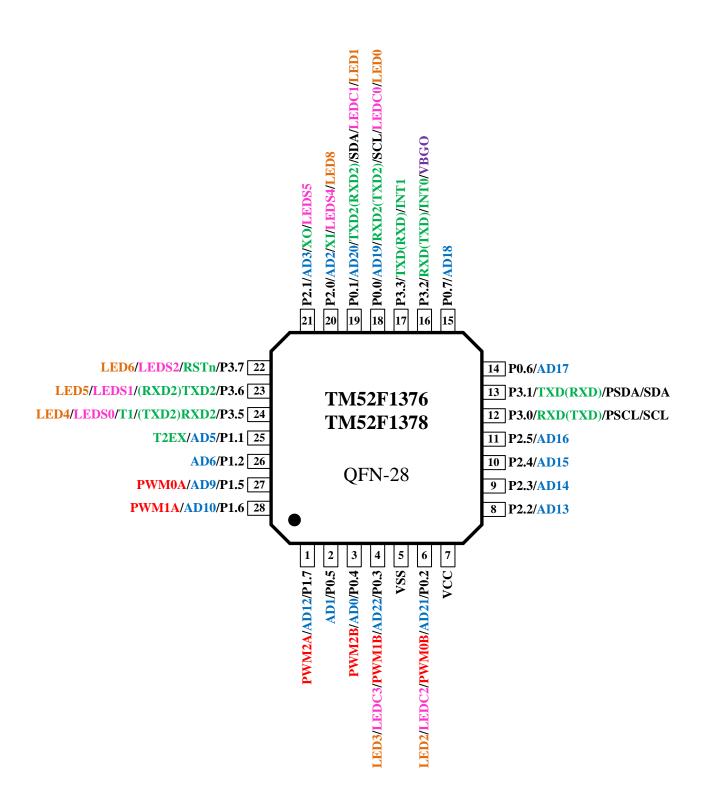

27. Package Types

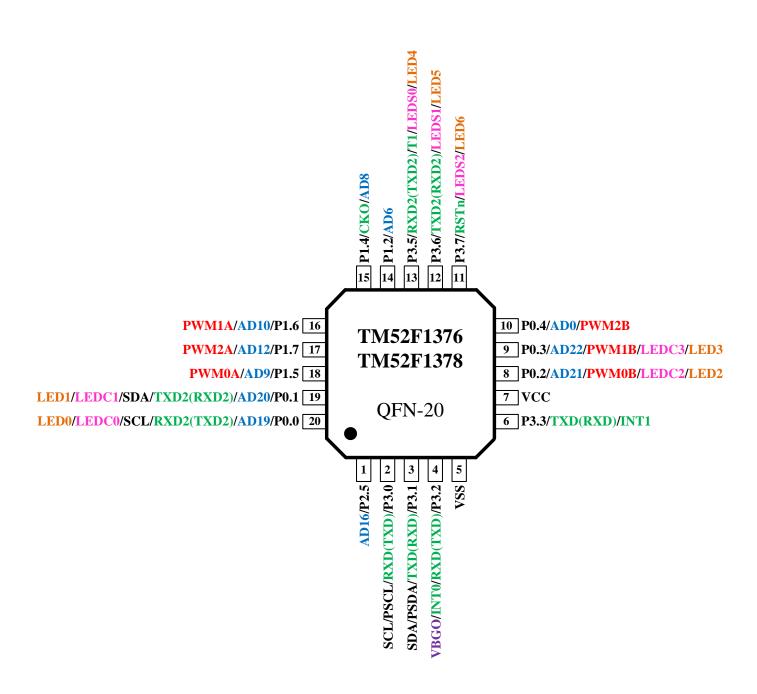
- 32-pin LQFP (7x7x1.4 mm)
- 28-pin SOP (300 mil)
- 28-pin SSOP (150 mil)
- 28-pin QFN (4x4x0.75-0.4 mm)
- 24-pin SSOP (150 mil)
- 20-pin SOP (300 mil)
- 20-pin TSSOP (173 mil)
- 20-pin QFN (3x3x0.75-0.4 mm) (L=0.25 mm)
- 16-pin SOP (150 mil)


DS-TM52F1376_78_E 11 Rev 1.0, 2024/05/xx

PIN ASSIGNMENT

DS-TM52F1376_78_E 13 Rev 1.0, 2024/05/xx


PWM0A/AD9/P1.5 1 SCL/PSCL/RXD(TXD)/P3.0 2 SDA/PSDA/TXD(RXD)/P3.1 3 AD17/P0.6 4 AD18/P0.7 5 VBGO/INT0/RXD(TXD)/P3.2 6 VSS 7 INT1/TXD(RXD)/P3.3 8 VCC 9 LED2/LEDC2/PWM0B/AD21/P0.2 10	TM52F1376 TM52F1378 SOP-20 TSSOP-20	20 P1.7/AD12/PWM2A 19 P1.6/AD10/PWM1A 18 P1.4/CKO/AD8 17 P1.2/AD6 16 P3.4/T0/LEDS3/LED7 15 P3.5/RXD2(TXD2)/T1/LEDS0/LED4 14 P3.6/TXD2(RXD2)/LEDS1/LED5 13 P3.7/RSTn/LEDS2/LED6 12 P0.4/AD0/PWM2B 11 P0.3/AD22/PWM1B/LEDC3/LED3
SCL/PSCL/RXD(TXD)/P3.0 1 SDA/PSDA/TXD(RXD)/P3.1 2 VBGO/INT0/RXD(TXD)/P3.2 3 INT1/TXD(RXD)/P3.3 4 VCC 5 VSS 6 LED0/LEDC0/SCL/RXD2(TXD2)/AD19/P0.0 7 LED1/LEDC1/SDA/TXD2(RXD2)/AD20/P0.1 8 LED3/LEDC3/PWM1B/AD22/P0.3 9 PWM2B/AD0/P0.4 10	TM52F1376H TM52F1378H SOP-20	20 P2.5/AD16 19 P2.4/AD15 18 P0.2/AD21/PWM0B/LEDC2/LED2 17 P1.5/AD9/PWM0A 16 P1.7/AD12/PWM2A 15 P1.6/AD10/PWM1A 14 P1.2/AD6 13 P3.5/RXD2(TXD2)/T1/LEDS0/LED4 12 P3.6/TXD2(RXD2)/LEDS1/LED5 11 P3.7/RSTn/LEDS2/LED6
VSS 1 LED8/LED84/XI/AD2/P2.0 2 LED55/XO/AD3/P2.1 3 LED6/LED82/RSTn/P3.7 4 LED5/LED81/(RXD2)TXD2/P3.6 5 LED4/LED80/T1/(TXD2)RXD2/P3.5 6 AD6/P1.2 7 PWM0A/AD9/P1.5 8 PWM1A/AD10/P1.6 9 PWM2A/AD12/P1.7 10	TM52F1376T TM52F1378T SOP-20	20 VCC 19 P3.3/TXD(RXD)/INT1 18 P3.2/RXD(TXD) /INT0/VBGO 17 P3.1/TXD(RXD)/PSDA/SDA 16 P3.0/RXD(TXD)/PSCL/SCL 15 P2.3/AD14 14 P2.2/AD13 13 P0.2/AD21/PWM0B/LEDC2/LED2 12 P0.3/AD22/PWM1B/LEDC3/LED3 11 P0.4/AD0/PWM2B


VSS 1 PWM2B/AD0/P0.4 2 LED6/LEDS2/RSTn/P3.7 3 AD6/P1.2 4 PWM1A/AD10/P1.6 5 PWM2A/AD12/P1.7 6 PWM0A/AD9/P1.5 7	TM52F1376 TM52F1378 SOP-16	16 VCC 15 P3.3/TXD(RXD)/INT1 14 P3.2/RXD(TXD) /INT0/VBGO 13 P3.1/TXD(RXD)/PSDA/SDA 12 P3.0/RXD(TXD)/PSCL/SCL 11 P0.0/AD19/RXD2(TXD2)/SCL/LEDC0/LED0 10 P0.1/AD20/TXD2(RXD2)/SDA/LEDC1/LED1
LED3/LEDC3/PWM1B/AD22/P0.3 8 VSS 1		9 P0.2/AD21/PWM0B/LEDC2/LED2
LED3/LEDC3/PWM1B/AD02/P0.3 2 PWM2B/AD0/P0.4 3 T2EX/AD5/P1.1 4 AD6/P1.2 5 PWM1A/AD10/P1.6 6 PWM0A/AD9/P1.5 7 PWM2A/AD12/P1.7 8	TM52F1376H TM52F1378H SOP-16	15 P3.1/TXD(RXD)/PSDA/SDA 14 P3.0/RXD(TXD)/PSCL/SCL 13 P2.5/AD16 12 P2.4/AD15 11 P3.2/RXD(TXD) /INT0/VBGO 10 P3.3/TXD(RXD)/INT1 9 P0.2/AD21/PWM0B/LEDC2/LED2

DS-TM52F1376_78_E 15 Rev 1.0, 2024/05/xx

DS-TM52F1376_78_E 17 Rev 1.0, 2024/05/xx

PIN DESCRIPTION

Name	In/Out	Pin Description
P0.0~P0.7 P1.0~P1.7 P2.0~P2.5 P3.0~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up and Pull-down resistors are assignable by software, so it can also be set to LCD 1/2 bias output. These pin's level change can interrupt/wake up CPU from Halt/Stop mode.
INT0, INT1	I	External low level or falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data.
TXD2	I/O	UART2 Mode1/3 transmit data.
T0, T1, T2	I	Timer0, Timer1, Timer2 event count pin input.
T2EX	I	Timer2 external trigger input.
T0O	О	Timer0 overflow divided by 64 output
T2O	О	Timer2 overflow divided by 2 output
СКО	О	System Clock divided by 2 output
VBGO	О	Bandgap voltage output
PWM0A~PWM2A PWM0B~PWM2B	О	16 bit PWM output
AD0~AD10 AD12~AD22	I	ADC input
LEDC0~LEDC3	О	LED Bi-Direction matrix (BiD) mode common output
LEDS0~LEDS5	О	LED Bi-Direction matrix (BiD) mode segment output
LED0~LED8	О	LED Dot matrix (DMX) mode output
SCL	I/O	I ² C SCL
SDA	I/O	I ² C SDA
PSCL	I/O	I ² C SCL for program
PSDA	I/O	I ² C SDA for program
RSTn	I	External active low reset input, Pull-up resistor is fixed enable.
XI, XO	_	Crystal/Resonator oscillator connection for System clock (FXT or SXT)
VCC, VSS	P	Power input pin and ground

PIN SUMMERY

Pin Number									In	put		Outp	out	Alt	erna	ativ	e F	unc	ction	1	MISC					
LQFP-32	SOP/350F-26 (C)	SSOP-24	SOP/TSSOP-20	SOP-20 (H)	SOP-20 (T)	SOP-16	SOP-16 (H)	QFN-28	QFN-20	Pin Name	Type	Initial State	Pull-up Control	Pull-down Control	Wake up	Ext. Interrupt	CMOS Push-Pull.	Open Drain	LCD I ED BiD mode	LED DMX mode	ADC	UART	PWM	Timer	1 C	
23 3	3 –	- -	_	_	14	_	_	8	_	AD13/P2.2	I/C	Hi-Z	•	•	•	•	•	•	•		•					
24	1 2	8 1	_	_	15	_	_	9	_	AD14/P2.3	I/C	Hi-Z	•	•	•	•	•	•	•		•					
25	5 1	. 2	_	19	_	_	12	10	_	AD15/P2.4	I/C	Hi-Z	•	•	•	•	•	•	•		•					
26	5 2	2 –	_	20	_	_	13	11	1	AD16/P2.5	I/C	Hi-Z	•	•	•	•	•	•	•		•					
27	7 3	3	2	1	16	12	14	12	2	SCL/PSCL/RXD(TXD)/P3.0	I/C	Hi-Z	•	•	•	•	•	•	•			•			•	
28 8	3 4	4	3	2	17	13	15	13	3	SDA/PSDA/TXD(RXD)/P3.1	I/C	Hi-Z	•	•	•	•	•	•	•			•			•	
29 -	- 5	5 5	4	_	_	_	_	14	_	AD17/P0.6	I/C	Hi-Z	•	•	•	•	•	•	•		•					
30 -	- 6	6	5	_	_	_	_	15	_	AD18/P0.7	I/C	Hi-Z	•	•	•	•	•	•	•		•					
31 9	7	7	6					16		VBGO/INT0/RXD(TXD)/P3.2	I/C	Hi-Z	•	•	•	•	•	•	•			•				VBGO
32 1	0 8	8	8	4	19	15	10	17	6	INT1/TXD(RXD)/P3.3	I/C	Hi-Z	•	•	•	•	•	•	•			•				
20 1	1 1	1 –	_	7	_	11	_	18	20	LED0/LEDC0/SCL/PSCL/RXD2(TXD2)/AD19/P0.0	I/C	Hi-Z	•	•	•	•	•	•	•	•	•	•			•	
191	2 1	2 –	_	8	_	10	_	19	19	LED1/LEDC1/SDA/PSDA/TXD2(RXD2)/AD20/P0.	I/C	Hi-Z		•	•	•	•	•	•	•	•	•			•	
18 1								6	8	LED2/LEDC2/PWM0B/AD21/P0.2	I/C	Hi-Z		•	•	•	•	•	•	•	•		•			
17 1	_	_	-	_	_		_	4	_	LED3/LEDC3/PWM1B/AD22/P0.3	I/C	Hi-Z	•	•	•	•	•	•	• •	•	•		•			
1 1	5 2:	5 13	12	10	11	1	3		10	PWM2B/AD0/P0.4			_	•	•	•	•	•	•		•		•			
2 -	- -	1-	_	_	_	_	_	2	_	AD1/P0.5			_	•	•	•	•	•	•		•					
	_	3 14	_	_	2	_	_	20	_	LED8/LEDS4/XI/AD2/P2.0	_	+	-	•	•	•	•	•	• •	•	•				_	Crystal
	_	4 15	_	_	3	_	_	21	_	LEDS5/XO/AD3/P2.1	_		-	•	•	•	•	•	• •	•	•				(Crystal
	_	5 16			4	2	_	22		LED6/LEDS2/RSTn/P3.			-	•	•	•	•	•	• •	•						Reset
6 1	_	_	_	12		_	_	+	12	LED5/LEDS1/(RXD2)TXD2/P3.6	_	+	_	•	•	•	•	•	• •	•		•				
	_	7 –	_	13	6	_	_	24	13	LED4/LEDS0/T1/(TXD2)RXD2/P3.5	+	_	+	•	•	•	•	•	•	•		•		•		
8 2					_	_	_	L	_	LED7/LEDS3/T0O/T0/P3.4				•	•	•	•	•	• •	•	L			•		T0O
9 2	_	_	_	_	_	_	_	-	_	AD4/T2O/T2/P1.0	_		-		1	•	•	•	•		•			•		T2O
102	_	_	-	_	_			25	_	AD5/T2EX/P1.1	_		+-	_				•			•			•		
11 2					7	3	5	26	14	AD6/P1.2	_	+	-	_		•	-	-	•		•				_	
12 -		- 20			_	_	_	<u> </u>	_	AD7/P1.3	_		+-	_	•	•			•		•					
132					-	_	_		15	AD8/CKO/P1.4	_	+	_		•	•			•		•					СКО
142										PWM0A/AD9/P1.5	_		-	_		•			•		•		•			
15 2		_	_							PWM1A/AD10/P1.	_	_	_	_		•	-	-	•		•		•		4	
162										PWM2A/AD12/P1.		Hi-Z	. •	•	•	•	•	•	•		•		•		4	
22 2								5			P						4	\dashv							4	
21	1 9	10	9	5	20	16	16	7	7	VCC	P															

DS-TM52F1376_78_E 19 Rev 1.0, 2024/05/xx

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 **ACC:** Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

DS-TM52F1376_78_E 20 Rev 1.0, 2024/05/xx

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 SP													
SP				S	P			·							
R/W				R/	W										
Reset	0	0	0	0	0	1	1	1							

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DPL		DPL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DPH		DPH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

DS-TM52F1376_78_E 21 Rev 1.0, 2024/05/xx

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag	
Histraction	C	OV	AC
ADD	X	X	X
ADDC	X	X	X
SUBB	X	X	X
MUL	0	X	
DIV	0	X	
DA	X		
RRC	X		
RLC	X		
SETB C	1		

Instruction		Flag	
msu ucuon	C	ov	AC
CLR C	0		
CPL C	X		
ANL C, bit	X		
ANL C, /bit	X		
ORL C, bit	X		
ORL C, /bit	X		
MOV C, bit	X		
CJNE	X		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	P
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

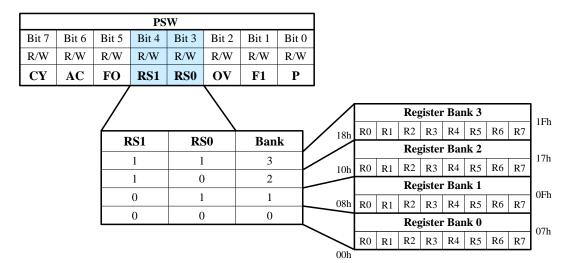
D0h.6 **AC:** ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

00: Bank 0 (00h~07h)

01: Bank 1 (08h~0Fh)


10: Bank 2 (10h~17h)

11: Bank 3 (18h~1Fh)

D0h.2 **OV:** ALU overflow flag

D0h.1 **F1:** General purpose user-definable flag

D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

2. Memory

2.1 Program Memory

The Chip has a 16K Bytes Flash program memory for **TM52F1376**, and an 8K Bytes Flash program memory for **TM52F1378** which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 10K cycles. The program memory address continuous space (0000h~3FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 16 bytes (3FF0h~3FFFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~007Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. For **TM52F1376**, the address space 3000h~3FEFh is defined as the IAP area. For **TM52F1378**, the address space 1000h~1FEFh is defined as the IAP area. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 2D00h~2FFFh for ICE System communication.CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

	16K Bytes program memory
0000h	
00751	Reset / Interrupt Vector
007Fh 0080h	
008011	
	Han Code and
	User Code area
2CFFh	
2D00h	ICE mode reserve area
2FFFh	TCE mode reserve area
3000h	
	User Code or IAP area
3EFFh	
3F00h	
2PPPI	IAP-Free area
3FEFh 3FF0h	CRC16L
3FF1h	CRC16H
3FF2h	CKC1011
211211	tenx reserve area
3FFAh	
3FFBh	CFGBG
3FFDh	CFGWL (FRC)
3FFFh	CFGWH
	TM52F1376

	8K Bytes program memory
0000h	Decet / Interes of Marks
007Fh	Reset / Interrupt Vector
0080h	
	User Code area
	Osci Code area
0FFFh	
1000h	
1FEFh	User Code or IAP area
1FF0h	CRC16L
1FF1h	CRC16H
	tenx reserve area
2D00h	
2	ICE mode reserve area
2FFFh	
	tenx reserve area
3FFAh	
3FFBh	CFGBG
3FFDh	CFGWL (FRC)
3FFFh	CFGWH
	TM52F1378

DS-TM52F1376_78_E 23 Rev 1.0, 2024/05/xx

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1

2.1.3 Flash IAP Mode

The **TM52F1376/78** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **TM52F1376/78** does not need to erase one Flash page before write. The available IAP data space is 240 Bytes after chip reset, and can be re-defined by the "IAPALL" control register as shown below.

_	16K Bytes Flash Program memory		Flash memory	IAPALL	MOVC Accessible	MOVX (IAP) Accessible
0000h)h IAP-All area		00001 2555		Yes	No
3EFFh	IAP-All alea		0000h~3EFFh	1	Yes	Yes
3F00h 3FEFh	IAP-Free area		3F00h~3FEFh	X	Yes	Yes
3FF0h			3FF0h~3FF7h	X	Yes	Yes
	CFGW area		3FF8h~3FFEh	0	Yes	No
	Crow area		3FF6II~3FFEII	1	Yes	Yes
3FFFh			3FFFh	X	Yes	No

In IAP mode, the program Flash memory is separated into three sectors: IAP-All area, IAP-Free area, and CFGW area. These three sectors are regulated differently.

The IAP-All area is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 16218 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0000h to 3EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually better. The size of this area is 240 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. The **TM52F1376/78** has a true EEPROM memory. It has the wider writing voltage range and the better write endurance than Flash memory. It is recommended to use EEPROM memory to store application data first.

DS-TM52F1376_78_E 24 Rev 1.0, 2024/05/xx

The **CFGW** area has 3 data bytes (CFGWH, CFGWL and CFGBG), which is located at the last 16 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGBG can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F6h and CFGBG is copied to the SFR F5h after power on reset, software then take over CFGWL's and CFGBG's control capability by modifying the SFR F6h and F5h.

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0000h~3FFEh), and the ACC contains the data being written. The **TM52F1376/78** accepts IAP write command only when IAPWE=1. Flash IAP writing one byte requires approximately 1 ms @V_{CC}=5V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. The **TM52F1376/78** has a build-in IAP Time-out function for escaping write fail state. Flash IAP writing needs higher V_{CC} voltage, V_{CC}>4.0V and WDT disabled to avoid false writing.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0000h~3FFEh area. A Flash IAP read does not require extra CPU wait time.

```
; IAP example code (ASM)
 ; need 4.0V < V_{CC} < 5.5V
ANL
           AUX2, #3Fh
                                  ; WDT function disable
ORL
           AUX2, #04h
                                  ; IAP Time-Out function enable
MOV
           DPTR, #3F00h
                                  ; DPTR=3F00h=target IAP address
MOV
           A, #5Ah
                                  ; A=5Ah=target IAP write data
MOV
           IAPWE, #47h
                                  ; IAP write enable
MOVX
           @DPTR, A
                                  ; Flash[3F00h] =5Ah, after IAP write
                                  ; 1ms~2ms H/W writing time, CPU wait
MOV
                                  ; IAP write disable, immediately after IAP write
           IAPWE, #00h
CLR
                                  ; A=0
           Α
MOVX
           A, @DPTR
                                  ; A=5Ah
CLR
                                  A=0
           Α
MOVC
           A, @A+DPTR
                                  ; A=5Ah
 ; IAP example code (C)
 ; need 4.0V < V_{CC} < 5.5V
unsigned char xdata PROM[4096] at 0x2000 // 0x2000 = start address
unsigned char code CODE[4096] _{at} 0x2000 // 0x2000 = start address
AUX2 = 0x04:
                 // WDT function disable & IAP Time-Out function enable
IAPALL = 0x65;
IAPWE = 0x47;
PROM[0x02] = wdata; // write data into ROM[0x2002]
IAPWE = 0x00;
IAPALL = 0x00;
rdata = CODE[0x105]; // read data from ROM[0x2105]
```

DS-TM52F1376_78_E 25 Rev 1.0, 2024/05/xx

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CWCMD								
SWCMD	-							IAPALL
R/W		W						R
Reset			-	_			0	0

97h.7~0 **IAPALL** (**W**): Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.

97h.0 **IAPALL (R):** Flag indicates Flash memory sectors can be accessed by IAP or not.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
I A DXX/E		IAPWE/EEPWE							
IAPWE	IAPWE	IAPTO	EEPWE	-					
R/W	R	R	R			W			
Reset	0	0	0			_			

C9h.7~0 **IAPWE (W):** Write 47h to set IAPWE control flag; Write E2h to set EEPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after IAP or EEPROM write.

