

十涑

TM52eF1375A/75D

DATA SHEET

Rev 0.93

(Please read the precautions on the second page before use)

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

PRECAUTIONS

- 1. Before entering Stop/Halt mode (PDOWN), it must be set ENVPULL (ENVPULL = 1).
- 2. Before entering Halt/Stop mode (PDOWN), it must