C9h.7 **IAPWE** (**R**): Flag indicates Flash memory can be written by IAP or not, 1=IAP Write enable.

C9h.6 **IAPTO** (**R**): IAP (or EEPROM write) Time-Out flag, Set by H/W when IAP (or EEPROM write) Time-out occurs. Cleared by H/W when IAPWE=0 (or EEPWE=0).

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 1 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 3.9 ms trigger watchdog time-out flag, and escape the write fail state

11: wait 7.8 ms trigger watchdog time-out flag, and escape the write fail state

2.1.5 Flash ISP Mode

The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

DS-TM52F1376_78_E 26 Rev 1.0, 2024/05/xx

2.2 EEPROM Memory

The TM52F1376/78 contains 128 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 50K write/erase cycles.

_	EEPROM Memory
EE00h	EEPROM[0]
EE02h	EEPROM[1]
EE04h	
	•
	•
EEFCh	EEPROM[126]
EEFEh	EEPROM[127]

(Only even addresses can be used, odd addresses are invalid)

The EEPROM Write usage is similar to Flash IAP mode. It is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target EEPROM address (EE00h~EEFEh, ADDR=ADDR+2), and the ACC contains the data being written. EEPROM writing requires approximately 2 ms @ V_{CC} =3V, 1 ms @ V_{CC} =5V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an EEPROM write. The TM52F1376/78 has a build-in EEPROM Time-out function shared with Flash IAP for escaping write fail state. EEPROM writing needs V_{CC} >3.0V and WDT disabled to avoid false writing.

The EEPROM Read can be performed by the "MOVX A, @DPTR" instruction as long as the target address points to the EE00h~EEFEh area. The EEPROM read does require approximately 300ns.

```
; EEPROM example code
 ; need 3.0V < V_{CC} < 5.5V
          AUX2, #3Fh
                                ; WDT function disable
ANL
ORL
                                ; EEPROM Time-Out function enable
          AUX2, #04h
                                ; DPTR=EE00h=target EEPROM[0] address
MOV
          DPTR, #0EE00h
MOV
          A, #0A5h
                                ; A=A5h=target EEPROM[0] write data
MOV
          EEPWE, #0E2h
                                ; EEPROM write enable
MOVX
          @DPTR, A
                                ; EEPROM[0]=A5h, after EEPROM write
                                ; 1ms~2ms H/W writing time, CPU wait
MOV
          EEPWE, #000h
                                ; EEPROM write disable, immediately after EEPROM write
CLR
                                A=0
MOVX
          A, @DPTR
                                ; A=A5h
```

DS-TM52F1376_78_E 27 Rev 1.0, 2024/05/xx

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I A DXX/E				IAPWE/	EEPWE			
IAPWE	IAPWE	IAPTO	EEPWE			_		
R/W	R	R	R			W		
Reset	0	0	0			_		

- C9h.7~0 **EEPWE (W):** Write 47h to set IAPWE control flag; Write E2h to set EEPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after IAP or EEPROM write.
- C9h.6 **IAPTO (R):** IAP (or EEPROM write) Time-Out flag, Set by H/W when IAP (or EEPROM write) Time-out occurs. Cleared by H/W when IAPWE=0 (or EEPWE=0).
- C9h.5 **EEPWE (R):** Flag indicates EEPROM memory can be written or not, 1=EEPROM Write enable.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

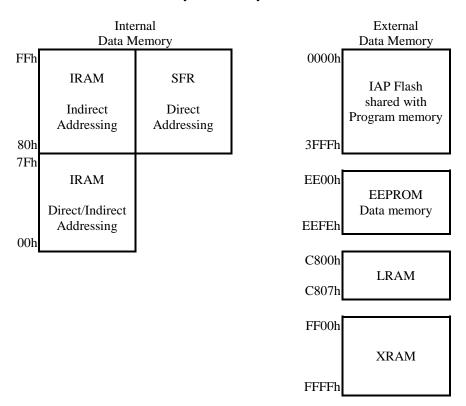
11: Watchdog Timer Reset always enable

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 1 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 3.9 ms trigger watchdog time-out flag, and escape the write fail state


11: wait 7.8 ms trigger watchdog time-out flag, and escape the write fail state

DS-TM52F1376_78_E 28 Rev 1.0, 2024/05/xx

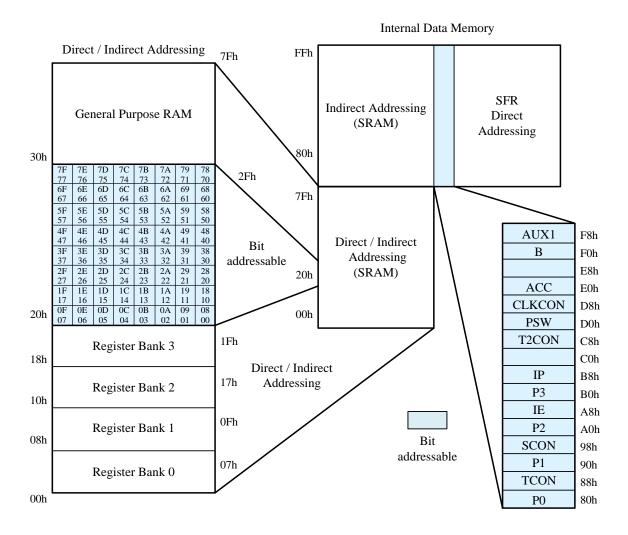
2.3 Data Memory

As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 256 Bytes XRAM, 8 Bytes LCD RAM, 128 Bytes EEPROM and IAP Flash, which can be only accessed by MOVX instruction.

2.3.1 IRAM

IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.3.2 XRAM


XRAM is located in the 8051 external data memory space (address from FF00h to FFFFh). The 256 Bytes XRAM can be only accessed by "MOVX" instruction.

2.3.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/LED/LCD, which are unique to the Chip.

DS-TM52F1376_78_E 29 Rev 1.0, 2024/05/xx

	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN		CFGBG	CFGWL	AUX2
E8h		SIADR	SICON	SIRCD1	SITXRCD2			AUX3
E0h	ACC	MICON	MIDAT				EXA	EXB
D8h	CLKCON	PWM0PRDH	PWM0PRDL	PWM1PRDH	PWM1PRDL	PWM2PRDH	PWM2PRDL	
D0h	PSW	PWM0DH	PWM0DL	PWM1DH	PWM1DL	PWM2DH	PWM2DL	
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2	EXA2	EXA3
C0h								
B8h	IP	IPH	IP1	IP1H				LVDS
B0h	P3	LEDCON	LEDCON2				ADCHS	
A8h	IE	INTE1	ADCDL	ADCDH				
A0h	P2	PWMCON	PINMOD10	PINMOD32	PINMOD54	PINMOD76	PINMOD	PWMCON2
98h	SCON	SBUF						
90h	P1	PORTIDX			OPTION	INTFLG	INTPIN	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SCON2	SBUF2
80h	P0	SP	DPL	DPH		INTPORT	INTPWM	PCON

DS-TM52F1376_78_E 30 Rev 1.0, 2024/05/xx

3. LVR and LVD setting

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 16-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS. The SFR PWRSAV/LVRPD bits also affect LVR function as tables below.

Operation	S	FR	CFGWH			
Mode	LVRPD	PWRSAV	LVRE	LVR	Function	Note
	0	X	0000	ON	LV Reset 2.05V	
	0	X	0001	ON	LV Reset 2.19V	
	0	X	0010	ON	LV Reset 2.33V	
	0	X	0011	ON	LV Reset 2.47V	
	0	X	0100	ON	LV Reset 2.61V	
	0	X	0101	ON	LV Reset 2.75V	
	0	X	0110	ON	LV Reset 2.89V	
Fast	0	X	0111	ON	LV Reset 3.03V	
Slow	0	X	1000	ON	LV Reset 3.17V	
	0	X	1001	ON	LV Reset 3.31V	
	0	X	1010	ON	LV Reset 3.45V	
	0	X	1011	ON	LV Reset 3.59V	
	0	X	1100	ON	LV Reset 3.73V	
	0	X	1101	ON	LV Reset 3.87V	
	0	X	1110	ON	LV Reset 4.01V	
	0	X	1111	ON	LV Reset 4.15V	
	0	0	0000	ON	LV Reset 2.05V	
	0	0	0001	ON	LV Reset 2.19V	
	0	0	0010	ON	LV Reset 2.33V	
	0	0	0011	ON	LV Reset 2.47V	
	0	0	0100	ON	LV Reset 2.61V	
	0	0	0101	ON	LV Reset 2.75V	
T.31.	0	0	0110	ON	LV Reset 2.89V	
Idle Stop	0	0	0111	ON	LV Reset 3.03V	Current consumption
Halt	0	0	1000	ON	LV Reset 3.17V	about 60∼100uA
	0	0	1001	ON	LV Reset 3.31V	
	0	0	1010	ON	LV Reset 3.45V	
	0	0	1011	ON	LV Reset 3.59V	
	0	0	1100	ON	LV Reset 3.73V	
	0	0	1101	ON	LV Reset 3.87V	
	0	0	1110	ON	LV Reset 4.01V	
	0	0	1111	ON	LV Reset 4.15V	
Idle	0	1	XXXX	ON	Disable LVR Enable POR 2.05V	Current consumption about 40uA
Stop Halt	0	1	XXXX	OFF	Disable	*Minimum Current consumption
Fast Slow Idle	1	X	XXXX	ON	Disable LVR Enable POR 2.05V	Current consumption about 40uA
Stop Halt	1	X	XXXX	OFF	Disable	*Minimum Current consumption

 $\textbf{\textit{Note:}}\ \textit{The current consumption of Halt mode is more than Stop mode about 5.5~23uA, because SRC is enabled.}$

DS-TM52F1376_78_E 31 Rev 1.0, 2024/05/xx

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	TE	PWRSAV	VBGOUT	DIV32	IAF	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

F7h.5 **PWRSAV:** chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.3 LVRPD: Low Voltage Reset function select

0: LVR is enable 1: LVR is disable

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDPD	LVDO	_	_		LV	DS	
R/W	R/W	R	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	_	0	0	0	0

BFh.7 LVDPD: Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode)

0: enable 1: disable

BFh.6 **LVDO:** Low Voltage Detect output

BFh.3~0 LVDS: Low Voltage Detect select

0000: Set LVD at 2.05V 0001: Set LVD at 2.19V 0010: Set LVD at 2.33V

0011: Set LVD at 2.47V 0100: Set LVD at 2.61V

0101: Set LVD at 2.75V

0110: Set LVD at 2.89V

0111: Set LVD at 3.03V 1000: Set LVD at 3.17V

1001: Set LVD at 3.31V

1010: Set LVD at 3.45V

1011: Set LVD at 3.59V

1100: Set LVD at 3.73V

1101: Set LVD at 3.87V

1110: Set LVD at 4.01V

1111: Set LVD at 4.15V

DS-TM52F1376_78_E 32 Rev 1.0, 2024/05/xx

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE		LV	RE		PREAD	FRCPSC

3FFFh.5~2 LVRE: Low Voltage Reset function select

0000: Set LVR at 2.05V

0001: Set LVR at 2.19V

0010: Set LVR at 2.33V

0011: Set LVR at 2.47V

0100: Set LVR at 2.61V

0101: Set LVR at 2.75V

0110: Set LVR at 2.89V

0111: Set LVR at 3.03V

1000: Set LVR at 3.17V

1001: Set LVR at 3.31V

1010: Set LVR at 3.45V

1011: Set LVR at 3.59V

1100: Set LVR at 3.73V

1101: Set LVR at 3.87V

1110: Set LVR at 4.01V

1111: Set LVR at 4.15V

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from ROM's last six bytes. The Power on Reset needs VCC pin's voltage first discharge to near V_{SS} level, then rise beyond 2.2V. Power on Reset is automatically turned off when the chip enters Halt/Stop mode.

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Halt/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 16-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS.

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE		LV	RE		PREAD	FRCPSC

3FFFh.6 XRSTE: External Pin Reset control

0: Disable External Pin Reset

1: Enable External Pin Reset

3FFFh.5~3 LVRE: Low Voltage Reset function select

0000: Set LVR at 2.05V 0001: Set LVR at 2.19V 0010: Set LVR at 2.33V 0011: Set LVR at 2.47V 0100: Set LVR at 2.61V 0101: Set LVR at 2.75V

0110: Set LVR at 2.73V 0110: Set LVR at 2.89V 0111: Set LVR at 3.03V

1000: Set LVR at 3.17V

1001: Set LVR at 3.31V

1010: Set LVR at 3.45V 1011: Set LVR at 3.59V

1100: Set LVR at 3.39V

1100. Set LVR at 3.73V 1101: Set LVR at 3.87V

1110: Set LVR at 4.01V

1111: Set LVR at 4.15V

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		_	_
R/W	_	R/W	R/	R/W		W	_	_
Reset	_	0	0	0	0	0	_	_

94h.5~4 **WDTPSC:** Watchdog Timer pre-scalar time select

00: 240 ms WDT overflow rate 01: 120 ms WDT overflow rate 10: 60 ms WDT overflow rate 11: 30 ms WDT overflow rate

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	_	ADIF	_	_	PCIF	TF3
R/W	R/W	_	_	R/W	_	_	R/W	R/W
Reset	0	_	_	0		_	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag

Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD	IAPEN/SWRST							
R/W	W					R/W	R/W	
Reset			-	_			_	0

97h.7~0 **SWRST:** Write 56h to generate S/W Reset

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.5 **PWRSAV:** chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.7 **CLRWDT:** Set to clear WDT, H/W auto clear it at next clock cycle

F8h.3 LVRPD: Low Voltage Reset function select

0: LVR is enable 1: LVR is disable

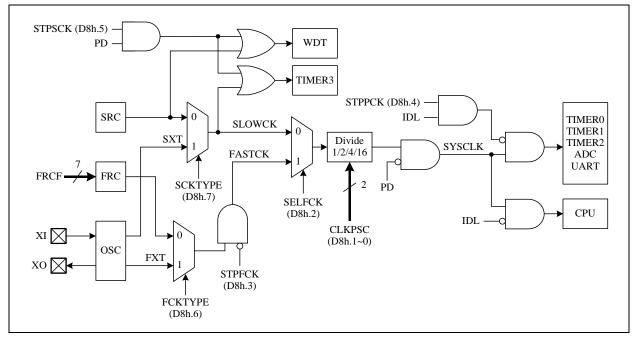
DS-TM52F1376_78_E 35 Rev 1.0, 2024/05/xx

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~18 MHz) or FRC (Fast Internal RC, 18.432 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 130 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 130 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, an 18 MHz System clock rate requires $V_{CC} > 2.2V$.


The Chip has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~18 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

If user wants to switch F_{SYSCLK} from Slow clock to FXT, user should be following the step below

- 1. Set FCKTYPE (D8h.6)
- 2. Wait 2 ms until FXT oscillation stable
- 3. Set SELFCK (D8h.2)

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by PINMODE SFR (*see section 7*).

Clock Structure

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock, Also refer to AP-TM52XXXXX 01S and AP-TM52XXXXX 02S about System Clock Application Note.

DS-TM52F1376_78_E 36 Rev 1.0, 2024/05/xx

		CLKCO	N (D8h)	
SYSCLK	bit7	bit6	bit3	bit2
	SCKTYPE	FCKTYPE	STPFCK	SELFCK
Fast FXT	0/1	1	0	1
Fast FRC	0/1	0	0	1
Slow SXT	1	0/1	0/1	0
Slow SRC	0	0/1	0/1	0
Fast type change	0/1	$0 \leftarrow \rightarrow 1$	0/1	0
Slow type change	0 ← → 1	0/1	0	1
Stop FRC/FXT	0/1	0/1	0 → 1	0
Switch to FRC/FXT	0/1	0/1	0	0 → 1
Switch to SRC/SXT	0/1	0/1	0	1 → 0

Flash 3FFDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_				FRCF			

3FFDh.6~0 FRCF: FRC frequency adjustment.

FRC is trimmed to 18.432 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CFGWL	_		FRCF						
R/W	_		R/W						
Reset	_	_	_	_	_	_	_	_	

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC

1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC

1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

D8h.5 **STPSCK:** Set 1 to stop Slow clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UARTs/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 **CLKPSC:** System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

DS-TM52F1376_78_E 37 Rev 1.0, 2024/05/xx

5.2 Operation Modes

There are five operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR and STPSCK is set. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up.

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt. In this mode, Timer3 clock source can only choose Slow clock, not FRC/512.

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim1$)

Note: FW must turn off Bandgap to obtain Tiny Current (VBGOUT=0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC 1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC 1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

D8h.5 **STPSCK:** Set 1 to stop Slow clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 **CLKPSC:** System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		_	_
R/W	_	R/W	R/W		R/	W	_	_
Reset	_	0	0	0	0	0	_	_

94h.6 **TM3CKS:** Timer3 Clock Source select

0: Slow clock (SXT/SRC) 1: FRC/512 (36KHz)

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.4 **VBGOUT:** Bandgap voltage output to P3.2

0: Disable 1: Enable

DS-TM52F1376_78_E 39 Rev 1.0, 2024/05/xx

6. Interrupt & Wake-up

This Chip has a 13-source four-level priority interrupt structure. Only the Pin Interrupts can wake up CPU from Halt/Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INT0 external pin Interrupt (can wake up Halt/Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Halt/Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART1) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033	_	Reserved for ICE mode use
003B	TF3	Timer3 Interrupt
0043	PCIF	Port0~Port3 external pin change Interrupt (can wake up Halt/Stop
		mode)
004B	LVDIF	LVD interrupt
0053	ADIF	ADC Interrupt
005B	_	Reserved
0063	RI2+TI2	Serial Port (UART2) Interrupt
006B	MIIF TXDF RCD2F RCD1F	I ² C interrupt
0073	PWM0IF PWM1IF PWM2IF	PWM0~ PWM2 Interrupt

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

6.2 Suggestions on interrupting subroutines

When entering the interrupt program, in addition to the traditionally known SFR A or PSW that should be PUSH, POP, some SFRs used for indexing should also be added to the ranks of PUSH POP, such as PORTIDX. To avoid writing and reading these SFRs before and after the interruption may cause inconsistencies. In addition, PWMDH, PWMDL, PWMPRDH or PWMPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

DS-TM52F1376_78_E 40 Rev 1.0, 2024/05/xx

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON2	_	PWM2IE	PWM1IE	PWM0IE	_	PWM2CLR	PWM1CLR	PWM0CLR
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	_	0	0	0	_	0	0	0

A7h.6 **PWM2IE:** PWM2 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

A7h.5 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

A7h.4 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.5 **ET2:** Timer2 interrupt enable

0: Disable Timer2 interrupt

1: Enable Timer2 interrupt

A8h.4 **ES:** Serial Port (UART1) interrupt enable

0: Disable Serial Port (UART1) interrupt

1: Enable Serial Port (UART1) interrupt

A8h.3 **ET1:** Timer1 interrupt enable

0: Disable Timer1 interrupt

1: Enable Timer1 interrupt

A8h.2 **EX1:** External INT1 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT1 pin Interrupt and Halt/Stop mode wake up

1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A8h.1 **ET0:** Timer0 interrupt enable

0: Disable Timer0 interrupt

1: Enable Timer0 interrupt

A8h.0 **EX0:** External INT0 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INTO pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

DS-TM52F1376_78_E 41 Rev 1.0, 2024/05/xx

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	_	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

A9h.7 **PWMIE:** PWM0~PWM2 interrupt enable

0: Disable PWM0~PWM2 interrupt

1: Enable PWM0~PWM2 interrupt

A9h.6 **I2CE:** I²C (master/slave) interrupt enable

0: Disable I²C interrupt

1: Enable I²C interrupt

A9h.5 **ES2:** Serial Port (UART2) interrupt enable

0: Disable Serial Port (UART2) interrupt

1: Enable Serial Port (UART2) interrupt

A9h.3 **ADIE:** ADC interrupt enable

0: Disable ADC interrupt

1: Enable ADC interrupt

A9h.2 **LVDIE:** LVD interrupt enable

0: Disable LVD interrupt

1: Enable LVD interrupt.

A9h.1 **PCIE:** Port0~Port3 pin change interrupt enable. This bit does not affect Halt/Stop mode wake up capability.

0: Disable Port0~Port3 pin change interrupt

1: Enable Port0~Port3 pin change interrupt

A9h.0 **TM3IE:** Timer3 interrupt enable

0: Disable Timer3 interrupt

1: Enable Timer3 interrupt

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W		_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2:** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

10: Level 2

01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH**, **PS:** Serial Port (UART1) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1:** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H**, **PX1:** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0:** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H, PX0:** External INT0 pin Interrupt Priority control. Definition as above.

DS-TM52F1376_78_E 42 Rev 1.0, 2024/05/xx

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	PPWMH	PI2CH	PS2H	-	PADIH	PLVDH	PPCH	PT3H
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	PPWM	PI2C	PS2	_	PADI	PLVD	PPC	PT3
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

BBh.7, BAh.7 **PPWMH, PPWM:** PWM0~PWM2 Interrupt Priority control. Definition as above.

BBh.6, BAh.6 **PI2CH, PI2C:** I²C (Master/Slave) Interrupt Priority control. Definition as above.

BBh.5, BAh.5 **PS2H**, **PS2:** Serial Port (UART2) Interrupt Priority control. Definition as above.

BBh.3, BAh.3 **PADIH, PADI:** ADC Interrupt Priority control. Definition as above.

BBh.2, BAh.2 **PLVDH, PLVD:** LVD Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PPCH, PPC:** Port0~ Port 3 Pin Change Interrupt Priority control. Definition as above.

BBh.0, BAh.0 **PT3H, PT3:** Timer3 Interrupt Priority control. Definition as above.

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

EAh.7 **MIIE:** I²C Master interrupt enable

0: disable 1: enable

EAh.6 **TXDIE:** Slave I C transmission completed interrupt enable

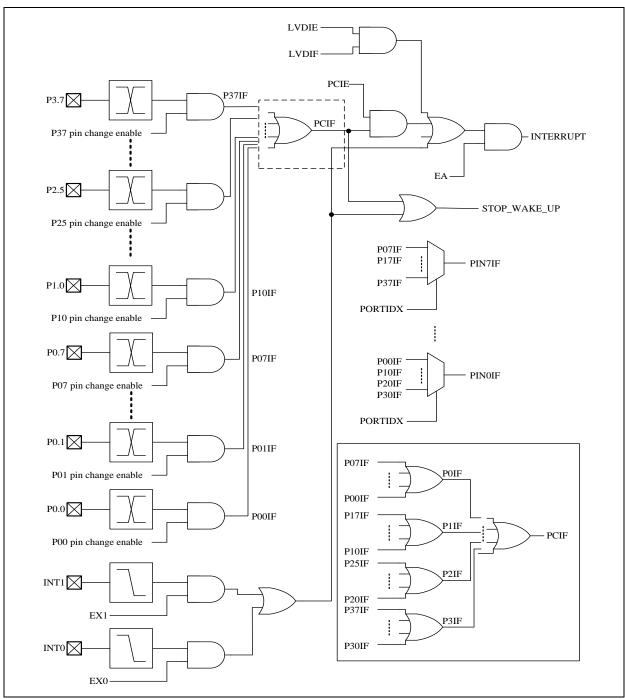
0: disable 1: enable

EAh.5 **RCD2IE:** Slave I*C DATA2(SITXRCD2) reception completed interrupt enable

0: disable 1: enable

EAh.4 **RCD1IE:** Slave I C DATA1(SIRCD1) reception completed interrupt enable

0: disable 1: enable


DS-TM52F1376_78_E 43 Rev 1.0, 2024/05/xx

6.3 Pin Interrupt and LVD interrupt

Pin Interrupts include INT0~INT1 and Port0~Port3 pin change interrupt. INT0~INT1 and Port0~Port3 pin change also have the Halt/Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. Port0~Port3 Pin Change Interrupt is triggered by IO state change. Pin change enable are setting by PINMOD10/PINMOD32/PINMOD54/PINMOD76. For details, see Chapter 7. PINMODE and pin change enable settings. LVD interrupt can be used to detect the V_{CC} voltage level and generate an interrupt.

Note: Port0~Port3 pin change wake up or interrupt can only be used in Halt/Stop mode, and not allowed in Fast/Slow/Idle mode.

Pin interrupt/Wake up & LVD interrupt

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim1$)

SFR 85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPORT	_	_	_	_	P3IF	P2IF	P1IF	P0IF
R/W	_	_	_		R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

P3IF: P3.7~P3.0 pin change interrupt flag, Write 0 to clear P3.7~P3.0 pin change interrupt flag
 P6h.2
 P2IF: P2.5~P2.0 pin change interrupt flag, Write 0 to clear P2.5~P2.0 pin change interrupt flag
 P6h.1
 P1IF: P1.7~P1.0 pin change interrupt flag, Write 0 to clear P1.7~P1.0 pin change interrupt flag
 P0IF: P0.7~P0.0 pin change interrupt flag, Write 0 to clear P0.7~P0.0 pin change interrupt flag

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTIDX	_	_	_	_	_	_	PORT	ΓIDX
R/W	_	_	_	_	_	_	R/W	
Reset	_	_	_	_	_	_	0	0

91h.1~0 **PORTIDX:** Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	_	ADIF	_	_	PCIF	TF3
R/W	R	_	_	R/W	_	_	R/W	R/W
Reset	_	_	_	0	_	_	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag

Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

95h.1 **PCIF:** Port0~Port3 Pin change interrupt flag

Set by H/W when Port0~Port3 pin state change is detected and its interrupt enable bit is set. S/W can write 0 to clear all pin change interrupt flags (Port0~Port3), it will also clear PIN0IF~PIN7IF and P0IF~P3IF.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPIN	PIN7IF	PIN6IF	PIN5IF	PIN4IF	PIN3IF	PIN2IF	PIN1IF	PIN0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

96h.7 **PIN7IF:** Px.7 pin change interrupt flag, Write 0 to clear Px.7 pin change interrupt flag port number (x) define by PORTIDX

96h.6 **PIN6IF:** Px.6 pin change interrupt flag, Write 0 to clear Px.6 pin change interrupt flag port number (x) define by PORTIDX

96h.5 **PIN5IF:** Px.5 pin change interrupt flag, Write 0 to clear Px.5 pin change interrupt flag port number (x) define by PORTIDX

96h.4 **PIN4IF:** Px.4 pin change interrupt flag, Write 0 to clear Px.4 pin change interrupt flag port number (x) define by PORTIDX

96h.3 **PIN3IF:** Px.3 pin change interrupt flag, Write 0 to clear Px.3 pin change interrupt flag port number (x) define by PORTIDX

96h.2 **PIN2IF:** Px.2 pin change interrupt flag, Write 0 to clear Px.2 pin change interrupt flag port number (x) define by PORTIDX

96h.1 **PIN1IF:** Px.1 pin change interrupt flag, Write 0 to clear Px.1 pin change interrupt flag port number (x) define by PORTIDX

96h.0 **PIN0IF:** Px.0 pin change interrupt flag, Write 0 to clear Px.1 pin change interrupt flag port number (x) define by PORTIDX

DS-TM52F1376_78_E 45 Rev 1.0, 2024/05/xx

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.3 **IE1:** External Interrupt 1 (INT1 pin) edge flag.

Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine.

88h.2 **IT1:** External Interrupt 1 control bit

0: Low level active (level triggered) for INT1 pin

1: Falling edge active (edge triggered) for INT1 pin

88h.1 **IE0:** External Interrupt 0 (INT0 pin) edge flag

Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.0 **IT0:** External Interrupt 0 control bit

0: Low level active (level triggered) for INT0 pin

1: Falling edge active (edge triggered) for INT0 pin

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.2 **EX1:** External INT1 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT1 pin Interrupt and Halt/Stop mode wake up

1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A8h.0 **EX0:** External INT0 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INTO pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

	_							
SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	_	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

A9h.2 **LVDIE:** LVD interrupt enable

0: Disable LVD interrupt

1: Enable LVD interrupt.

A9h.1 **PCIE:** Port0~3 pin change interrupt enable. This bit does not affect Halt/Stop mode wake up capability.

0: Disable Port0~3 pin change interrupt

1: Enable Port0~3 pin change interrupt

DS-TM52F1376_78_E 46 Rev 1.0, 2024/05/xx

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
LVDS	LVDPD	LVDO	_	_	LVDS				
R/W	R/W	R	_	_	R/W	R/W	R/W	R/W	
Reset	0	0	_	_	0	0	0	0	

BFh.3~0 LVDS: Low Voltage Detect select

0000: Set LVD at 2.05V

0001: Set LVD at 2.19V

0010: Set LVD at 2.33V

0011: Set LVD at 2.47V

0100: Set LVD at 2.61V

0101: Set LVD at 2.75V

0110: Set LVD at 2.89V

0111: Set LVD at 3.03V

1000: Set LVD at 3.17V

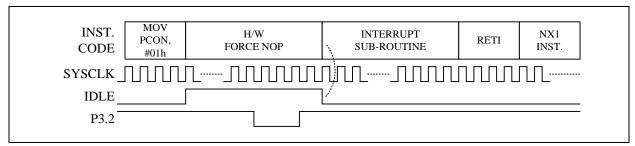
1001: Set LVD at 3.31V

1010: Set LVD at 3.45V

1011: Set LVD at 3.59V

1100: Set LVD at 3.73V

1101: Set LVD at 3.87V


1110: Set LVD at 4.01V

1111: Set LVD at 4.15V

6.4 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts change (INT0~INT1, Timers, PWM, ADC, and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

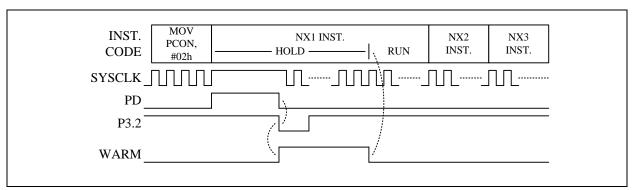
SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

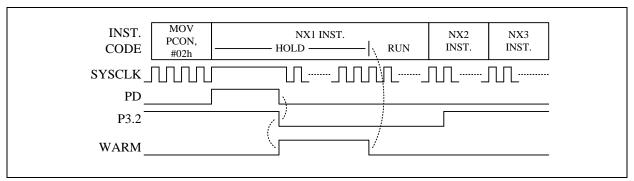
87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

6.5 Halt/Stop mode Wake up and Interrupt

Halt/Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1 can enable INT0/INT1 pins' Halt/Stop mode wake up capability. Set PINMOD10/PINMOD32/PINMOD54/PINMOD76 can enable Port0~Port3 Halt/Stop mode wake up capability. Upon Halt/Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Halt/Stop mode wake up.


Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.

DS-TM52F1376_78_E 48 Rev 1.0, 2024/05/xx



EA=EX0=1, P3.2 (INT0) is sampled after warm-up, Halt/Stop mode wake-up and Interrupt

EA=EX0=1, Halt/Stop mode wake-up but not Interrupt. P3.2 (INT0) pulse too narrow

EX0= 1, EA=0, P3.2 (INT0) Halt/Stop mode wake-up but not Interrupt

DS-TM52F1376_78_E 49 Rev 1.0, 2024/05/xx

7. I/O Ports

The Chip has total 30 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

When entering the interrupt program, in addition to the traditionally known SFR A or PSW that should be PUSH, POP, some SFRs used for indexing should also be added to the ranks of PUSH POP, such as PORTIDX. To avoid writing and reading these SFRs before and after the interruption may cause inconsistencies.

7.1 Port0~Port 3

These pins can operate in four different modes as below.

`PINI PINI PINI PINI	MOD MOD)54)32			Function	Interrupt	Wake-up
MODE0	0	0	0	0	Open Drain with pull-up (for INT0/INT1)	Y	Y
MODE1	0	0	0	1	Open Drain (Default) (for INT0/INT1)	Y	Y
MODE2	0	0	1	0	CMOS Output	-	-
MODE3	0	0	1	1	ADC channel	-	-
MODE4	0	1	0	0	Open Drain with pull-down (for INT0/INT1)	Y	Y
MODE5	0	1	0	1	Open Drain (for INT0/INT1)	Y	Y
MODE6	0	1	1	0	CMOS Output	-	-
MODE7	0	1	1	1	LED pin	-	-
MODE8	1	0	0	0	Open Drain with pull-up (for pin change from Halt/Stop)	Y	Y
MODE9	1	0	0	1	Open Drain (for pin change from Halt/Stop)	Y	Y
MODE10	1	0	1	0	CMOS Output	-	-
MODE11	1	0	1	1	PWMO, TxO, CKO output	-	-
MODE12	1	1	0	0	Open Drain with pull-down (for pin change from Halt/Stop)	Y	Y
MODE13	1	1	0	1	Open Drain (for pin change from Halt/Stop)	Y	Y
MODE14	1	1	1	0	CMOS Output	-	-
MODE15	1	1	1	1	LCD 1/2 Vcc bias	=	=

Table 7.1 Port0~Port3 I/O Pin Function Table

PINMOD76/ PINMOD54/PINMOD32/PINMOD10 need PORTIDX to index the corresponding IO port. For example:

If PORTIDX=0, PINMOD10 is set to P0.1 and P0.0, high 4 bits are set to P0.1, low 4 bits are set to P0.0 If PORTIDX=1, PINMOD10 is set to P1.1 and P1.0, high 4 bits are set to P1.1, low 4 bits are set to P1.0 If PORTIDX=2, PINMOD10 is set to P2.1 and P2.0, high 4 bits are set to P2.1, low 4 bits are set to P2.0 If PORTIDX=3, PINMOD10 is set to P3.1 and P3.0, high 4 bits are set to P3.1, low 4 bits are set to P3.0 If PORTIDX=0, PINMOD32 is set to P0.3 and P0.2, high 4 bits are set to P0.3, low 4 bits are set to P0.2

. . .

If PORTIDX=3, PINMOD76 is set to P3.7 and P3.6, high 4 bits are set to P3.7, low 4 bits are set to P3.6

DS-TM52F1376_78_E 50 Rev 1.0, 2024/05/xx

Mode	Port0~Port3 pin function	Px.n SFR data	Pin State	Resistor Pull-up	Resistor Pull-down	Digital Input
MODE0	Open Drain with pull-up	0	Drive Low	N	N	N
MODE8	Open Drain with pun-up	1	Pull-up	Y	N	Y
MODE4	Open Drain with pull-down	0	Drive Low	N	N	N
MODE12	Open Drain with pull-down	1	Pull-down	N	Y	Y
MODE1		0	Drive Low	N	N	N
MODE5 MODE9 MODE13	Open Drain	1	Hi-Z	N	N	Y
MODE2		0	Drive Low	N	N	N
MODE6 MODE10 MODE14	CMOS Output	1	Drive High	N	N	N
MODE3	ADC channel	X (don't care)	_	N	N	N
MODE7	LED pin	X (don't care)	_	N	N	N
MODE11	PWMO, TxO, CKO output	X (don't care)	-	N	N	N
MODE15	LCD 1/2 Vcc bias output	X (don't care)	_	Y	Y	N

I/O Pin Function Table

If a Port0~Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to MODE0, MODE1, MODE4, MODE5, MODE8, MODE9, MODE12 or MODE13 (Open Drain, Open Drain with pull-up or Open Drain with pull-down), and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port0~Port3 has one or more alternative functions, such as LED, ADC and LCD. Most of the functions are activated by setting the individual pin mode control SFR to MODE3, MODE7, MODE11 or MODE15. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/INT1, T0/T1/T2, or RXD/TXD. These pin functions need to set the pin mode SFR to MODE0, MODE1, MODE5, MODE8, MODE9 or MODE13 (Open Drain or Open Drain with pull-up), and keep the P1.n/P3.n SFR at 1.

DS-TM52F1376_78_E 51 Rev 1.0, 2024/05/xx

Pin Name	Wake-up Interrupt	СКО	ADC	LED BiD	LED DMX	LCD	PWM	UART	I ² C	others
P0.7	Y		AD18			Y				
P0.6	Y		AD17			Y				
P0.5	Y		AD1			Y				
P0.4	Y		AD0			Y	PWM2B			
P0.3	Y		AD22	LEDC3	LED3	Y	PWM1B			
P0.2	Y		AD21	LEDC2	LED2	Y	PWM0B			
P0.1	Y		AD20	LEDC1	LED1	Y		TXD2 (RXD2)	SDA	PSDA
P0.0	Y		AD19	LEDC0	LED0	Y		RXD2 (TXD2)	SCL	PSCL

Port0 multi-function Table

Pin Name	Wake-up Interrupt	СКО	ADC	LED BiD	LED DMX	LCD	PWM	UART	I ² C	others
P1.7	Y		AD12			Y	PWM2A			
P1.6	Y		AD10			Y	PWM1A			
P1.5	Y		AD9			Y	PWM0A			
P1.4	Y	CKO	AD8			Y				
P1.3	Y		AD7			Y				
P1.2	Y		AD6			Y				
P1.1	Y		AD5			Y				T2EX
P1.0	Y	T2O	AD4			Y				T2

Port1 multi-function Table

Pin Name	Wake-up Interrupt	СКО	ADC	LED BiD	LED DMX	LCD	PWM	UART	I ² C	others
P2.5	Y		AD16			Y				
P2.4	Y		AD15			Y				
P2.3	Y		AD14			Y				
P2.2	Y		AD13			Y				
P2.1	Y		AD3	LEDS5		Y				XO
P2.0	Y		AD2	LEDS4	LED8	Y				XI

Port2 multi-function Table

Pin Name	Wake-up Interrupt	СКО	ADC	LED BiD	LED DMX	LCD	PWM	UART	I ² C	others
P3.7	Y			LEDS2	LED6	Y				RSTn
P3.6	Y			LEDS1	LED5	Y		TXD2 (RXD2)		
P3.5	Y			LEDS0	LED4	Y		RXD2 (TXD2)		T1
P3.4	Y	T0O		LEDS3	LED7	Y				T0
P3.3	Y					Y		TXD (RXD)		INT1
P3.2	Y					Y		RXD (TXD)		INT0 VBGO
P3.1	Y					Y		TXD (RXD)	SDA	PSDA
P3.0	Y					Y		RXD (TXD)	SCL	PSCL

Port3 multi-function Table

DS-TM52F1376_78_E 52 Rev 1.0, 2024/05/xx

The necessary SFR setting for Port0~Port3 pin's alternative function is list below.

Alternative Function	PINMODxx	Px.n SFR data	Pin State	Other necessary SFR setting
INTO INTI	0000	1	Input with Pull-up	
INT0, INT1	0001	1	Input	
TO T1 T2 T2EV	x000	1	Input with Pull-up	
T0, T1, T2, T2EX	xx01	1	Input	
RXD	x000	1	UART RX (Input with Pull-up)	
RXD2	RXD2 xx01 1 UART RX (Input)		UART RX (Input)	PINMOD
TXD	x000	1	UART TX output (Open Drain Output, Pull-up)	TINNOD
TXD2				
XI, XO	0000	1	Crystal oscillation	CLKCON
VBGO	0011	X	Bandgap Voltage output	VBGOUT
AD0~AD10 0011		X	ADC Channel	ADCHS
AD12~AD22	0011	Λ		ADCIIS
LEDC0~ LEDC3			LED BiD mode Common Output	LEDCON
LEDS0~ LEDS5	0111	X	LED BiD mode Segment Output	LEDCON LEDCON2
LED0~ LED8			LED DMX mode Output	LLDC0112
LCD	1111	X	LCD 1/2 Vcc bias Output	
T0O, T2O, CKO	1011	X	Clock Output (CMOS Push-Pull)	
PWM0A~PWM2A PWM0B~PWM2B	1011	X	PWM Output (CMOS Push-Pull)	
I ² C Master SCL	0000	X	I ² C Clock Output (Open Drain Output, Pull-up)	
xx10		X	I ² C Clock Output (CMOS Push-Pull)	
I ² C Slave SCL 0x01		1	I ² C Clock Input (Hi-Z)	PINMOD
I ² C Master/Slave SDA 0000		1	I ² C DATA (Pull-up)	

Mode Setting for Port0 ~ Port3 Alternative Function

For tables above, a "CMOS Output" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current ($<20 \mu A$). It can be used as input or output function and typically needs an external pull up resistor.

The chip also supports I/O High-sink function. It is an option. For efficient control, we divide the High-sink pins into three groups (Group 0: P00~P03, P20, P21, P34~P37; Group 1: P04, P05, P10~P17; Group 2: P06, P07, P22~P25, P30~P33). It is enabled by setting SFR HSNK0EN, HSNK1EN and HSNK2EN.

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

80h.7~0 **P0:** Port0 data

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

DS-TM52F1376_78_E 53 Rev 1.0, 2024/05/xx

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.7~0 P2: Port2 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Р3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port3 data

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTIDX	_	_	_	_	_	_	PORT	ΓIDX
R/W	_	_	_	_	_	_	R/W	
Reset	_	_	_	_	_	_	0	0

91h.1~0 **PORTIDX:** Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD10		PINM	IOD1			PINM	IOD0	
R/W		R/	W			R/	W	
Reset	0	0	0	1	0	0	0	1

A2h.7~4 **PINMOD1:** Px.1 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

A2h.3~0 **PINMOD0:** Px.0 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PINMOD32		PINM	IOD3			PINM	IOD2				
R/W		R/	W			R/	W				
Reset	0	0	0	1	0	0	0	1			

A3h.7~4 **PINMOD3:** Px.3 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

A3h.3~0 **PINMOD2:** Px.2 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD54		PINM	IOD5			PINM	IOD4	
R/W		R/	W			R/	W	
Reset	0	0	0	1	0	0	0	1

A4h.7~4 **PINMOD5:** Px.5 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

A4h.3~0 **PINMOD4:** Px.4 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD76		PINM	IOD7			PINM	IOD6	
R/W		R/	W			R/	W	
Reset	0	0	0	1	0	0	0	1

A5h.7~4 **PINMOD7:** Px.7 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

A5h.3~0 **PINMOD6:** Px.6 pin control, port index (x) is defined by PORTIDX

0000~1111: see table 7.1

DS-TM52F1376_78_E 54 Rev 1.0, 2024/05/xx

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	UART2PS		UART1PS	
R/W	R/W	R/W	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

A6h.7 **HSNK2EN:** Pin High-sink enable (Group 2: P06, P07, P22~P25, P30~P33)

0: Group 2 High-sink disable1: Group 2 High-sink enable

A6h.6 **HSNK1EN:** Pin High-sink enable (Group 1: P04, P05, P10~P17)

0: Group 1 High-sink disable1: Group 1 High-sink enable

A6h.5 **HSNK0EN:** Pin High-sink enable (Group 0: P00~P03, P20, P21, P34~P37)

0: Group 0 High-sink disable1: Group 0 High-sink enable

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC

1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC

1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEDEN		LED	PSC	LEDHOLD LEDBRIT			
R/W	R/W		R/	W	R/W	R/W		
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED Bi-Direction matrix (BiD) mode Enable

00: LED BiD mode disable

01: LED 1/8 duty (COM0~3, SEG0~3), need to set the LED related pins to MODE7 (see Table 7.1)

10: LED 1/9 duty (COM0~3, SEG0~4), need to set the LED related pins to MODE 7 (see Table 7.1)

11: LED 1/10 duty (COM0~3, SEG0~5), need to set the LED related pins to MODE 7 (see Table 7.1)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
LEDCON2	LEDBRITM		LEDBRIT2				LEDBRIT1		
R/W	R/W	R/W			R/W		R/W		
Reset	0	1	1	1	0	1	1	1	

B2h.3 **LEDMTEN:** LED Dot matrix (DMX) mode enable control

0: LED DMX mode disable

1: LED DMX mode enable, need to set the LED related pins to MODE7 (see Table 7.1)

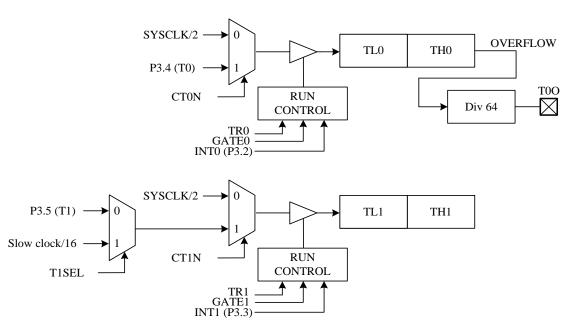
SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	OTE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.4 **VBGOUT:** Bandgap voltage output control

0: Disable

1: Bandgap voltage output to P3.2 pin

DS-TM52F1376_78_E 55 Rev 1.0, 2024/05/xx



8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function. The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.7 **TF1:** Timer1 overflow flag

Set by H/W when Timer/Counter 1 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.6 **TR1:** Timer1 run control

0: Timer1 stops

1: Timer1 runs

88h.5 **TF0:** Timer0 overflow flag

Set by H/W when Timer/Counter 0 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.4 **TR0:** Timer0 run control

0: Timer0 stops

1: Timer0 runs

DS-TM52F1376_78_E 56 Rev 1.0, 2024/05/xx

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMOD	GATE1	CT1N	TMOD1		GATE0	CT0N	TMO	OD0
R/W	R/W	R/W	R/W		R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

89h.7 **GATE1:** Timer1 gating control bit

0: Timer1 enable when TR1 bit is set

1: Timer1 enable only while the INT1 pin is high and TR1 bit is set

89h.6 **CT1N:** Timer1 Counter/Timer select bit

0: Timer mode, Timer1 data increases at 2 System clock cycle rate

1: Counter mode, Timer1 data increases at T1 pin's negative edge

89h.5~4 **TMOD1:** Timer1 mode select

00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow.

11: Timer1 stops

89h.3 **GATE0:** Timer0 gating control bit

0: Timer0 enable when TR0 bit is set

1: Timer0 enable only while the INT0 pin is high and TR0 bit is set

89h.2 **CT0N:** Timer0 Counter/Timer select bit

0: Timer mode, Timer0 data increases at 2 System clock cycle rate

1: Counter mode, Timer0 data increases at T0 pin's negative edge

89h.1~0 **TMOD0:** Timer0 mode select

00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.

11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL0		TL0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH0		TH0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Dh.7~0 **TH1:** Timer1 data high byte

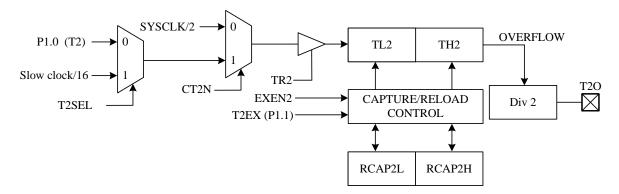
DS-TM52F1376_78_E 57 Rev 1.0, 2024/05/xx

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.1 **T1SEL:** Timer1 counter mode (CT1N=1) input select

0: P3.5 (T1) pin (8051 standard)

1: Slow clock divide by 16 (SLOWCLK/16)


Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority.

Note: See also Chapter 7 for details on TOO pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

C8h.7 **TF2:** Timer2 overflow flag

Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.

C8h.6 **EXF2:** T2EX interrupt pin falling edge flag

Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.

C8h.5 **RCLK:** UART receive clock control bit

0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3

1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3

C8h.4 TCLK: UART transmit clock control bit

0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3

1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3

C8h.3 **EXEN2:** T2EX pin enable

0: T2EX pin disable

1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0

C8h.2 **TR2:** Timer2 run control

0: Timer2 stops

1: Timer2 runs

C8h.1 CT2N: Timer2 Counter/Timer select bit

0: Timer mode, Timer2 data increases at 2 System clock cycle rate

1: Counter mode, Timer2 data increases at T2 pin's negative edge

C8h.0 **CPRL2N:** Timer2 Capture/Reload control bit

0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1.

1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1.

If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.

DS-TM52F1376_78_E 59 Rev 1.0, 2024/05/xx

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RCP2L		RCP2L							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RCP2H		RCP2H							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL2		TL2							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CCh.7~0 TL2: Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH2		TH2							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CDh.7~0 **TH2:** Timer2 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.2 **T2SEL:** Timer2 counter mode (CT2N=1) input select

0: P1.0 (T2) pin (8051standard)

1:Slow clock divide by 16 (SLOWCLK/16)

Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority.

Note: See also Chapter 7 for details on T2O pin output settings.

DS-TM52F1376_78_E 60 Rev 1.0, 2024/05/xx

8.3 Timer3

Timer3 works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 32768, 16384, 8192, ..., 256 depending on the TM3PSC SFR. The Timer3 clock source is Slow clock (SRC or SXT) or FRC/512. This is ideal for real-time-clock (RTC) functionality when the clock source is SXT.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		_	_
R/W	_	R/W	R/W		R/	W	_	_
Reset	_	0	0	0	0	0	_	_

94h.6 **TM3CKS:** Timer3 Clock Source select

0: Slow clock (SXT/SRC)

1: FRC/512 (36KHz)

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	_	ADIF	_	_	PCIF	TF3
R/W	R	_	_	R/W	_	_	R/W	R/W
Reset	_	_	_	0	_	_	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3	_	_	TM3PSC			VBGEN	_	ADCVREFS
R/W	_	_		R/W			_	R/W
Reset	_	_	0	0	0	0	0	0

EFh.5~3 **TM3PSC:** Timer3 Interrupt rate

000: Timer3 Interrupt rate is 32768 Timer3 clock cycle

001: Timer3 Interrupt rate is 16384 Timer3 clock cycle

010: Timer3 Interrupt rate is 8192 Timer3 clock cycle

011: Timer3 Interrupt rate is 4096 Timer3 clock cycle

100: Timer3 Interrupt rate is 2048 Timer3 clock cycle

101: Timer3 Interrupt rate is 1024 Timer3 clock cycle

110: Timer3 Interrupt rate is 512 Timer3 clock cycle

111: Timer3 Interrupt rate is 256 Timer3 clock cycle

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.6 **CLRTM3:** Set 1 to clear Timer3, H/W auto clear it at next clock cycle.

Note: also refer to Section 6 for more information about Timer3 Interrupt enable and priority.

8.4 T0O and T2O Output Control

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The T0O and T2O waveform is divided by Timer0/Timer2 overflow signal. The T0O waveform is Timer0 overflow divided by 64, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed. Set the MODE of P3.4 or P1.0 to 1011b to output T0O and T2O. See table 7.1 for more detail.

DS-TM52F1376_78_E 61 Rev 1.0, 2024/05/xx

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The **UART1** uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent.

The **UART2** uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2, it also does not support Timer2 mode. On other hand, the option of SMOD is not use for UART2. UART2 double baud rate is always enabled.

Both UART1 and UART2 provide two different TXD and RXD options. TXD and RXD can also be exchanged. In this way, there is more flexibility in application.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_			R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.7 **SMOD:** UART1 double baud rate control bit

0: Disable UART1 double baud rate

1: Enable UART1 double baud rate

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6 **SM0,SM1:** UART1 serial port mode select bit 0,1

00: Mode0: 8 bit shift register, Baud Rate=F_{SYSCLK}/2

01: Mode1: 8 bit UART1, Baud Rate is variable

10: Mode2: 9 bit UART1, Baud Rate=F_{SYSCLK}/32 or/64

11: Mode3: 9 bit UART1, Baud Rate is variable

98h.5 **SM2:** Serial port mode select bit 2

SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.

98h.4 **REN:** UART1 reception enable

0: Disable reception

1: Enable reception

98h.3 **TB8:** Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3

98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 if SM2=0

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W.

98h.0 **RI:** Receive interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

DS-TM52F1376_78_E 62 Rev 1.0, 2024/05/xx

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SBUF		SBUF								
R/W		R/W								
Reset	_	_	_	_	_	_	_	_		

99h.7~0 **SBUF:** UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON2	SM		_	REN2	TB82	RB82	TI2	RI2
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
Reset	0	_	_	0	0	0	0	0

8Eh.7 SM: UART2 Serial port mode select bit

0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable (UART2 does not support Mode0/Mode2)

8Eh.4 **REN2:** UART2 reception enable

0: Disable reception1: Enable reception

8Eh.3 **TB82:** Transmit Bit 8, the ninth bit to be transmitted in Mode 3

8Eh.2 **RB82:** Receive Bit 8, contains the ninth bit that was received in Mode3

8Eh.1 **TI2:** Transmit interrupt flag

Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.

8Eh.0 **RI2:** Receive interrupt flag

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SBUF2		SBUF2								
R/W		R/W								
Reset	_	_	_	_	_	_	_	_		

8Fh.7~0 **SBUF2:** UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	UART2PS		UART1PS	
R/W	R/W	R/W	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

A6h.3~2 UART2PS: UART2 Pin Select

00: RXD2/TXD2 = P0.0/P0.1

01: RXD2/TXD2 = P3.5/P3.6

10: RXD2/TXD2 = P0.1/P0.0

11: RXD2/TXD2 = P3.6/P3.5

A6h.1~0 UART1PS: UART1 Pin Select

00: RXD/TXD = P3.0/P3.1

01: RXD/TXD = P3.2/P3.3

10: RXD/TXD = P3.1/P3.0

11: RXD/TXD = P3.3/P3.2

DS-TM52F1376_78_E 63 Rev 1.0, 2024/05/xx

 F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

• Mode 0: (UART2 invalid)

Baud Rate=F_{SYSCLK}/2

• Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD + 1) x F_{SYSCLK} / (32 x 2 x (256 – TH1))

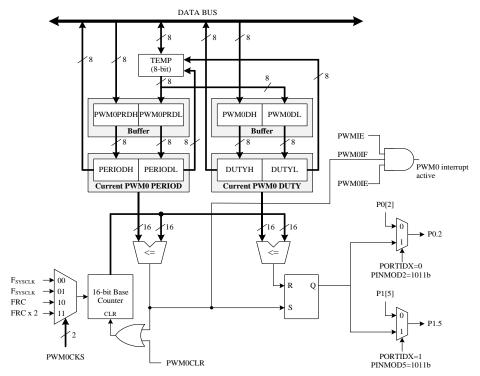
• Mode 1, 3: if using Timer2 (UART2 invalid)
Baud Rate=Timer2 overflow rate/16 = F_{SYSCLK} / (32 x (65536 – (RCP2H, RCP2L)))

• Mode 2: (UART2 invalid)
Baud Rate= (SMOD + 1) x F_{SYSCLK}/64

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. **Note:** also refer to Section 8 for more information about how Timer2 controls UART clock.

DS-TM52F1376_78_E 64 Rev 1.0, 2024/05/xx

10. PWMs


The Chip has three independent 16-bit PWM modules PWM0, PWM1 and PWM2. PWM0~2 have the same operation structure. The following takes PWM0 as an example for description. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRC x 2), FRC or F_{SYSCLK} as its clock source.

PWM will be automatically enabled at power on. Set SFR PINMODx to control PWM output. If PINMODx is set to 1011b (relative), for example, PORTIDX = 1, PIMOD76 = BBh, then PWM1 and PWM2 will be output to P16 and P17. (see section 7)

The 16-bit PWM0PRD, PWM0D registers all have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking*, write low byte first and then high byte; read high byte first and then low byte.

When PWM0CLR bit is set, the PWM0 will be cleared and held, otherwise the PWM0 is running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWM0PRDH and PWM0PRDL registers. After writing the PWM0D or PWM0PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM0 is cleared. PWM0~2 has a corresponding interrupt flag, and an interrupt flag is generated at the end of the period.

PWMDH, PWMDL, PWMPRDH or PWMPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

PWM0 Structure

DS-TM52F1376_78_E 65 Rev 1.0, 2024/05/xx

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	_	_	PWM2CKS		PWM1CKS		PWM0CKS	
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	1	0	1	0	1	0

A1h.5~4 **PWM2CKS:** PWM2 Clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRC x 2 ($V_{CC} > 3.0V$)

A1h.3~2 **PWM1CKS:** PWM1 Clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRC x 2 ($V_{CC} > 3.0V$)

A1h.1~0 **PWM0CKS:** PWM0 Clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRC x 2 ($V_{CC} > 3.0V$)

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON2	_	PWM2IE	PWM1IE	PWM0IE	_	PWM2CLR	PWM1CLR	PWM0CLR
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	_	0	0	0	_	0	0	0

A7h.6 **PWM2IE:** PWM2 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

A7h.5 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

A7h.4 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

A7h.2 **PWM2CLR:**

0: PWM2 is running

1: PWM2 is cleared and held

A7h.1 **PWM1CLR:**

0: PWM1 is running

1: PWM1 is cleared and held

A7h.0 **PWM0CLR:**

0: PWM0 is running

1: PWM0 is cleared and held

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	_	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

A9h.7 **PWMIE:** PWM0~2 interrupt enable

0: Disable PWM0~2 interrupt

1: Enable PWM0~2 interrupt

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPWM	_	_	_	_	_	PWM2IF	PWM1IF	PWM0IF
R/W	_	_	_	_	_	R/W	R/W	R/W
Reset	_	_	_	_	_	0	0	0

86h.2 **PWM2IF:** PWM2 interrupt flag.

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.1 **PWM1IF:** PWM1 interrupt flag.

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.0 **PWM0IF:** PWM0 interrupt flag.

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

D1h.7~0 **PWM0DH:** PWM0 duty high byte

write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DL		PWM0DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D2h.7~0 **PWM0DL:** PWM0 duty low byte

write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DH		PWM1DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

D3h.7~0 **PWM1DH:** PWM1 duty high byte

write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DL		PWM1DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D4h.7~0 **PWM1DL:** PWM1 duty low byte

write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DH		PWM2DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

D5h.7~0 **PWM2DH:** PWM2 duty high byte

write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DL		PWM2DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D6h.7~0 **PWM2DL:** PWM2 duty low byte

write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRDH		PWM0PRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

D9h.7~0 **PWM0PRDH:** PWM0 period high byte

write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRDL		PWM0PRDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

DAh.7~0 **PWM0PRDL:** PWM0 period low byte

write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRDH		PWM1PRDH						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

DBh.7~0 **PWM1PRDH:** PWM1 period high byte

write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1PRDL		PWM1PRDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

DCh.7~0 **PWM1PRDL:** PWM1 period low byte

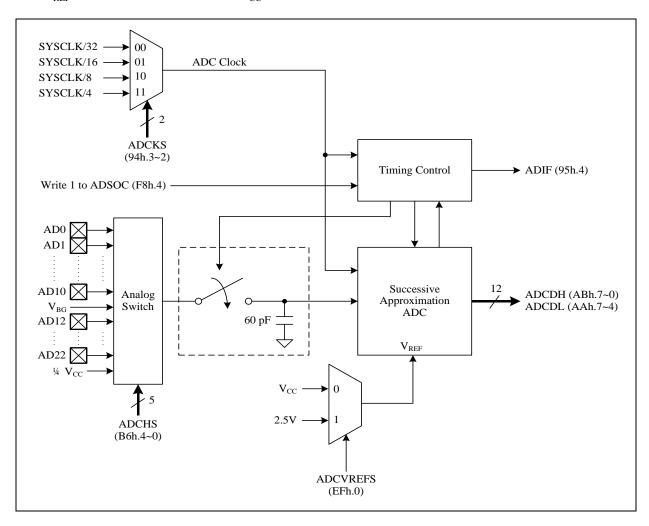
write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2PRDH		PWM2PRDH								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

DDh.7~0 **PWM2PRDH:** PWM2 period high byte

write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

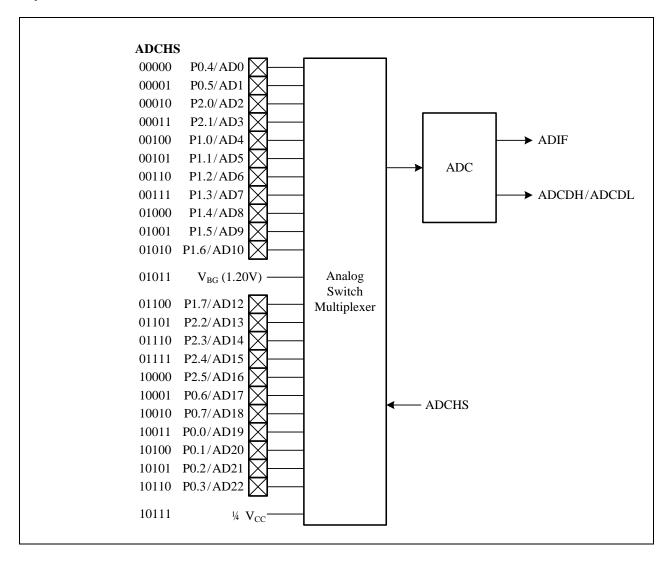
SFR DEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2PRDL		PWM2PRDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			


DEh.7~0 **PWM2PRDL:** PWM2 period low byte

write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

11. ADC

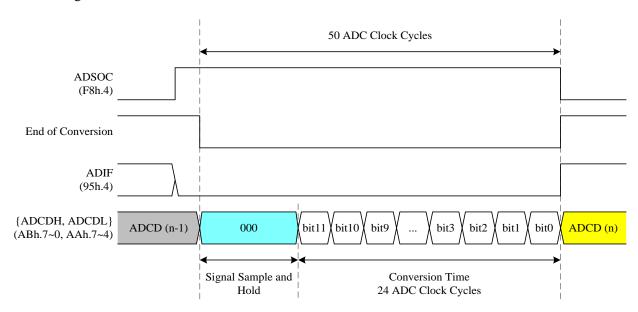
The Chip offers a 12-bit ADC consisting of a 24-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit. The V_{REF} of the ADC can be selected V_{CC} or 2.5V.



DS-TM52F1376_78_E 69 Rev 1.0, 2024/05/xx

11.1 ADC Channels

The 12-bit ADC has a total of 24 channels, designated AD0~AD10, AD12~AD22, V_{BG} and $1/4V_{CC}$. The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by the ADCHS register. The Chip offers up to 22 analog input pins, designated AD0~AD10 and AD12~AD22. In addition, there are two analog input pins for voltage reference connections, V_{BG} and $1/4V_{CC}$. V_{BG} is an internal voltage reference at 1.20V. When ADC channel select to V_{BG} , V_{BG} generator will enable automatically. User can get more stable V_{BG} voltage by setting SFR VBGEN=1 to always enable V_{BG} generator. And $1/4V_{CC}$ is the reference voltage generated by the resistor divider of V_{CC} .



DS-TM52F1376_78_E 70 Rev 1.0, 2024/05/xx

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 50 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		_	_
R/W	_	R/W	R/	R/W		W	_	_
Reset	_	0	0	0	0	0		_

94h.3~2 **ADCKS:** ADC clock rate select

00: F_{SYSCLK}/32 01: F_{SYSCLK}/16 10: F_{SYSCLK}/8 11: F_{SYSCLK}/4

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	_	ADIF	_	_	PCIF	TF3
R/W	R/W	_	_	R/W	_	_	R/W	R/W
Reset	0	_	_	0	_	_	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDL	ADCDL				_	_	_	_
R/W	R				_	_	_	_
Reset	_	_	_	_	_	_	_	_

AAh.7~4 **ADCDL:** ADC data bit 3~0

Note: F/W must turn off Bandgap to obtain Tiny Current (ADCHS $\neq 01011b$)

DS-TM52F1376_78_E 71 Rev 1.0, 2024/05/xx

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ADCDH		ADCDH								
R/W		R								
Reset	_	_	_	_	_	_	_	_		

ABh.7~0 ADCDH: ADC data bit 11~4

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ADCHS	_	_	_	ADCHS					
R/W	_			R/W					
Reset	_	_	_	1	1	1	1	1	

B6h.4~0 **ADCHS:** ADC channel select

00000: AD0 (P0.4)

00001: AD1 (P0.5)

00010: AD2 (P2.0)

00011: AD3 (P2.1)

00100: AD4 (P1.0)

00101: AD5 (P1.1)

00110: AD6 (P1.2) 00111: AD7 (P1.3)

01000: AD8 (P1.4)

01001: AD9 (P1.5)

01010: AD10 (P1.6)

01011: V_{BG} (Internal Bandgap Reference Voltage)

01100: AD12 (P1.7)

01101: AD13 (P2.2)

01110: AD14 (P2.3)

01111: AD15 (P2.4)

10000:AD16 (P2.5)

10001:AD17 (P0.6)

10010:AD18 (P0.7)

10011:AD19 (P0.0)

10100:AD20 (P0.1)

10101:AD21 (P0.2)

10110:AD22 (P0.3)

10111:1/4V_{CC}

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3	_	_		TM3PSC		VBGEN	_	ADCVREFS
R/W	_	_	R/W			R/W		R/W
Reset	_	_	()	()	()	0	()	0

EFh.2 **VBGEN:** force V_{BG} generator enable

0: V_{BG} generator is automatically enable and disable

1: Force V_{BG} generator enable included in Idle mode but disabled in Halt/Stop mode.

EFh.1 Force 0 (tenx reserved)

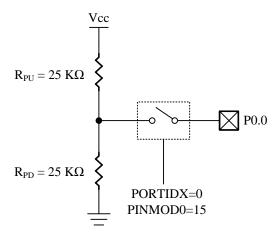
EFh.0 **ADCVREFS:** ADC reference voltage

 $0{:}\;V_{CC}$

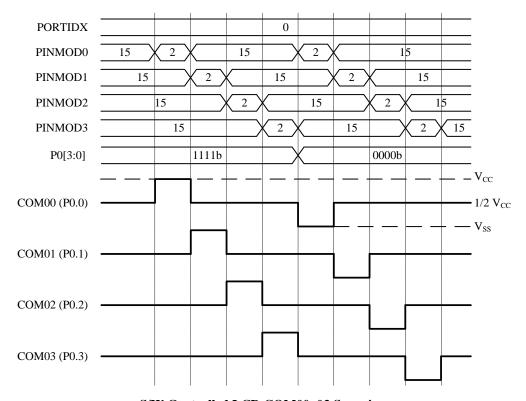
1: 2.5V

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.4 **ADSOC:** Start ADC conversion


Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

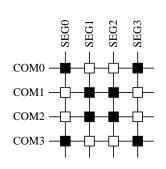
DS-TM52F1376_78_E 73 Rev 1.0, 2024/05/xx

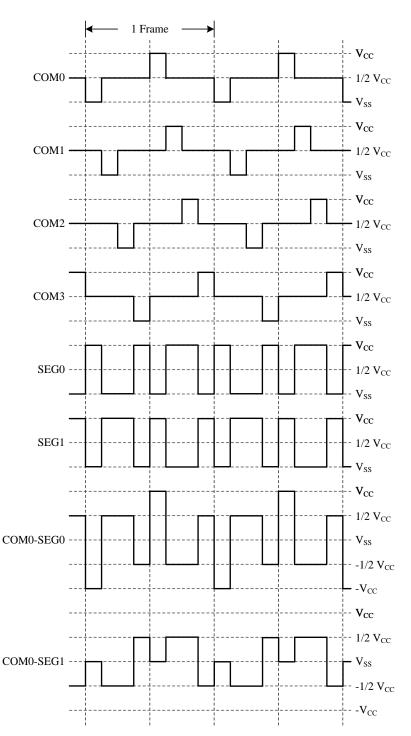

12. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. All of the IO pins can be the Common pins. User can flexibly adjust the Common pins and Segment pins. It is capable of driving the LCD panel with 225 dots (Max.) by 15 Commons (COM) and 15 Segments (SEG). The P0.0~P0.7 are used for Common pins COM00~COM07. The P1.0~P1.7 are used for Common pins COM10~COM17. The P2.0~P2.5 are used for Common pins COM20~COM25. The P3.0~P3.7 are used for Common pins COM30~COM37. Common pins are capable of driving 1/2 bias by setting the corresponding PINMODE=15 (*see section 7*). Refer to the following figures.

LCD COM00 Circuit

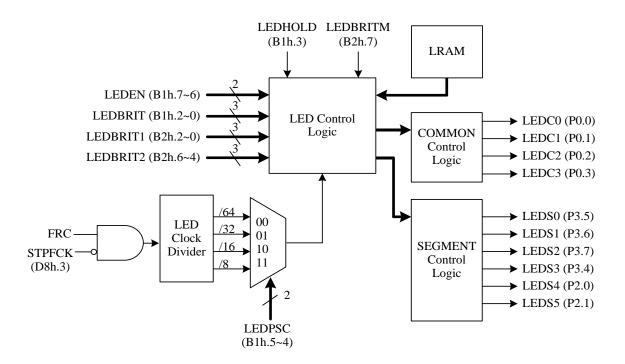
The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.




S/W Controlled LCD COM00~03 Scanning

DS-TM52F1376_78_E 74 Rev 1.0, 2024/05/xx

1/4 Duty, 1/2 Bias Output Waveform



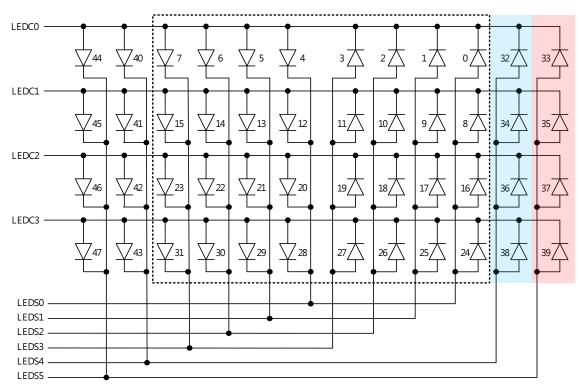
13. LED Controller/Driver

The module can be configured with two drive modes: LED Bi-Direction matrix (BiD) mode and LED Dot matrix (DMX) mode. By register configuration, it only supports one mode of operation at the same time.

13.1 LED Bi-Direction Matrix (BiD) Mode

The LED BiD mode can drive more number of LED pixels than the tradition mode, when they use the same number of pins. In this mode, it provides maximum 10 pins (LEDC0~C3, LEDS0~S5) to drive a LED module with 48 pixels. All 10 pins have a high sink current for driving LED directly by setting HSNK0EN. This LED controller also provides 3groups 8-level of brightness adjustment for all 10 pin. In addition to brightness adjustment, LEDBRITM is used to set the brightness and uniformity bit. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM= 1, better display brightness can be obtained. To avoid LED flicker when the common signal is changing, the chip provides a dead time control. In the dead time period, segment pins will output a short inactive signal instead of changing the signal immediately. To start the LED scanning, it has to set the LEDEN and the corresponding pin to MODE7 to achieve (see section 7). Then H/W will control the Pin automatically. It also provides the scan hold function by setting LEDHOLD.

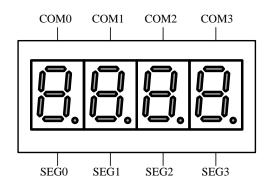
LEDEN	Duty	Matrix	Max pixels
0	Disable	-	-
1	1/8	4COM x 4SEG	32 (4x4x2)
2	1/9	4COM x 5SEG	40 (4x5x2)
3	1/10	4COM x 6SEG	48 (4x6x2)

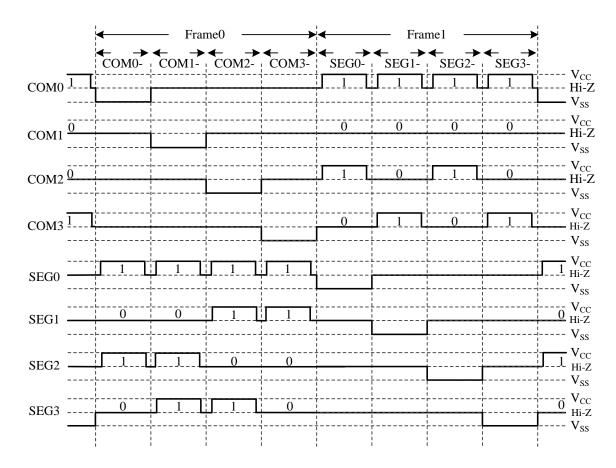

DS-TM52F1376_78_E 76 Rev 1.0, 2024/05/xx

LRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	SEG3-COM0+	SEG2-COM0+	SEG1-COM0+	SEG0-COM0+	COM0-SEG3+	COM0-SEG2+	COM0-SEG1+	COM0-SEG0+
C801h	SEG3-COM1+	SEG2-COM1+	SEG1-COM1+	SEG0-COM1+	COM1-SEG3+	COM1-SEG2+	COM1-SEG1+	COM1-SEG0+
C802h	SEG3-COM2+	SEG2-COM2+	SEG1-COM2+	SEG0-COM2+	COM2-SEG3+	COM2-SEG2+	COM2-SEG1+	COM2-SEG0+
C803h	SEG3-COM3+	SEG2-COM3+	SEG1-COM3+	SEG0-COM3+	COM3-SEG3+	COM3-SEG2+	COM3-SEG1+	COM3-SEG0+
C804h	COM3-SEG5+	COM3-SEG4+	COM2-SEG5+	COM2-SEG4+	COM1-SEG5+	COM1-SEG4+	COM0-SEG5+	COM0-SEG4+
C805h	SEG5-COM3+	SEG5-COM2+	SEG5-COM1+	SEG5-COM0+	SEG4-COM3+	SEG4-COM2+	SEG4-COM1+	SEG4-COM0+

LRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40

LED BiD mode corresponding display configuration table


LED 4*6 Bi-Direction matrix


Note: LEDBRIT (B1h.2~0): LED number 0~31, 40~47 brightness control LEDBRIT1 (B2h.2~0): LED number 32, 34, 36, 38 brightness control LEDBRIT2 (B2h.6~4): LED number 33, 35, 37, 39 brightness control

DS-TM52F1376_78_E 77 Rev 1.0, 2024/05/xx

Application Circuit: 4COM x 4SEG (1/8 Duty)

♦ Example:

MOV DPTR,#0C800h ; LEDRAM0

MOV A,#0FFh

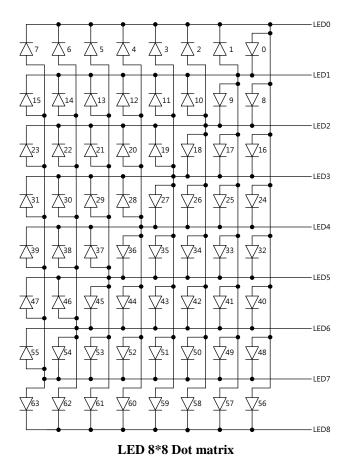
MOVX @DPTR, A ; C800h = FFh

MOV LEDCON,#056h ; LED duty = 1/8

; LEDPSC = FRC/32

; Brightness=6

DS-TM52F1376_78_E 78 Rev 1.0, 2024/05/xx



13.2 LED Dot Matrix (DMX) Mode

If LEDMTEN=1, LED DMX mode will enable. The LED pin also needs be set to MODE7 (see section 7). The LED DMX mode corresponds to the LED0~LED8 pins, and up to 8 * 8 = 64 LED points can be configured to drive. The corresponding LED dot matrix position is marked in the figure below. The display configuration table in LRAM corresponds to the LED lighting status of the address (1 means lighting, 0 means not lighting). By setting HSNK0EN, LED0~LED8 pins also have a high sink current for driving LED directly. The brightness of the LED can be set by LCDBRIT2. When set to 111b, the brightness is the highest. In addition, LEDBRITM is used to set the brightness or uniformity. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM=1, better display brightness can be obtained. The LED SEG signal is also with dead time to avoid the LED flickering. The LED DMX mode also provides the scan hold function by setting LEDHOLD.

LRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40
C806h	55	54	53	52	51	50	49	48
C807h	63	62	61	60	59	58	57	56

LED DMX mode corresponding display configuration table

Note: LEDBRIT2 (B2h.6~4): LED number 0~63 brightness control

DS-TM52F1376_78_E 79 Rev 1.0, 2024/05/xx

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LED	DEN	LED	PSC	LEDHOLD		LEDBRIT	
R/W	R/	W	R/W		R/W		R/W	
Reset	0	0	0	0	0	1	1	1

B1h.7~6 LEDEN: LED Bi-Direction matrix (BiD) mode enable and duty select

00: LED BiD mode disable

01: LED 1/8 duty (4COM x 4SEG), need to set the LED related pins to MODE7 (see Table 7.1)

10: LED 1/9 duty (4COM x 5SEG), need to set the LED related pins to MODE7 (see Table 7.1)

11: LED 1/10 duty (4COM x 6SEG), need to set the LED related pins to MODE7 (see Table 7.1)

B1h.5~4 **LEDPSC:** LED clock prescaler select

00: LED clock is FRC divided by 64

01: LED clock is FRC divided by 32

10: LED clock is FRC divided by 16

11: LED clock is FRC divided by 8

B1h.3 **LEDHOLD:** LED clock hold

0: LED scan

1: LED clock hold

B1h.2~0 **LEDBRIT**:

BiD mode: LED number 0~31, 40~47 brightness control

000: Level 0 (Darkest)

. . .

111: Level 7 (Brightest)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON2	LEDBRITM		LEDBRIT2			LEDBRIT1		
R/W	R/W		R/W				R/W	
Reset	0	1	1	1	0	1	1	1

B2h.7 **LEDBRITM:** Brightness mode control

0: Uniform brightness mode

1: Brightness enhancement mode

B2h.6~4 **LEDBRIT2:**

BiD mode: LED number 33, 35, 37, 39 brightness control

DMX mode: LED number 0~63 brightness control

000: Level 0 (Darkest)

. . .

111: Level 7 (Brightest)

B2h.3 **LEDMTEN:** LED Dot matrix (DMX) mode enable control

0: LED DMX mode disable

1: LED DMX mode enable, need to set the LED related pins to MODE7 (see Table 7.1)

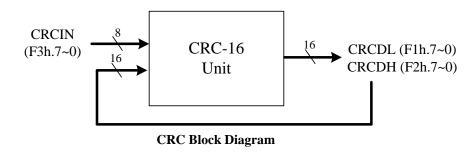
B2h.2~0 **LEDBRIT1:**

BiD mode: LED number 32, 34, 36, 38 brightness control

000: Level 0 (Darkest)

. .

111: Level 7 (Brightest)


SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

14. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes an 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: $X^{16} + X^{15} + X^2 + 1$

SFR F1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCDL		CRCDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

F1h.7~0 **CRCDL:** 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCDH		CRCDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

F2h.7~0 **CRCDL:** 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCIN		CRCIN							
W		W							
Reset	_	_	_		_	_		_	

F3h.7~0 **CRCIN:** CRC input data register

DS-TM52F1376_78_E 81 Rev 1.0, 2024/05/xx

15. Multiplier and divider

The chip provide multiplier and divider have the following functions. The 8 bit operation is fully compatible with industry standard 8051.

- 8 bits \times 8 bits = 16 bit (standard 8051)
- 8 bits \div 8 bits = 8 bits, 8 bits remainder (standard 8051)
- $16 \text{ bits} \times 16 \text{ bits} = 32 \text{ bit}$
- 16 bits \div 16 bits = 16 bits, 16 bits remainder
- 32 bits \div 16 bits = 32 bits, 16 bits remainder

No matter 8bit / 16bit / 32bit operation, it's easy to execute by MUL AB and DIV AB instruction. There is extra SFR EXA/EXA2/EXA3/EXB for 16bit / 32bit multiply and divide operation.

For 8 bit multiplier/divider operation, be sure SFR bit muldiv16=0 and div32=0.

For 16 bit multiplier operation, multiplicand, multiplier and product as follows. 16 bit multiplier takes 16 System clock cycles to execute.

Condition	SFR bit muldiv16=1 and div32=0							
Multiplication	Byte3	Byte3 Byte2		Byte0				
Multiplicand	-	-	EXA	A				
Multiplier	-	-	EXB	В				
Product	EXB	В	A	EXA				
OV	Product (EX	(B or B) !=0	-	-				

For 16 bit divider operation, dividend, divisor, quotient, remainder read as follows. 16 bit divider takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0								
Division	Byte3	Byte2	Byte1	Byte0						
Dividend	-	-	EXA	A						
Divisor	ı	-	EXB	В						
Quotient	-	-	A	EXA						
Remainder	-	-	В	EXB						
OV		Divisor EX	XB = B = 0							

For 32 bits ÷ 16 bits operation, dividend, divisor, quotient, remainder read as follows. 32 bit divider takes 32 System clock cycles to execute.

Condition	S	FR bit muldiv1	6=1 and div32=	=1			
Division	Byte3	Byte2	Byte1	Byte0			
Dividend	EXA3	EXA2	EXA	A			
Divisor	-	-	EXB	В			
Quotient	A	EXA	EXA2	EXA3			
Remainder	-	-	В	EXB			
OV	Divisor EXB=B =0						

DS-TM52F1376_78_E 82 Rev 1.0, 2024/05/xx

SFR CEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA2		EXA2								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

CEh.7~0 **EXA2:** Expansion accumulator 2

SFR CFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA3		EXA3								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

CFh.7~0 **EXA3:** Expansion accumulator 3

SFR E6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA		EXA								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

E6h.7~0 **EXA:** Expansion accumulator

SFR E7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXB		EXB								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

E7h.7~0 **EXB:** Expansion B register

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAF	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.3 **DIV32:** (only active when MULDVI16=1)

0: instruction DIV as 16/16 bit division operation

1: instruction DIV as 32/16 bit division operation

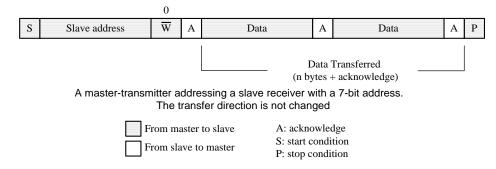
F7h.0 **MULDIV16:**

0: instruction MUL/DIV as 8*8, 8/8 operation

1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation

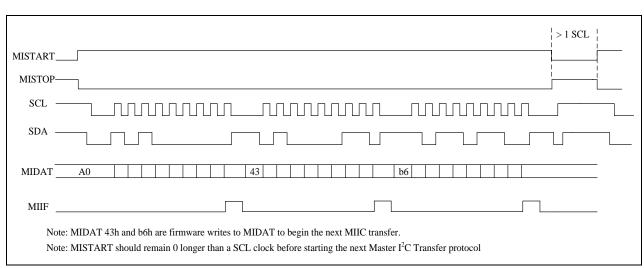
ARITHMETIC								
Mnemonic	Description	byte	cycle	opcode				
MUL AB	Multiply A by B	1	8/16	A4				
DIV AB	Divide A by B	1	8/16/32	84				

DS-TM52F1376_78_E 83 Rev 1.0, 2024/05/xx



16. Master I²C Interface

Master I'C interface transmit mode:


At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and write MIDAT to start first data transmission. When MIIF convert to 1, data transfer to slave was complete. User can write MIDAT again to transfer next data to slave. Set MISTOP to finish transmit mode.

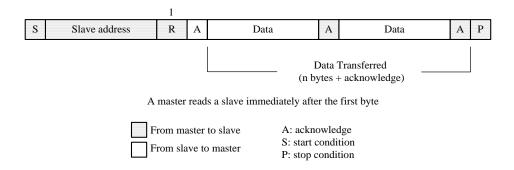
MISTART must remain at 1 for the next transfer. After the final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.

Master I2C Transmit flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF
- (4) Write data to MIDAT to start next transfer (MISTART must remain at 1)
- (5) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF, Loop (4) ~ (5) for next transfer.
- (6) Clear MISTART and set MISTOP to stop the I℃ transfer

Master Transmit Timing

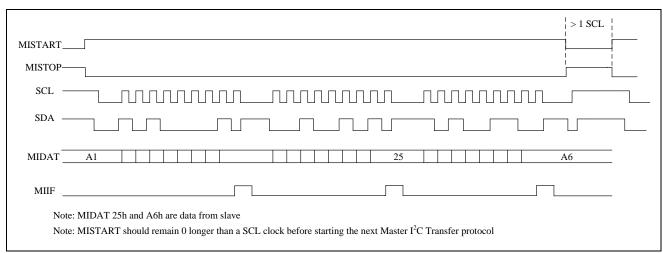
Note: MISTART should remain 0 longer than a SCL period before starting the next Master I^2C protocol.


DS-TM52F1376_78_E 84 Rev 1.0, 2024/05/xx

Master I'C interface Receive mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and read MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave). When MIIF convert to 1, data receive from slave was complete. User can read MIDAT to get data from slave, and start next receive. Set MISTOP to finish receive mode.

MISTART must remain at 1 for the next transfer. After final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.



Master I2C Receive flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request)
- (4) Clear MIIF
- (5) Read data from MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave)
- (6) Wait until MIIF convert to 1
- (7) Clear MIIF
- (8) Read slave data from MIDAT and receive next data
- (9) Loop (6) ~(8)
- (10) Set MISTOP to stop the I²C transfer

DS-TM52F1376_78_E 85 Rev 1.0, 2024/05/xx

Master Receive Timing

I ² C Function Pin	PINMODxx	Px.n SFR data	Pin State
I ² C Master SCL	0000	X	I ² C Clock Output (Open Drain Output, Pull-up)
I C Waster SCL	xx10	X	I ² C Clock Output (CMOS Push-Pull)
I ² C Master SDA	0000	1	I ² C DATA (Pull-up)

Pin Mode Setting for Master I2C

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

E1h.7 **MIEN**: Master I²C enable

0: disable 1: enable

E1h.6 MIACKO: When Master I²C receive data, send acknowledge to I²C Bus

0: ACK to slave device

1: NACK to slave device

E1h.5 MIIF: Master I²C Interrupt flag

0: write 0 to clear it

1: Master I²C transfer one byte complete

E1h.4 **MIACKI**: When Master I²C transfer, acknowledgement form I²C bus (read only)

0: ACK received

1: NACK received

E1h.3 **MISTART**: Master I²C Start bit

1: start I²C bus transfer

E1h.2 **MISTOP**: Master I²C Stop bit

1: send STOP signal to stop I²C bus

E1h.1~0 MICR: Master I²C (SCL) clock frequency selection

00: $F_{SYSCLK}/4$ (ex. If $F_{SYSCLK}=16MHz$, I^2C clock is 4 MHz)

01: F_{SYSCLK}/16 (ex. If F_{SYSCLK}=16MHz, I²C clock is 1 MHz)

10: F_{SYSCLK}/64 (ex. If F_{SYSCLK}=16MHz, I²C clock is 250 KHz)

11: F_{SYSCLK}/256 (ex. If F_{SYSCLK}=16MHz, I²C clock is 62.5 KHz)

DS-TM52F1376_78_E 86 Rev 1.0, 2024/05/xx

SFR E2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
MIDAT		MIDAT								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

E2h.7~0 **MIDAT**: Master I²C data shift register

(W): After Start and before Stop condition, write this register will resume transmission to I²C bus (R): After Start and before Stop condition, read this register will resume receiving from I²C bus

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

EAh.7 **MIIE:** I²C Master interrupt enable

0: disable 1: enable

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2		ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

A9h.6 **I2CE:** I*C interrupt enable

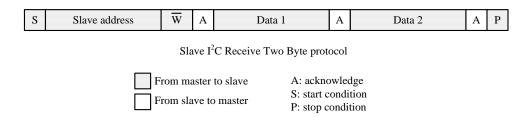
0: Disable I℃ interrupt 1: Enable I℃ interrupt

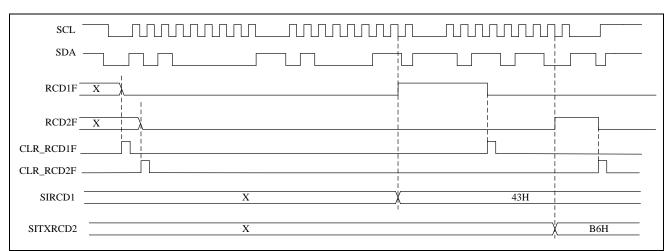
SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	UART2PS		UART1PS	
R/W	R/W	R/W	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

A6h.4 **I2CPS:** I²C pin select

0: SCL/SDA = P0.0/P0.1 1: SCL/SDA = P3.0/P3.1

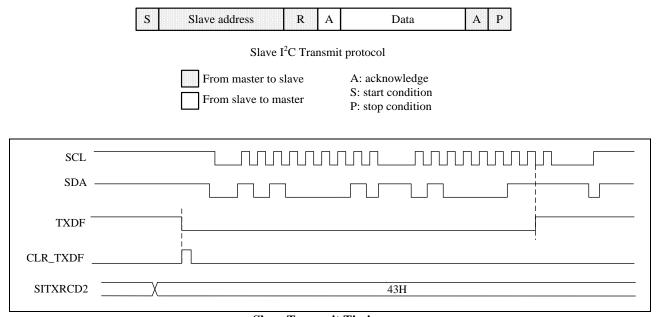
DS-TM52F1376_78_E 87 Rev 1.0, 2024/05/xx




17. Slave I2C Interface

The chip provides Slave I℃ interface receive protocol as following. Slave I℃ module allow to receive one or two byte data each time after start condition. Before receiving DATA1, be aware that RCD1F must be 0. After DATA1 reception is completed, RCD1F will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear RCD1F before receiving next DATA1 again. User can write RCD1F to 0 to clear RCD1F. DATA2 and RCD2F operate in the same way as DATA1 and RCD1. After DATA1 or DATA2 reception is completed, the Master side should restart the transfer protocol to transmit the next DATA1 and DATA2.

Slave I²C Receive Byte protocol



Slave Receive Timing

DS-TM52F1376_78_E 88 Rev 1.0, 2024/05/xx

The chip provides Slave I²C interface transmission protocol as following. Slave I²C module allow to transmit one byte data each time after start condition. Before data transmitting, be aware that TXDF must be 0. After data transmission is completed, TXDF will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear TXDF before transmitting next data again. User can write TXDF to 0 to clear TXDF. After each transmission is completed, the host should restart the transmission protocol to transmit the next data.

Slave Transmit Timing

I ² C Function Pin	PINMODxx	Px.n SFR data	Pin State
I ² C Slave SCL 0x01		1	I ² C Clock Input (Hi-Z)
I ² C Master/Slave SDA	0000	1	I ² C DATA (Pull-up)

Pin Mode Setting for Slave I²C

-								
SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	_	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	_	0	0	0	0

A9h.6 **I2CE:** I*C interrupt enable

0: Disable I℃ interrupt 1: Enable I℃ interrupt

SFR E9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SIADR		SA									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	1	1	0	0	1	0	0			

E9h.7~1 SA: Slave I C address assigned

E9h.0 **SIEN:** Slave I²C enable

0: disable 1: enable

DS-TM52F1376_78_E 89 Rev 1.0, 2024/05/xx

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

EAh.6 **TXDIE:** Slave I C transmission completed interrupt enable

0: disable

1: enable

EAh.5 **RCD2IE:** Slave I*C DATA2 (SITXRCD2) reception completed interrupt enable

0: disable

1: enable

EAh.4 **RCD1IE:** Slave I C DATA1 (SIRCD1) reception completed interrupt enable

0: disable

1: enable

EAh.2 **TXDF:** Slave I C transmission completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C transmission complete

EAh.1 **RCD2F:** Slave I*C DATA2 (SITXRCD2) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA2 (SITXRCD2) reception complete

EAh.0 **RCD1F:** Slave I*C DATA1 (SIRCD1) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA1 (SIRCD1) reception complete

SFR EBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
SIRCD1		SIRCD1											
R/W	R	R R R R R R											
Reset	_	_	_	_	_	_	_	_					

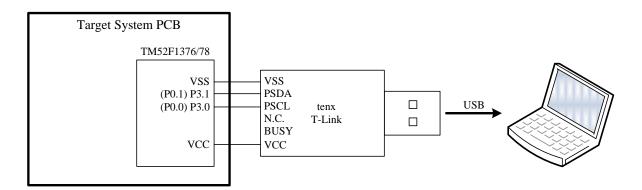
EBh.7~0 **SIRCD1:** Slave I℃ data receive register1 (DATA1)

SFR ECh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
SITXRCD2		SITXRCD2											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	-	ı	-		-	_		_					

ECh.7~0 SITXRCD2: Slave I C transmit and receive data register

(R): Slave I C data receive register 2 (DATA2)

(W): Slave I'C data transmission register (TXD)


DS-TM52F1376_78_E 90 Rev 1.0, 2024/05/xx

18. In Circuit Emulation (ICE) Mode

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode.
- 3. The Program Memory's addressing space 2D00h~2FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The T-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1 (only in ICE Mode).
- 6. The V_{DD} level is controlled by T-Link module.

	16K Bytes program memory										
0000h											
	Reset / Interrupt Vector										
007Fh											
0080h											
	User Code area										
OCEE!											
2CFFh											
2D00h	ICE made masemus and										
OPPDI.	ICE mode reserve area										
2FFFh											
3000h											
	User Code or IAP area										
3FEFh											
3FF0h	CRC16L										
3FF1h	CRC16H										
3FF2h											
	tenx reserve area										
3FFAh	tenx reserve area										
3FFAh 3FFBh	tenx reserve area CFGBG										
3FFBh	CFGBG										

8K Bytes program memory										
0000h										
	Reset / Interrupt Vector									
007Fh										
0080h										
	User Code area									
1FEFh										
1FF0h	CRC16L									
1FF1h	CRC16H									
	tenx reserve area									
2D00h										
2D0011	ICE mode reserve area									
2FFFh	TCE mode reserve area									
3FFAh	tenx reserve area									
3FFBh	CFGBG									
3FFDh	CFGWL (FRC)									
3FFFh	CFGWH									
	TM52F1378									

DS-TM52F1376_78_E 91 Rev 1.0, 2024/05/xx

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
80h	0000-0000	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
81h	0000-0111	SP			•		SP					
82h	0000-0000	DPL				D	PL					
83h	0000-0000	DPH				D	PH					
85h	xxxx-0000	INTPORT	-	-	-	-	P3IF	P2IF	P1IF	P0IF		
86h	xxxx-x000	INTPWM	-	-	_	-	-	PWM2IF	PWM1IF	PWM0IF		
87h	0xxx-0000	PCON	SMOD	-	-	_	GF1	GF0	PD	IDL		
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
89h	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0 CT0N TMOD0					
8Ah	0000-0000	TL0				T	L0					
8Bh	0000-0000	TL1				T	L1					
8Ch	0000-0000	TH0				T	H0					
8Dh	0000-0000			Γ	1	T	H1		1			
-	0100-0000		SM	-	-	REN2	TB82	RB82	TI2	RI2		
	XXXX-XXXX	SBUF2					UF2					
h 1	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0		
		PORTIDX	_		-		-	_		ΓΙDΧ		
-	0000-0000			TM3CKS		TPSC	ADO		- DGTT	-		
- 1	xxx0-xx00		LVDIF	-	-	ADIF	-	-	PCIF	TF3		
	0000-0000		PIN7IF	PIN6IF	PIN5IF	PIN4IF	PIN3IF	PIN2IF	PIN1IF	PIN0IF		
	xxxx-xx00		CMO	C) (1			RST / WDTO		TT.	DI		
	0000-0000		SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	XXXX-XXXX	SBUF P2	D2 7	D2.6	D2.5	P2.4	BUF	D2 2	D2 1	P2.0		
	1111-1111	PWMCON	P2.7	P2.6	P2.5	I2CKS	P2.3 PWM	P2.2	P2.1	OCKS		
		PINMOD10	-	PINN		12CKS	P W WI		MOD0	UCKS		
		PINMODIO PINMOD32			10D1 10D3				1OD0 1OD2			
		PINMOD54			1OD5 1OD5				MOD4			
		PINMOD76			10D3 10D7		PINMOD4 PINMOD6					
		PINMOD	HSNK2EN	HSNK1EN	1	I2CPS	UAR'		1	RTPS		
		PWMCON2	_	PWM2IE	PWM1IE	PWM0IE			PWM1CLR			
-	0x00-0000		EA	-	ET2	ES	ET1	EX1	ET0	EX0		
	000x-0000		PWMIE	I2CE	ES2		ADIE	LVDIE	PCIE	TM3IE		
	xxxx-xxxx	ADCDL			CDL		1		_	1		
ABh	xxxx-xxxx	ADCDH				AD	CDH					
	1111-1111	Р3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0		
B1h	0000-0111	LEDCON	LEI	DEN	LED	PSC	LEDHOLD		LEDBRIT			
B2h	0111-0111	LEDCON2	LEDBRITM		LEDBRIT2		LEDMTEN		LEDBRIT1			
B6h	xxx1-1111	ADCHS	_	_	_			ADCHS				
B8h	xx00-0000	IP	_	_	PT2	PS	PT1	PX1	PT0	PX0		
B9h	xx00-0000	IPH	=	=	PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
BAh	000x-0000	IP1	PPWM	PI2C	PS2	-	PADI	PLVD	PPC	PT3		
BBh	000x-0000	IP1H	PPWMH	PI2CH	PS2H	=	PADIH	PLVDH	PPCH	РТ3Н		
BFh	0xxx-0000	LVDS	LVDPD	LVDO	_			LV	DS			
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N		
C9h	00xx-xxxx	IAPWE				IAPWE / IAI	PTO / EEPWE	<u> </u>				
CAh	0000-0000	RCP2L				RC	P2L					

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CBh	0000-0000	RCP2H				RC	P2H					
CCh	0000-0000	TL2				T	L2					
CDh	0000-0000	TH2				TI	H2					
CEh	0000-0000	EXA2				EX	A2					
CFh	0000-0000	EXA3				EX	A3					
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	P		
D1h	1000-0000	PWM0DH				PWM	10DH					
D2h	0000-0000	PWM0DL		PWM0DL								
D3h	1000-0000	PWM1DH		PWM1DH								
D4h	0000-0000	PWM1DL		PWM1DL								
D5h	1000-0000	PWM2DH		PWM2DH								
D6h	0000-0000	PWM2DL		PWM2DL								
D8h	00x0-0011	CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CL	KPSC		
D9h	1111-1111	PWM0PRDH		PWM0PRDH								
DAh	1111-1111	PWM0PRDL		PWM0PRDL								
DBh	1111-1111	PWM1PRDH		PWM1PRDH								
DCh	1111-1111	PWM1PRDL		PWM1PRDL								
DDh	1111-1111	PWM2PRDH		PWM2PRDH								
DEh	1111-1111	PWM2PRDL				PWM2	2PRDL					
E0h	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0		
E1h	000x-0100	MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	M	ICR		
E2h	0000-0000	MIDAT				MII	DAT					
E6h	0000-0000	EXA				ЕХ	ΚA					
E7h	0000-0000	EXB				EX	KB					
E9h	0110-1000	SIADR				SA				SIEN		
EAh	0000-x100	SICON	MIIE	TXDIE	RCD2IE	RCD1IE	-	TXDF	RCD2F	RCD1F		
EBh	xxxx-xxxx	SIRCD1				SIR	CD1					
ECh	xxxx-xxxx	SITXRCD2				SITX	RCD2					
EFh	xx00-0000	AUX3	=	=		TM3PSC		VBGEN	_	ADCVREFS		
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0		
F1h	1111-1111	CRCDL				CRO	CDL					
F2h	1111-1111	CRCDH				CRO	CDH					
F3h	0000-0000	CRCIN				CR	CIN					
F5h	xxxx-xxxx	CFGBG	-	_	_			BGTRIM				
F6h	xxxx-xxxx	CFGWL	- FRCF									
F7h	0000-1110	AUX2	WE	DTE	PWRSAV	VBGOUT	DIV32	IAP	TE	MULDIV16		
F8h	0000-0000	AUX1	CLRWDT	CLRTM3	-	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL		

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFFh	CFGWH	PROT	XRSTE		LV	RE		-	-

SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	P0	7~0	P0	R/W	FFh	Port0 data
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
		3	P3IF	R/W	0	PORT3 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
85h	INTPORT	2	P2IF	R/W	0	PORT2 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
0311	INITORI	1	P1IF	R/W	0	PORT1 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	P0IF	R/W	0	PORT0 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		2	PWM2IF	R/W	0	PWM2 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
86h	INTPWM	1	PWM1IF	R/W	0	PWM1 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	PWM0IF	R/W	0	PWM0 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		7	SMOD	R/W	0	Set 1 to enable UART1 double baud rate
		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter Halt/Stop mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter Idle mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		0	IT0	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
		6	CT1N	R/W	0	Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin's negative edge
89h	TMOD	5~4	TMOD1	R/W	00	Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops
		3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
		2	CT0N	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Timer0 mode select
		1~0	TMOD0	R/W	00	00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.
						11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	TH0	7~0 7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	/~0	TH1	R/W	00h	Timer1 data high byte UART2 Serial port mode select bit
		7	SM	R/W	0	0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable
		4	REN2	R/W	0	UART2 reception enable 0: Disable reception 1: Enable reception
8Eh	SCON2	3	TB82	R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode3
OEII	SCONZ	2	RB82	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode3
		1	TI2	R/W	0	Transmit interrupt flag Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.
		0	RI2	R/W	0	Receive interrupt flag Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.
8Fh	SBUF2	7~0	SBUF2	R/W	ı	UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.
90h	P1	7~0	P1	R/W	FFh	Port1 data
91h	PORTIDX	1~0	PORTIDX	R/W	00	Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76
		6	TM3CKS	R/W	0	Timer3 Clock Source Select. 0: Slow clock (SXT/SRC) 1: FRC/512
94h	OPTION	5~4	WDTPSC	R/W	00	Watchdog Timer pre-scalar time select 00: 240 ms WDT overflow rate 01: 120 ms WDT overflow rate 10: 60 ms WDT overflow rate 11: 30 ms WDT overflow rate
		3~2	ADCKS	R/W	00	ADC clock rate select 00: F _{SYSCLK} /32 01: F _{SYSCLK} /16 10: F _{SYSCLK} /8 11: F _{SYSCLK} /4
		7	LVDIF	R	-	Low Voltage Detect flag Set by H/W when a low voltage occurs.
		4	ADIF	R/W	0	ADC interrupt flag Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.
95h	95h INTFLG	1	PCIF	R/W	0	Port0~Port3 Pin change interrupt flag Set by H/W when Port0~Port3 pin state change is detected and its interrupt enable bit is set. S/W can write 0 to clear all pin interrupt flags (Port0~Port3), it will also clear PIN0IF~PIN7IF and P0IF~P3IF.
		0	TF3	R/W	0	Timer3 Interrupt Flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
			DINGIE	D/XX		Px.7 pin change interrupt flag,
		7	PIN7IF	R/W	0	Write 0 to clear Px.7 pin change interrupt flag port number (x) define by PORTIDX
						Px.6 pin change interrupt flag,
		6	PIN6IF	R/W	0	Write 0 to clear Px.6 pin change interrupt flag
	_					port number (x) define by PORTIDX
		5	PIN5IF	R/W	0	Px.5 pin change interrupt flag, Write 0 to clear Px.5 pin change interrupt flag
					,	port number (x) define by PORTIDX
						Px.4 pin change interrupt flag,
		4	PIN4IF	R/W	0	Write 0 to clear Px.4 pin change interrupt flag port number (x) define by PORTIDX
96h	INTPIN					Px.3 pin change interrupt flag,
		3	PIN3IF	R/W	0	Write 0 to clear Px.3 pin change interrupt flag
						port number (x) define by PORTIDX
		2	PIN2IF	R/W	0	Px.2 pin change interrupt flag, Write 0 to clear Px.2 pin change interrupt flag
			1111211	10, 11		port number (x) define by PORTIDX
						Px.1 pin change interrupt flag,
		1	PIN1IF	R/W	0	Write 0 to clear Px.1 pin change interrupt flag port number (x) define by PORTIDX
						Px.0 pin change interrupt flag,
		0	PIN0IF	R/W	0	Write 0 to clear Px.0 pin change interrupt flag
		7.0	CWDCT	***		port number (x) define by PORTIDX
		7~0	SWRST	W		Write 56h to generate S/W Reset Write 65h to set IAPEN control flag; Write other value to clear IAPEN
		7~0	IAPEN	W		flag. It is recommended to clear it immediately after IAP access.
97h	SWCMD	1	WDTO	R	0	WatchDog Time-Out flag
		0	IAPEN	R	0	Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP
						area.
		7	SM0	R/W	0	UART1 Serial port mode select bit 0, 1 (SM0, SM1) = 00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2
			SM1	R/W	0	01: Mode1: 8 bit UART1, Baud Rate is variable
		6				10: Mode2: 9 bit UART1, Baud Rate=F _{SYSCLK} /32 or /64
		+				11: Mode3: 9 bit UART1, Baud Rate is variable Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single serial line
		5	SM2	R/W	0	and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth
						data bit is 0. In Mode 1, the received interrupt will not be generated
98h	SCON		227			unless a valid stop bit is received. In Mode 0, SM2 should be 0.
2 321	20011	3	TB8	R/W R/W	0	Set 1 to enable UART1 Reception Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
						Receive Bit 8, contains the ninth bit that was received in Mode 2 and
		2	RB8	R/W	0	3 or the stop bit is Mode 1 if SM2=0
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the
		1	11	10/ 11		beginning of the stop bit in other modes. Must be cleared by S/W
						Receive Interrupt flag
		0	0 RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by
						S/W.
99h	SBUF	7~0	SBUF	D/337		UART1 transmit and receive data. Transmit data is written to this
yyn	SBUF	/~0	SBUF	R/W	_	location and receive data is read from this location, but the paths are independent.
A0h	P2	7~0	P2	R/W	FFh	P2 data

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						PWM2 clock source
		5~4	PWM2CKS	R/W	10	00/01: F _{SYSCLK} 10: FRC 11: FRC x 2 (V _{CC} > 3.0V)
A1h	PWMCON	3~2	PWM1CKS	R/W	10	PWM1 clock source 00/01: F _{SYSCLK} 10: FRC 11: FRC x 2 (V _{CC} > 3.0V)
		1~0	PWM0CKS	R/W	10	PWM0 clock source 00/01: F _{SYSCLK} 10: FRC 11: FRC x 2 (V _{CC} > 3.0V)
		7~6	P1MOD3	R/W	01	P1.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.3 is ADC input
A2h	P1MODL	5~4	P1MOD2	R/W	01	P1.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.2 is ADC input
AZII	FIMODL	3~2	P1MOD1	R/W	01	P1.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.1 is ADC input
		1~0	P1MOD0	R/W	01	P1.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.0 is ADC input
A2h	h PINMOD10	7~4	PINMOD1	R/W	0001	Px.1 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
AΔΠ		3~0	PINMOD0	R/W	0001	Px.0 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A 2h	2h DIN B 60 D 22	7~4	PINMOD3	R/W	0001	Px.3 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A3h	PINMOD32	3~0	PINMOD2	R/W	0001	Px.2 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A4h	PINMOD54	7~4	PINMOD5	R/W	0001	Px.5 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A4II	FINNIOD54	3~0	PINMOD4	R/W	0001	Px.4 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A5h	PINMOD76	7~4	PINMOD7	R/W	0000	Px.7 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
ASII	FINMOD/6	3~0	PINMOD6	R/W	0001	Px.6 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
		7	HSNK2EN	R/W	0	Pin H-sink enable (Group 2: P06, P07, P22~P25, P30~P33) 0: Group 2 High-sink disable 1: Group 2 High-sink enable
		6	HSNK1EN	R/W	0	Pin H-sink enable (Group 1: P04, P05, P10~P17) 0: Group 1 High-sink disable 1: Group 1 High-sink enable
		5	HSNK0EN	R/W	0	Pin H-sink enable (Group 0: P00~P03, P20, P21, P34~P37) 0: Group 0 High-sink disable 1: Group 0 High-sink enable
A6h	PINMOD	4	I2CPS	R/W	0	I ² C Pin Select 0: SCL/SDA = P0.0/P0.1 1: SCL/SDA = P3.0/P3.1
		3~2	UART2PS	R/W	00	UART2 Pin Select 00: RXD2/TXD2 = P0.0/P0.1 01: RXD2/TXD2 = P3.5/P3.6 10: RXD2/TXD2 = P0.1/P0.0 11: RXD2/TXD2 = P3.6/P3.5
		1~0	UART1PS	R/W	00	UART1 Pin Select 00: RXD/TXD = P3.0/P3.1 01: RXD/TXD = P3.2/P3.3 10: RXD/TXD = P3.1/P3.0 11: RXD/TXD = P3.3/P3.2

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
	J-11	22011	210.1101110	, ,,		PWM2 Interrupt Enable
		6	PWM2IE	R/W	0	0: disable 1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)
		5	PWM1IE	R/W	0	PWM1 Interrupt Enable 0: disable 1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)
A7h	PWMCON2	4	PWM0IE	R/W	0	PWM0 Interrupt Enable 0: disable 1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)
		2	PWM2CLR	R/W	0	PWM2 clear enable 0: PWM2 is running 1: PWM2 is cleared and held
		1	PWM1CLR	R/W	0	PWM1 clear enable 0: PWM1 is running 1: PWM1 is cleared and held
		0	PWM0CLR	R/W	0	PWM0 clear enable 0: PWM0 is running 1: PWM0 is cleared and held
		7	EA	R/W	0	Global interrupt enable control. 0: Disable all Interrupts. 1: Each interrupt is enabled or disabled by its own interrupt control bit.
		5	ET2	R/W	0	Set 1 to enable Timer2 interrupt
4.01	***	4	ES	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt
A8h	IE	3	ET1	R/W	0	Set 1 to enable Timer1 Interrupt
		2	EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Halt/Stop mode wake up capability
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt
		0	EX0	R/W	0	Set 1 to enable external INT0 pin Interrupt & Halt/Stop mode wake up capability
		7	PWMIE	R/W	0	Set 1 to enable PWM0~PWM2 interrupt
		6	I2CE	R/W	0	Set 1 to enable I ² C (master/slave) interrupt
		5	ES2	R/W	0	Set 1 to enable Serial Port (UART2) interrupt
A9h	INTE1	3	ADIE	R/W	0	Set 1 to enable ADC Interrupt
		2	LVDIE	R/W	0	Set 1 to enable LVD interrupt
		1	PCIE	R/W	0	Set 1 to enable Port0~Port3 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt
AAh	ADCDL	7~4	ADCDL	R	_	ADC data bit 3~0
ABh	ADCDH	7~0	ADCDH	R		ADC data bit 11~4
B0h	P3	7~0	P3	R/W	FFh	Port3 data LED Bi-Direction matrix (BiD) mode enable and duty select
		7~6	LEDEN	R/W	00	00: LED BiD mode disable 01: LED 1/8 duty (4COM x 4SEG) 10: LED 1/9 duty (4COM x 5SEG) 11: LED 1/10 duty (4COM x 6SEG) Need to set the LED related pins to MODE7 (see Table 7.1)
Blh	LEDCON	5~4	LEDPSC	R/W	00	LED clock prescaler select 00: LED clock is FRC divided by 64 01: LED clock is FRC divided by 32 10: LED clock is FRC divided by 16 11: LED clock is FRC divided by 8
		3	LEDHOLD	R/W	0	LED clock hold 0: LED scan 1: LED clock hold
		2~0	LEDBRIT	R/W	111	BiD mode: LED number 0~31, 40~47 brightness control 000: Level 0 (Darkest)
						111: Level 7 (Brightest)

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						LED Brightness control
		7	LEDBRITM	R/W	0	0: Uniform brightness mode
						1: Brightness enhancement mode
						BiD mode: LED number 33, 35, 37, 39 brightness control DMX mode: LED number 0~63 brightness control
		6~4	LEDBRIT2	R/W	111	000: Level 0 (Darkest)
			22221412	10 11		
B2h	LEDCON2					111: Level 7 (Brightest)
D211	LEDCONZ					LED Dot matrix (DMX) mode enable
		3	LEDMTEN	R/W	0	0: LED DMX mode disable 1: LED DMX mode enable
						Need to set the LED related pins to MODE7 (see Table 7.1)
						BiD mode: LED number 32, 34, 36, 38 brightness control
		2~0	LEDBRIT1	R/W	111	000: Level 0 (Darkest)
		2.40	LLDDKIII	10/ 11	111	
						111: Level 7 (Brightest) ADC Channel Select
						00000: AD0 (P0.4)
						00001: AD1 (P0.5)
						00010: AD2 (P2.0)
						00011: AD3 (P2.1)
						00100: AD4 (P1.0)
						00101: AD5 (P1.1) 00110: AD6 (P1.2)
						00111: AD7 (P1.3)
						01000: AD8 (P1.4)
						01001: AD9 (P1.5)
D.C.	A D CITY	4 0	A D CILIC	D 411	1.57	01010: AD10 (P1.6)
B6h	ADCHS	4~0	ADCHS	R/W	1Fh	01011: V _{BG} (Internal Bandgap Reference Voltage) 01100: AD12 (P1.7)
						01100. AD12 (11.7) 01101: AD13 (P2.2)
						01110: AD14 (P2.3)
						01111: AD15 (P2.4)
						10000: AD16 (P2.5)
						10001: AD17 (P0.6) 10010: AD18 (P0.7)
						10010. AD18 (F0.7) 10011: AD19 (P0.0)
						10100: AD20 (P0.1)
				Day		10101: AD21 (P0.2)
						10110: AD22 (P0.3)
		-	DTA		0	10111: 1/4 V _{CC}
		5	PT2 PS	R/W R/W	0	Timer2 Interrupt Priority Low bit Serial Port (UART1) Interrupt Priority Low bit
		3	PS PT1	R/W	0	Timer1 Interrupt Priority Low bit
B8h	IP	2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit
		4	PSH	R/W	0	Serial Port (UART1) Interrupt Priority High bit
Do:	****	3	PT1H	R/W	0	Timer1 Interrupt Priority High bit
B9h	IPH	2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit
		1	PT0H	R/W	0	Timer0 Interrupt Priority High bit
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit
		7	PPWM	R/W	0	PWM Interrupt Priority Low bit
		6	PI2C	R/W	0	I ² C Interrupt Priority Low bit
l		5	PS2	R/W	0	Serial Port (UART2) interrupt priority low bit
BAh	IP1	3	PADI	R/W	0	ADC Interrupt Priority Low bit
		2	PLVD	R/W	0	LVD Interrupt Priority Low bit
		1	PPC	R/W	0	Port0~Port3 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	PPWMH	R/W	0	PWM Interrupt Priority High bit
		6	PI2CH	R/W	0	I ² C Interrupt Priority High bit
		5	PS2H	R/W	0	Serial Port (UART2) interrupt priority high bit
BBh	IP1H	3	PADIH	R/W	0	ADC Interrupt Priority High bit
		2	PLVDH	R/W	0	LVD Interrupt Priority High bit
		1	PPCH	R/W	0	Port0~Port3 pin change Interrupt Priority High bit
		0	PT3H	R/W	0	Timer3 Interrupt Priority High bit
		7	LVDPD	R/W	0	Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode) 0: enable LVD 1: disable LVD
		6	LVDO	R	-	Low Voltage Detect output
BFh	LVDS	3~0	LVDS	R/W	0	Low Voltage Detect select 0000: Set LVD at 2.05V 0001: Set LVD at 2.19V 0010: Set LVD at 2.33V 0011: Set LVD at 2.47V 0100: Set LVD at 2.61V 0101: Set LVD at 2.75V 0110: Set LVD at 2.89V 0111: Set LVD at 3.03V 1000: Set LVD at 3.17V 1001: Set LVD at 3.31V 1010: Set LVD at 3.31V 1010: Set LVD at 3.45V 1011: Set LVD at 3.59V 1110: Set LVD at 3.73V 1101: Set LVD at 3.87V 1110: Set LVD at 4.01V 1111: Set LVD at 4.15V
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.
		5	RCLK	R/W	0	UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3
		4	TCLK	R/W	0	UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3
C8h	T2CON	3	EXEN2	R/W	0	T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0
		2	TR2	R/W	0	Timer2 run control 0:timer stops 1:timer runs
		1	CT2N	R/W	0	Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin's negative edge
		0	CPRL2N	R/W	0	Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Write 47h to set IAPWE control flag; Write other value to clear
		7~0	IAPWE	W	_	IAPWE and EEPWE flag. It is recommended to clear it immediately
						after IAP write.
		7.0	EEDWE	337		Write E2h to set EEPWE control flag; Write other value to clear
		7~0	EEPWE	W	_	IAPWE and EEPWE flag. It is recommended to clear it immediately after EEPROM write.
						Flag indicates Flash memory can be written by IAP or not
C9h	IAPWE	7	IAPWE	R	0	0: IAP Write disable
0711	111 112		1111 // 2			1: IAP Write enable
						IAP (or EEPROM write) Time-Out flag
		6	IAPTO	R	0	Set by H/W when IAP (or EEPROM write) Time-out occurs.
						Cleared by H/W when IAPWE=0 (or EEPWE=0).
						Flag indicates EEPROM memory can be written or not
		5	EEPWE	R	0	0: EEPROM Write disable
CAI	D.CDAY	7.0	D CDAI	D /337	0.01	1: EEPROM Write enable
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte
CEh	EXA2	7~0	EXA2	R/W	00h	Expansion accumulator 2
CFh	EXA3	7~0	EXA3	R/W	00h	Expansion accumulator 3
		7	CY	R/W	0	ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
		5	F0	R/W	0	General purpose user-definable flag
D0h	PSW	4	RS1	R/W	0	Register Bank Select bit 1
		3	RS0	R/W	0	Register Bank Select bit 0
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
		0	P	R/W	0	Parity flag
D.11		- 0	DITT (ODII	D 411	0.01	PWM0 duty high byte
D1h	PWM0DH	7~0	PWM0DH	R/W	80h	write sequence: PWM0DL then PWM0DH
						read sequence: PWM0DH then PWM0DL PWM0 duty low byte
D2h	PWM0DL	7~0	PWM0DL	R/W	00h	write sequence: PWM0DL then PWM0DH
DZII	TVIVIOLE	, 0	1 WINIODE	10/11	0011	read sequence: PWM0DH then PWM0DL
						PWM1 duty high byte
D3h	PWM1DH	7~0	PWM1DH	R/W	80h	write sequence: PWM1DL then PWM1DH
						read sequence: PWM1DH then PWM1DL
.	DIII		DIII :: 5-	D	001	PWM1 duty low byte
D4h	PWM1DL	7~0	PWM1DL	R/W	00h	write sequence: PWM1DL then PWM1DH
		+				read sequence: PWM1DH then PWM1DL PWM2 duty high byte
D5h	PWM2DH	7~0	PWM2DH	R/W	80h	write sequence: PWM2DL then PWM2DH
2311	1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0		10, 11	0011	read sequence: PWM2DH then PWM2DL
						PWM2 duty low byte
D6h	PWM2DL	7~0	PWM2DL	R/W	00h	write sequence: PWM2DL then PWM2DH
						read sequence: PWM2DH then PWM2DL
						Slow clock Type. This bit can be changed only in Fast mode
		7	SCKTYPE	R/W	0	(SELFCK=1)
						0: SRC 1: SXT, P2.0 and P2.1 are crystal pins
		\vdash				Fast clock type. This bit can be changed only in Slow mode
						(SELFCK=0).
DO	OT TEGO	6	FCKTYPE	R/W	0	0: FRC
D8h	CLKCON					1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for
						FXT
		5	STPSCK	R/W	1	Set 1 to stop Slow clock in PDOWN mode
		4	STPPCK	R/W	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current
						reducing.
		3	STPFCK	R/W	0	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit
						can be changed only in Slow mode.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		2	SELFCK	R/W	0	System clock select. This bit can be changed only when STPFCK=0. 0: Slow clock 1: Fast clock
		1~0	CLKPSC	R/W	11	System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16 01: System clock is Fast/Slow clock divided by 4 10: System clock is Fast/Slow clock divided by 2 11: System clock is Fast/Slow clock divided by 1
D9h	PWM0PRDH	7~0	PWM0PRDH	R/W	FFh	PWM0 period high byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL
DAh	PWM0PRDL	7~0	PWM0PRDL	R/W	FFh	PWM0 period low byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL
DBh	PWM1PRDH	7~0	PWM1PRDH	R/W	FFh	PWM1 period high byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL
DCh	PWM1PRDL	7~0	PWM1PRDL	R/W	FFh	PWM1 period low byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL
DDh	PWM2PRDH	7~0	PWM2PRDH	R/W	FFh	PWM2 period high byte write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL
DEh	PWM2PRDL			R/W	FFh	PWM2 period low byte write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL
E0h	ACC	7~0	ACC	R/W	00h	Accumulator
		7	MIEN	R/W	0	Master I ² C enable 0: disable 1: enable
		6	MIACKO	R/W	0	When Master I ² C receive data, send acknowledge to I ² C Bus 0: ACK to slave device 1: NACK to slave device
		5	MIIF	R/W	0	Master I ² C Interrupt flag 0: write 0 to clear it 1: Master I ² C transfer one byte complete
E1h	MICON	4	MIACKI	R	-	When Master I ² C transfer, acknowledgement form I ² C bus (read only) 0: ACK received 1: NACK received
		3	MISTART	R/W	0	Master I ² C Start bit 1: start I ² C bus transfer
		2	MISTOP	R/W	1	Master I ² C Stop bit 1: send STOP signal to stop I ² C bus
		1~0	MICR	R/W	00	$\label{eq:master I} \begin{array}{ll} \text{Master I}^2\text{C (SCL) clock frequency selection} \\ \text{00: } F_{\text{SYSCLK}}/4 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 4\text{M Hz)} \\ \text{01: } F_{\text{SYSCLK}}/16 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 1\text{M Hz)} \\ \text{10: } F_{\text{SYSCLK}}/64 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 250\text{K Hz)} \\ \text{11: } F_{\text{SYSCLK}}/256 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 62.5\text{K Hz)} \\ \end{array}$
E2h	MIDAT	7~0		R/W	00	Master I ² C data shift register (W): After Start and before Stop condition, write this register will resume transmission to I ² C bus (R): After Start and before Stop condition, read this register will resume receiving from I ² C bus
E6h	EXA	7~0	EXA	R/W	00h	Expansion accumulator
E7h	EXB	7~0	EXB	R/W	00h	Expansion B register
E9h	SIADR	7~1 0	SA SIEN	R/W R/W	64h 0	Slave I ² C address assigned Slave I ² C enable 0: disable 1: enable

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description	
						I ² C Master interrupt enable	
		7	MIIE	R/W	0	0: disable 1: enable	
						Slave I'C transmission completed interrupt enable	
		6	TXDIE	R/W	0	0: disable	
						1: enable	
		5	RCD2IE	R/W	0	Slave I*C DATA2(SITXRCD2) reception completed interrupt enable 0: disable	
		3	KCD2IE	IX/ VV	0	1: enable	
						Slave I℃ DATA1(SIRCD1) reception completed interrupt enable	
E 4.1	GEGON	4	RCD1IE	R/W	0	0: disable	
EAh	SICON					1: enable Slave I ² C transmission completed interrupt flag	
		2	TXDF	R/W	1	0: write 0 to clear it	
						1: Set by H/W when Slave I ℃ transmission complete	
						Slave I C DATA2 (SITXRCD2) reception completed interrupt flag	
		1	RCD2F	R/W	0	0: write 0 to clear it 1: Set by H/W when Slave I ← DATA2 (SITXRCD2) reception	
						complete	
						Slave I C DATA1 (SIRCD1) reception completed interrupt flag	
		0	RCD1F	R/W	0	0: write 0 to clear it	
						1: Set by H/W when Slave I℃ DATA1 (SIRCD1) reception complete	
EBh	SIRCD1	7~0	SIRCD1	R	_	Slave I'C data receive register1 (DATA1)	
						Slave I'C transmit and receive data register	
ECh	SITXRCD2	7~0	SITXRCD2	R/W	_	Read: Slave I ² C data receive register2 (DATA2)	
						Write: Slave I℃ data transmission register (TXD) Timer3 Interrupt rate	
						000: Timer3 Interrupt rate is 32768 Timer3 clock cycle	
						001: Timer3 Interrupt rate is 16384 Timer3 clock cycle	
	5	5~3	TMADEC	D/W	000	010: Timer3 Interrupt rate is 8192 Timer3 clock cycle	
			3 TM3PSC	R/W	000	011: Timer3 Interrupt rate is 4096 Timer3 clock cycle 100: Timer3 Interrupt rate is 2048 Timer3 clock cycle	
							101: Timer3 Interrupt rate is 1024 Timer3 clock cycle
						110: Timer3 Interrupt rate is 512 Timer3 clock cycle	
EFh	AUX3					111: Timer3 Interrupt rate is 256 Timer3 clock cycle V _{BG} enable control	
						0: V _{BG} /VBGO disable at Idle/Halt/Stop mode	
		2	VBGEN	R/W	0	1: Force V _{BG} /VBGO to be enabled, included in Idle mode, but	
						disabled in Halt/Stop mode	
		1	_	_	0	Force 0 (tenx reserved)	
		0	ADCVREFS	R/W	0	ADC reference voltage (V_{REFS}) select 0: V_{CC}	
			THEVICE	10/ 44		1: 2.5V	
F0h	В	7~0	В	R/W	00h	B register	
F1h	CRCDL	7~0	CRCDL	R/W	FFh	16-bit CRC data bit 7~0	
F2h	CRCDH	7~0	CRCDH	R/W	FFh	16-bit CRC data bit 15~8	
F3h	CRCIN	7~0	CRCIN	W D/W	_	CRC input data	
F5h	CFGBG	4~0	BGTRIM	R/W	_	V _{BG} trimming value (Chip Reserved) FRC frequency adjustment	
F6h	CFGWL	6~0	FRCF	R/W	_	00h: lowest frequency	
						7Fh: highest frequency	
						Watchdog Timer Reset control	
		7~6	WDTE	R/W	00	0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode	
E71	4 11374					11: WDT always enable	
F7h	AUX2	5	PWRSAV	R/W	0	Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode.	
			VD COVE	D ///		Bandgap voltage output control	
		4	VBGOUT	R/W	0	0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin	
	l .			l	<u> </u>	1. Danugap voltage output to P3.2 pili	

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		3	DIV32	R/W	0	only active when MULDVI16 =1 0: instruction DIV as 16/16 bit division operation
			D1 1 3 2	10, 11	O	1: instruction DIV as 32/16 bit division operation
		2~1	IAPTE	R/W	00	IAP watchdog timer enable 00: Disable 01: wait 1 ms trigger watchdog time-out flag 10: wait 3.9 ms trigger watchdog time-out flag 11: wait 7.8 ms trigger watchdog time-out flag
		0	MULDIV16	R/W	0	0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation
		7	CLRWDT	R/W	0	Set 1 to clear WDT, H/W auto clear it at next clock cycle
		6	CLRTM3	R/W	0	Set 1 to clear Timer3, HW auto clear it at next clock cycle.
		4	ADSOC	R/W	0	ADC Start of Conversion Set 1 to start ADC conversion. Cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
F8h	AUX1	3	LVRPD	R/W	0	Low Voltage Reset function select 0: LVR is enable 1: LVR is disable
		2	T2SEL	R/W	0	Timer2 counter mode (CT2N=1) input select 0: P1.0 (T2) pin (8051standard) 1:Slow clock divide by 16 (SLOWCLK/16)
		1	T1SEL	R/W	0	Timer1 counter mode (CT1N=1) input select 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)
		0	DPSEL	R/W	0	Active DPTR Select

Adr	Flash	Bit#	Bit Name	Description
		7	PROT	Flash Code Protect, 1=Protect
		6	XRSTE	External Pin Reset enable, 1=enable.
				Low Voltage Reset function select
				0000: Set LVR at 2.05V
				0001: Set LVR at 2.19V
				0010: Set LVR at 2.33V
	CFGWH		5~2 LVRE	0011: Set LVR at 2.47V
		H 5~2		0100: Set LVR at 2.61V
				0101: Set LVR at 2.75V
				0110: Set LVR at 2.89V
3FFFh				0111: Set LVR at 3.03V
				1000: Set LVR at 3.17V
				1001: Set LVR at 3.31V
				1010: Set LVR at 3.45V
				1011: Set LVR at 3.59V
				1100: Set LVR at 3.73V
				1101: Set LVR at 3.87V
				1110: Set LVR at 4.01V
				1111: Set LVR at 4.15V
		1	PREAD	Reserved
		0	FRCPSC	Reserved

DS-TM52F1376_78_E 104 Rev 1.0, 2024/05/xx

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes $1\sim8$ System clock cycles to execute as listed in the 'cycle' column below.

ARITHMETIC					
Mnemonic	Description	byte	cycle	opcod e	
ADD A,Rn	Add register to A	1	2	28-2F	
ADD A,dir	Add direct byte to A	2	2	25	
ADD A,@Ri	Add indirect memory to A	1	2	26-27	
ADD A,#data	Add immediate to A	2	2 2 2	24	
ADDC A,Rn	Add register to A with carry	1	2	38-3F	
ADDC A,dir	Add direct byte to A with carry	2	2 2	35	
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37	
ADDC A,#data	Add immediate to A with carry	2	2	34	
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F	
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95	
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97	
SUBB A,#data	Subtract immediate from A with borrow	2	2 2	94	
INC A	Increment A	1	2	04	
INC Rn	Increment register	1	2	08-0F	
INC dir	Increment direct byte	2	2 2	05	
INC @Ri	Increment indirect memory	1	2	06-07	
DEC A	Decrement A	1	2	14	
DEC Rn	Decrement register	1	2	18-1F	
DEC dir	Decrement direct byte	2	2	15	
DEC @Ri	Decrement indirect memory	1	2	16-17	
INC DPTR	Increment data pointer	1	4	A3	
MUL AB	Multiply A by B	1	8/16	A4	
DIV AB	Divide A by B	1	8/16/32	84	
DA A	Decimal Adjust A	1	2	D4	

LOGICAL					
Mnemonic	Description	byte	cycle	opcode	
ANL A,Rn	AND register to A	1	2	58-5F	
ANL A,dir	AND direct byte to A	2	2	55	
ANL A,@Ri	AND indirect memory to A	1	2	56-57	
ANL A,#data	AND immediate to A	2	2	54	
ANL dir,A	AND A to direct byte	2	2	52	
ANL dir,#data	AND immediate to direct byte	3	4	53	
ORL A,Rn	OR register to A	1	2	48-4F	
ORL A,dir	OR direct byte to A	2	2	45	
ORL A,@Ri	OR indirect memory to A	1	2	46-47	
ORL A,#data	OR immediate to A	2	2	44	
ORL dir,A	OR A to direct byte	2	2	42	
ORL dir,#data	OR immediate to direct byte	3	4	43	
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F	
XRL A,dir	Exclusive-OR direct byte to A	2	2	65	
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67	
XRL A,#data	Exclusive-OR immediate to A	2	2	64	
XRL dir,A	Exclusive-OR A to direct byte	2	2	62	
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63	
CLR A	Clear A	1	2	E4	
CPL A	Complement A	1	2	F4	

DS-TM52F1376_78_E 105 Rev 1.0, 2024/05/xx

LOGICAL							
Mnemonic	Description	byte	cycle	opcode			
SWAP A	Swap Nibbles of A	1	2	C4			
RL A	Rotate A left	1	2	23			
RLC A	Rotate A left through carry	1	2	33			
RR A	Rotate A right	1	2	03			
RRC A	Rotate A right through carry	1	2	13			

DATA TRANSFER						
Mnemonic	Description	byte	cycle	opcode		
MOV A,Rn	Move register to A	1	2	E8-EF		
MOV A,dir	Move direct byte to A	2	2	E5		
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7		
MOV A,#data	Move immediate to A	2	2	74		
MOV Rn,A	Move A to register	1	2	F8-FF		
MOV Rn,dir	Move direct byte to register	2	4	A8-AF		
MOV Rn,#data	Move immediate to register	2	2	78-7F		
MOV dir,A	Move A to direct byte	2 2	2	F5		
MOV dir,Rn	Move register to direct byte		4	88-8F		
MOV dir,dir	Move direct byte to direct byte	3	4	85		
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87		
MOV dir,#data	Move immediate to direct byte	3	4	75		
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7		
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7		
MOV @Ri,#data	Move immediate to indirect memory	2 3	2	76-77		
MOV DPTR,#data	Move immediate to data pointer	3	4	90		
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	8	93		
MOVC A,@A+PC	Move code byte relative PC to A	1	8	83		
MOVX A,@Ri	Move external data(A8) to A	1	8	E2-E3		
MOVX A,@DPTR	Move external data(A16) to A	1	8	E0		
MOVX @Ri,A	Move A to external data(A8)	1	8	F2-F3		
MOVX @DPTR,A	Move A to external data(A16)	1	8	F0		
PUSH dir	Push direct byte onto stack	2	4	C0		
POP dir	Pop direct byte from stack	2	4	D0		
XCH A,Rn	Exchange A and register	1	2	C8-CF		
XCH A,dir	Exchange A and direct byte	2	2	C5		
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7		
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7		

BOOLEAN						
Mnemonic	Description	byte	cycle	opcode		
CLR C	Clear carry	1	2	C3		
CLR bit	Clear direct bit	2	2	C2		
SETB C	Set carry	1	2	D3		
SETB bit	Set direct bit	2	2	D2		
CPL C	Complement carry	1	2	В3		
CPL bit	Complement direct bit	2	2	B2		
ANL C,bit	AND direct bit to carry	2	4	82		
ANL C,/bit	AND direct bit inverse to carry	2	4	B0		
ORL C,bit	OR direct bit to carry	2	4	72		
ORL C,/bit	OR direct bit inverse to carry	2	4	A0		
MOV C,bit	Move direct bit to carry	2	2	A2		
MOV bit,C	Move carry to direct bit	2	4	92		

DS-TM52F1376_78_E 106 Rev 1.0, 2024/05/xx

BRANCHING					
Mnemonic	Description	byte	cycle	opcode	
ACALL addr 11	Absolute jump to subroutine	2	6	11-F1	
LCALL addr 16	Long jump to subroutine	3	6	12	
RET	Return from subroutine	1	6	22	
RETI	Return from interrupt	1	6	32	
AJMP addr 11	Absolute jump unconditional	2	6	01-E1	
LJMP addr 16	Long jump unconditional	3	6	02	
SJMP rel	Short jump (relative address)	2	6	80	
JC rel	Jump on carry = 1	2	4 (or 6)	40	
JNC rel	Jump on carry = 0	2	4 (or 6)	50	
JB bit,rel	Jump on direct bit = 1	3	4 (or 6)	20	
JNB bit,rel	Jump on direct bit = 0	3	4 (or 6)	30	
JBC bit,rel	Jump on direct bit = 1 and clear	3	4 (or 6)	10	
JMP @A+DPTR	Jump indirect relative DPTR	1	6	73	
JZ rel	Jump on accumulator = 0	2	4 (or 6)	60	
JNZ rel	Jump on accumulator $\neq 0$	2	4 (or 6)	70	
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4 (or 6)	B5	
CJNE A,#data,rel	Compare A,immediate, jump not equal relative	3	4 (or 6)	B4	
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4 (or 6)	B8-BF	
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4 (or 6)	B6-B7	
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4 (or 6)	D8-DF	
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4 (or 6)	D5	

MISCELLANEOUS							
Mnemonic	Description	byte	cycle	opcode			
NOP	No operation	1	2	00			

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

DS-TM52F1376_78_E 107 Rev 1.0, 2024/05/xx

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	$V_{SS} - 0.3 \sim V_{SS} + 5.5$	
Input voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	V
Output voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	
All pins output current high	-80	m A
All pins output current low	+150	mA
Maximum Operating Voltage	5.5	V
Operating temperature	− 40 ~ +105	
Storage temperature	−65 ~ +150	°C

2. DC Characteristics ($T_A=25$ °C, $V_{CC}=2.2V \sim 5.5V$)

Parameter	Symbol	Co	onditions	Min	Тур	Max	Unit			
Operating Voltage	V_{CC}	F _{SYSCLK}	=18.432 MHz	2.2	_	5.5	V			
Input High	17	A 11 To 2004	V _{CC} =5V	0.6V _{CC}	_	_	V			
Voltage	V_{IH}	All Input	V _{CC} =3V	0.6V _{CC}	_	_	V			
Innut I ov. Voltage	V	All Innut	V _{CC} =5V	_	_	$0.2V_{CC}$	V			
Input Low Voltage	$V_{\rm IL}$	All Input	V _{CC} =3V	_	_	$0.2V_{CC}$	V			
			$V_{\rm CC}$ =5V, $V_{\rm OH}$ =0.9V $_{\rm CC}$	6	12	_				
		All Output	V_{CC} =5V, V_{OH} =0.6V $_{\text{CC}}$	20	40	_				
		LEDBRITM=1	$V_{CC}=3V,$ $V_{OH}=0.9V_{CC}$	2.5	5	_				
I/O Port Source	${ m I}_{ m OH}$		$V_{\rm CC}$ =3V, $V_{\rm OH}$ =0.66V $_{\rm CC}$	7.5	15	_	mA			
Current		LED Pins (P0.0~P0.3, P2.0~P2.1,	V_{CC} =5V, V_{OH} =0.9V $_{\text{CC}}$	6	12	_	IIIA			
			V_{CC} =5V, V_{OH} =0.6V _{CC}	10	20	_				
			P3.4~P3.7) LEDBRITM=0	$V_{CC}=3V,$ $V_{OH}=0.9V_{CC}$	2.5	5	_			
		LLDDKITW-0	V_{CC} =3V, V_{OH} =0.66V $_{\text{CC}}$	5	10	_				
	I _{OL}					$V_{\rm CC}$ =5V, $V_{\rm OL}$ =0.1 $V_{\rm CC}$ HSNKxEN=1	48	70	-	
I/O Port Sink			V _{CC} =5V, V _{OL} =0.1V _{CC} HSNKxEN=0	32	40	-	mA			
Current		I _{OL} All Output,	V_{CC} =3V, V_{OL} =0.1 V_{CC} HSNKxEN=1	24	30	-	IIIA			
					V _{CC} =3V, V _{OL} =0.1V _{CC} HSNKxEN=0	9	18			

DS-TM52F1376_78_E 108 Rev 1.0, 2024/05/xx

Parameter	Symbol	C	Min	Тур	Max	Unit	
		Fast mode	FRC=18.432 MHz		10		
		$V_{CC}=5V$	FRC=9.216 MHz	_	6.5	_	
		Fast mode	FRC=18.432 MHz	_	5.5	_	^
		$V_{CC}=3V$	FRC=9.216 MHz	_	3.5	_	mA
		Slow mode	V _{CC} =5V	_	2.6	_	
		Slow mode	V _{CC} =3V	_	1.8	_	
		Idle mode	SRC, V _{CC} =5V	_	100	_	
Supply Current	I_{DD}	PWRSAV=0	SRC, V _{CC} =3V	_	60	_	
	Idle mode	SRC, V _{CC} =5V	_	40	_		
		PWRSAV=1	SRC, V _{CC} =3V	_	16	_	
		Stop mode	V _{CC} =5V	0.4	_	_	μA
		PWRSAV=1	V _{CC} =3V	0.1	_	_	
		Halt mode	V _{CC} =5V (Timer3=0.5 sec)	23	_	_	
		PWRSAV=1			_	_	
System Clock Frequency	F _{SYSCLK}	$V_{CC}\!>\!\!LVR_{TH}$	V _{CC} =2.2V	_	_	18.432	MHz
					4.15	_	
				_	4.01	_	
				_	3.87	_	
				_	3.73	_	
				_	3.59	_	
				_	3.45	_	
				_	3.31	_	†
LVR Reference	3.7		3.000	_	3.17	_	***
Voltage	V_{LVR}	1	$\Gamma_{\rm A}$ =25°C	_	3.03	_	V
				_	2.89	_	
				_	8.75	_	
				_	2.61	_	
					2.47	_	
				_	2.33	_	
				_	2.19	_	
			-			_	

Parameter	Symbol	C	onditions	Min	Тур	Max	Unit
			_	4.15	_		
				_	4.01	-	
				_	3.87		
				_	3.73	_	
				_	3.59	_	
				_	3.45	_	
				_	3.31	_	
LVD Reference	V_{LVD}	п	$\Gamma_{\rm A}$ =25°C	_	3.17	_	V
Voltage	V LVD	1	_	3.03	_	·	
				_	2.89	_	
				- 8.75	8.75	_	-
				_	2.61	_	
				_	2.47	_	
				_	2.33	_	
				_	2.19	_	
				_	2.05	_	
LVR Hysteresis Voltage	V _{HYST}	Т	T _A =25°C	_	±0.1	_	V
Low Voltage Detection time	t_{LVR}	7	T _A =25°C			ı	μs
Pull-Up Resistor	R_{PU}	V0V	V _{CC} =5V	_	25	_	
Tun-Op Resistor	Тър	$V_{IN}=0V$	$V_{CC}=3V$	_	25	_	ΚΩ
Pull-Down	R_{PD}	VV	V _{CC} =5V	_	25	_	1832
Resistor	KPD	$V_{IN}=V_{CC}$ $V_{CC}=3V$	_	25			

DS-TM52F1376_78_E 110 Rev 1.0, 2024/05/xx

3. Clock Timing $(T_A = -40^{\circ}C \sim +105^{\circ}C)$

Parameter	Condition		Тур	Max	Unit
FRC Frequency	25°C, V _{CC} =5.0V	-1%	18.432	+1%	
	-40 °C ~ 105 °C, $V_{CC}=5.0$ V	-1.5%	18.432	+1.5%	MHz
	-40 °C ~ 105 °C, $V_{CC}=3.0$ ~ 5.0 V	-2.5%	18.432	+2.5%	

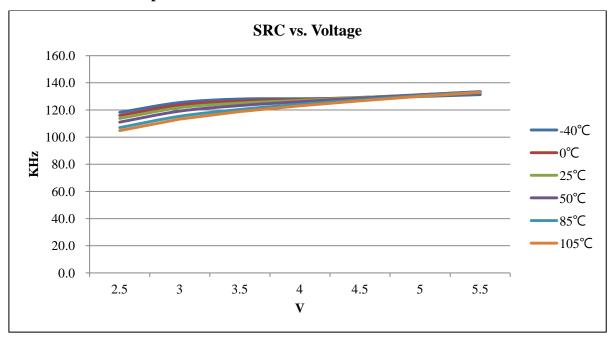
4. Reset Timing Characteristics $(T_A = -40^{\circ}C \sim +105^{\circ}C)$

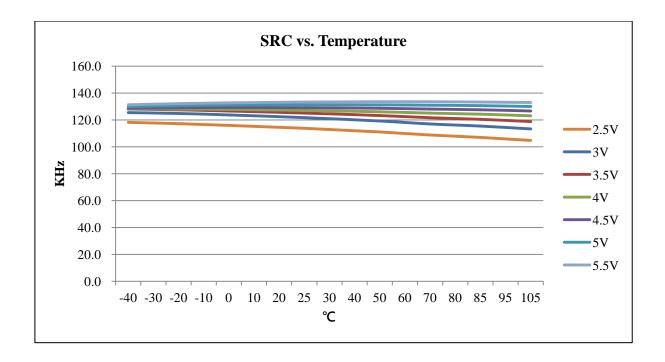
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input V_{CC} =5V ± 10 %	30	_	-	μs
WIDTE 1	V _{CC} =5V, WDTPSC=11	-	30	1	
WDT wake up time	V _{CC} =3V, WDTPSC=11	_	32	_	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	13.6		ms

5. ADC Electrical Characteristics ($T_A=25^{\circ}C$, $V_{CC}=3.0V\sim5.5V$, $V_{SS}=0V$)

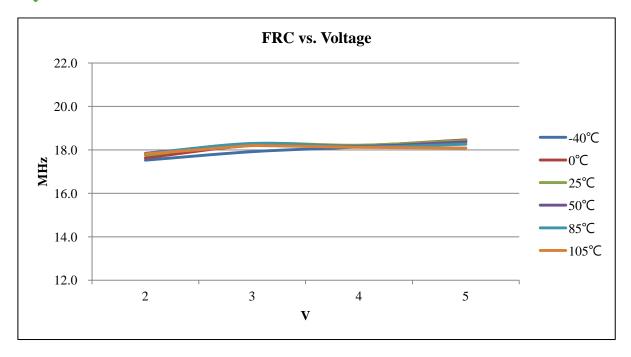
Parameter	Co	onditions	Min	Тур	Max	Unit
Total Accuracy	V _5	V 512 V V 0V		±2.5	±4	LSB
Integral Non-Linearity	V CC−3.	12 V, V _{SS} =0V	_	±3.2	±5	LSD
	Source impeda	ance (Rs < 10K omh)	_	_	2	
Max Input Clock (f _{ADC})	Source impeda	ance (Rs < 20K omh)	_	_	1	MHz
Max Input Clock (I _{ADC})	Source impeda	Source impedance (Rs < 50K omh)		_	0.5	MITIZ
	Source is V _{BO}	_	_	2.3		
Conversion Time	F_{AD}	$_{\rm OC} = 1 \rm MHz$	_	50	_	μs
BandGap Voltage Reference (V_{BG})	ı	V _{CC} =3V~5.5V -40°C ~105°C	-1.5%	1.20	+1.5%	
ADC Reference Voltage (V_{ADC})	ADCVREFS=1	V _{cc} =3V~5 5V		2.5	+1.5%	v
V _{CC} /4 Reference Voltage		V _{CC} =5V, 25°C	-0.8%	1.26	+0.8%	, i
(V _{1/4})	_	V _{CC} =3.6V, 25°C	-0.8%	0.907	+0.8%	
Input Voltage		_	V_{SS}	_	V_{CC}	

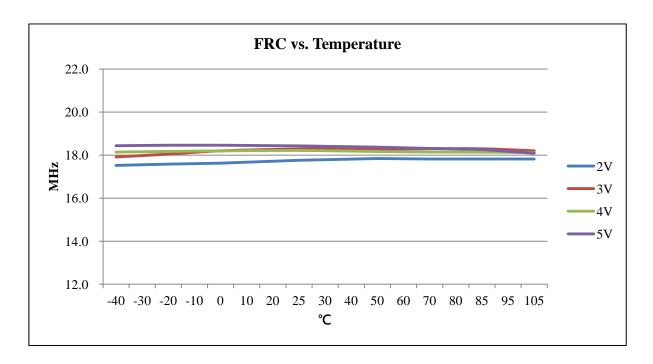
6. EEPROM Characteristics


Parameter	Conditions		Тур	Max	Unit
Write Voltage	-20°C ~ 85°C	3.0	5	5.5	V
	0°C ~ 105°C	4.5	5	5.5	v
	$V_{CC} = 5 \text{ V}, -20^{\circ}\text{C}$	30K	_	-	
Write Endurance*	$V_{CC} = 5 \text{ V}, -10^{\circ}\text{C}$	50K	_	-	cycles
write Endurance*	$V_{CC} = 3.0V \sim 5V, 85^{\circ}C$	50K	_	-	Cycles
	$V_{CC} = 4.5V, 0^{\circ}C \sim 105^{\circ}C$	50K	_	_	

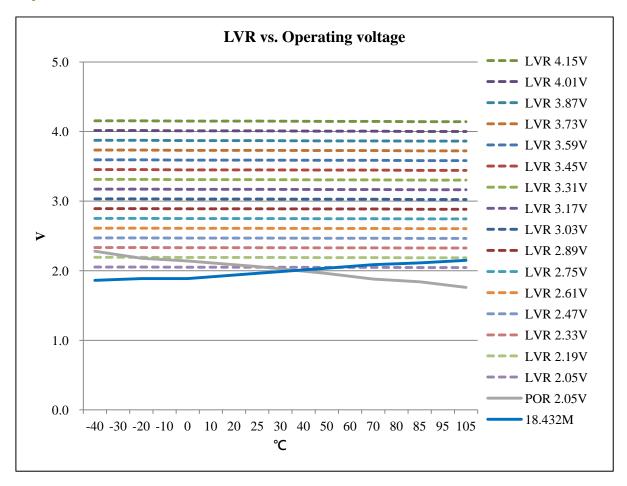

Note: The value of this parameter is based on the characteristics of tested samples.

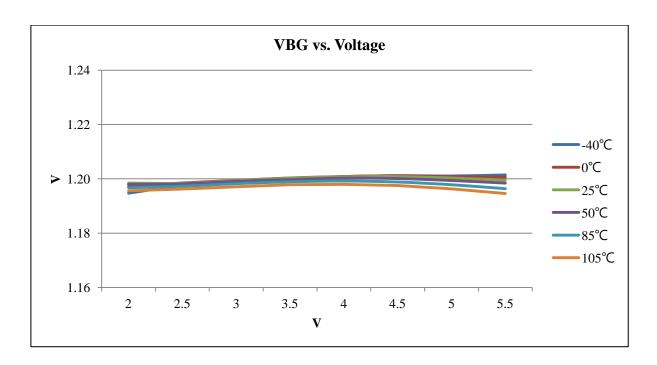
DS-TM52F1376_78_E 111 Rev 1.0, 2024/05/xx


7. Characteristic Graphs



DS-TM52F1376_78_E 112 Rev 1.0, 2024/05/xx





DS-TM52F1376_78_E 113 Rev 1.0, 2024/05/xx

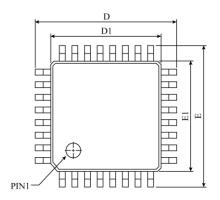
Package and Dice Information

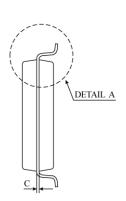
Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

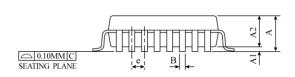
Ordering information

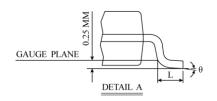
Ordering number	Package
TM52F1376-MTP	Wafer/Dice blank chip
TM52F1376-COD	Wafer/Dice with code
TM52F1376-MTP-71	LQFP 32-pin (7x7x1.4 mm)
TM52F1376C-MTP-23	COD 28 min (200 mil)
TM52F1376H-MTP-23	SOP 28-pin (300 mil)
TM52F1376C-MTP-29	SSOP 28-pin (150 mil)
TM52F1376-MTP-C3	QFN 28-pin (4x4x0.75-0.4 mm)
TM52F1376-MTP-28	SSOP 24-pin (150 mil)
TM52F1376-MTP-21	
TM52F1376H-MTP-21	SOP 20-pin (300 mil)
TM52F1376T-MTP-21	
TM52F1376-MTP-46	TSSOP 20-pin (173 mil)
TM52F1376-MTP-D1	QFN 20-pin (3x3x0.75-0.4 mm) (L=0.25mm)
TM52F1376-MTP-16	SOP 16-pin (150 mil)
TM52F1376H-MTP-16	301 10-piii (130 iiiii)

DS-TM52F1376_78_E 115 Rev 1.0, 2024/05/xx


Ordering number	Package
TM52F1378-MTP	Wafer/Dice blank chip
TM52F1378-COD	Wafer/Dice with code
TM52F1378C-MTP-23	SOD 28 min (200 mil)
TM52F1378H-MTP-23	SOP 28-pin (300 mil)
TM52F1378C-MTP-29	SSOP 28-pin (150 mil)
TM52F1378-MTP-C3	QFN 28-pin (4x4x0.75-0.4 mm)
TM52F1378-MTP-28	SSOP 24-pin (150 mil)
TM52F1378-MTP-21	
TM52F1378H-MTP-21	SOP 20-pin (300 mil)
TM52F1378T-MTP-21	
TM52F1378-MTP-46	TSSOP 20-pin (173 mil)
TM52F1378-MTP-D1	QFN 20-pin (3x3x0.75-0.4 mm) (L=0.25mm)
TM52F1378-MTP-16	COD 16 pin (150 mil)
TM52F1378H-MTP-16	SOP 16-pin (150 mil)

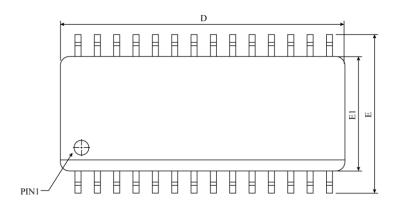

DS-TM52F1376_78_E 116 Rev 1.0, 2024/05/xx

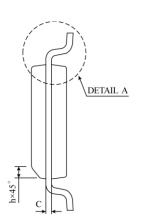


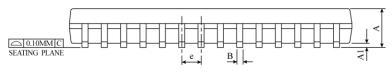

Package Information

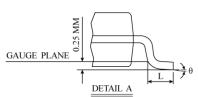
LQFP-32 (7x7x1.4mm) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	ЮH	
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	1.60	-	-	0.063	
A1	0.05	0.10	0.15	0.001	0.004	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
В	0.30	0.38	0.45	0.012	0.015	0.018	
С	0.09	0.09	0.20	0.004	0.006	0.008	
D	9.00 BSC			0.354 BSC			
D1		7.00 BSC		0.276 BSC			
Е		9.00 BSC		0.354 BSC			
E1		7.00 BSC			0.276 BSC		
e		0.80 BSC			0.031 BSC		
L	0.45	0.60	0.75	0.018	0.027	0.035	
θ	0°	3.5°	7°	0°	3.5°	7°	
JEDEC			MS-026	(BBA)			


*NOTES: DIMENSION "DI "AND "EI "DO NOT INCLUDE MOLD PROTRUSIONS. ALLOWABLE PROTRUSIONS IS 0.25 mm PER SIDE.


"DI "AND "EI "ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMACH.

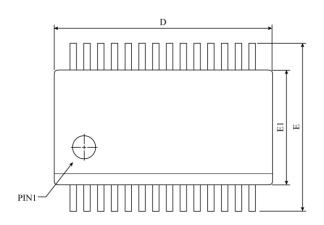

DS-TM52F1376_78_E 117 Rev 1.0, 2024/05/xx

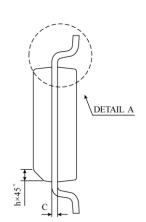


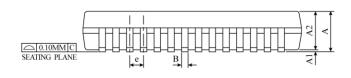
SOP-28 (300mil) Package Dimension

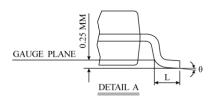
SYMBOL	DI	MENSION IN M	1 М	DIN	MENSION IN IN	ICH
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	17.70	17.90	18.10	0.6969	0.7047	0.7125
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC			0.050 BSC	
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC			MS-013	(AE)		

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.


MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

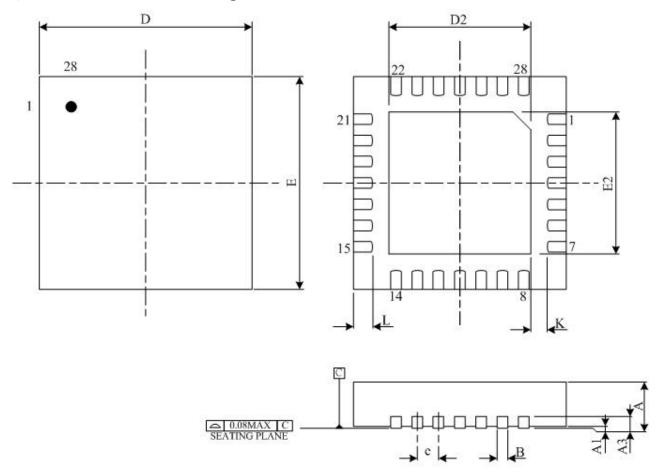

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.


DS-TM52F1376_78_E 118 Rev 1.0, 2024/05/xx



SSOP-28 (150mil) Package Dimension

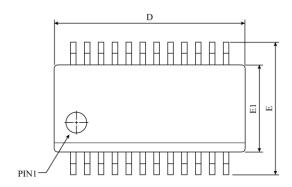
SYMBOL	DIN	MENSION IN 1	MM	DIM	ENSION IN I	NCH
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.50	1.65	1.80	0.06	0.06	0.07
A1	0.102	0.176	0.249	0.004	0.007	0.010
A2	1.40	1.475	1.55	0.06	0.06	0.06
В	0.20	0.25	0.30	0.01	0.01	0.01
С		0.2TYP			0.008TYP	
e		0.635TYP			0.025TYP	
D	9.804	9.881	9.957	0.386	0.389	0.392
Е	5.842	6.020	6.198	0.230	0.237	0.244
E1	3.86	3.929	3.998	0.152	0.155	0.157
L	0.406	0.648	0.889	0.016	0.026	0.035
θ	0°	4°	8°	0°	4°	8°
JEDEC			M0-13	37(AF)		

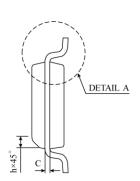

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.

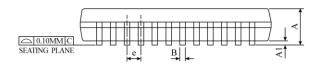
MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.

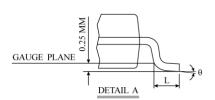
DS-TM52F1376_78_E 119 Rev 1.0, 2024/05/xx

QFN-28 (4x4x0.75-0.4mm) Package Dimension




SYMBOL	DIMENSION IN MM			DI	MENSION IN IN	CH
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.7	0.75	0.8	0.028	0.030	0.031
Al	0	0.02	0.05	0	100.0	0.002
A3		0,203 REF			0.008 REF	\$4
В	0.15	0.2	0,25	0.006	0.008	0.010
D	į.	4 BSC			0.157	
E		4 BSC			0.157	
D2	2.2	2.3	2.4	0.087	0,091	0.094
E2	2.2	2,3	2.4	0.087	0.091	0.094
e		0.4 BSC			0.016	io.
L	0.3	0.4	0.5	0.012	0.016	0.020
K		0.45 REF	•		0.018	•
JEDEC			МО	-220		

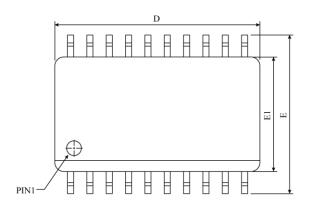

DS-TM52F1376_78_E 120 Rev 1.0, 2024/05/xx

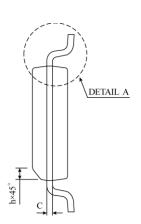


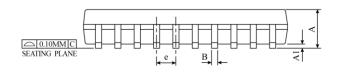
SSOP-24 (150mil) Package Dimension

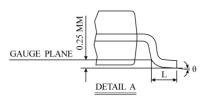
SYMBOL	DI	MENSION IN M	1M	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	8.56	8.65	8.74	0.337	0.341	0.344	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e	0.635 BSC			0.025 BSC			
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137 (AE)						

* NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GAT BURRS.

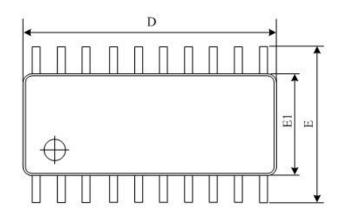

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT

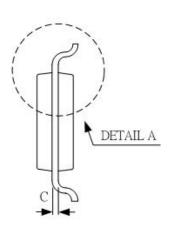

EXCEED 0.006 INCH PER SIDE.

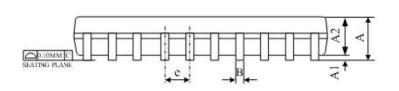

DS-TM52F1376_78_E 121 Rev 1.0, 2024/05/xx

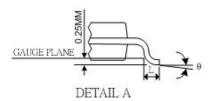


SOP-20 (300mil) Package Dimension




SYMBOL	DI	MENSION IN M	ИM	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						


DS-TM52F1376_78_E 122 Rev 1.0, 2024/05/xx

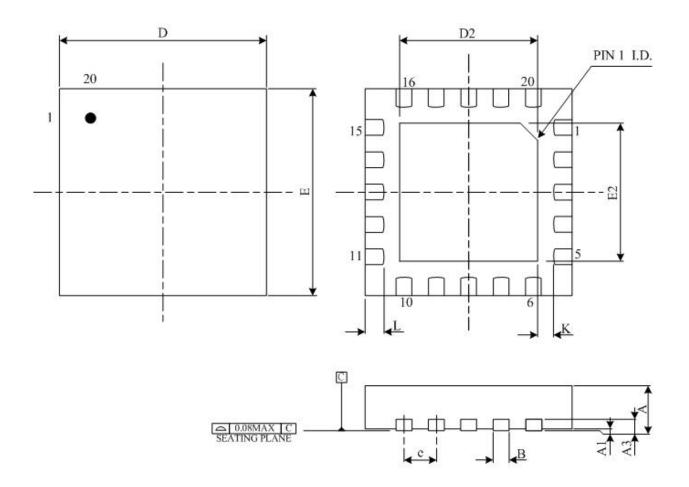


TSSOP-20 (173mil) Package Dimension

eva mor	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A			1.2	(4)	*	0.047
A1	0.05	0.10	0.15	0.002	0.004	0,006
A2	0.8	0.93	1.05	0.031	0.036	0.041
В	0.19		0.3	0.007	14	0.012
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.55	0.246	0.252	0.258
EI	4.3	4.4	4.5	0.169	0.173	0,177
e	0.65 BSC			0.026 BSC		
L	0.45	0,60	0.75	0.018	0.024	0.030
θ	0 °		8 °	0 °		8 "
JEDEC	MO-153 AC REV.F					

 $DS\text{-}TM52F1376_78_E$ 123 Rev 1.0, 2024/05/xx

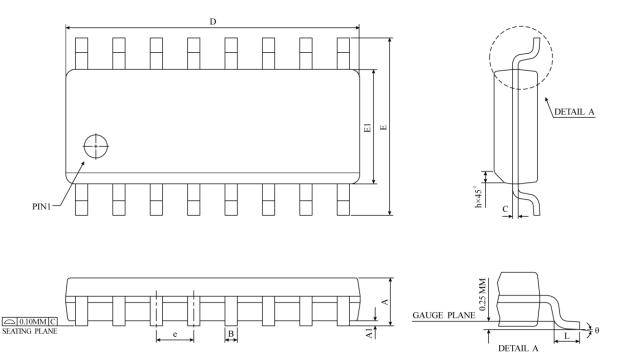
Notes:


1.DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

2.DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.

QFN-20 (3x3x0.75-0.4mm) (L=0.25mm) Package Dimension


EVADOL	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.75	0.80	0.028	0.030	0.031	
Al	0.00	0.02	0.05	0.00	100.0	0.002	
A3		0,203 REF		0.008 REF			
В	0.15	0.20	0.25	0,006	0.008	0.010	
D	3 BSC			0.118 BSC			
E		3 BSC			0.118 BSC		
D2	1.80	1.90	2.00	0.071	0.075	0.079	
E2	1.80	1.90	2.00	0.071	0.075	0.079	
e.	0,40 BSC			0.016 BSC			
L	0.15	0.25	0.35	0.006	0.010	0.014	
K	0.30 REF			0.012 REF			
JEDEC	MO-220						

DS-TM52F1376_78_E 124 Rev 1.0, 2024/05/xx

DETAIL A

SOP-16 (150mil) Package Dimension

SYMBOL	DI	MENSION IN M	ΙΜ	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e		1.27 BSC		0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AC)						

 $\underline{\mathbb{A}}$ * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

125 DS-TM52F1376_78_E Rev 1.0, 2024/05/xx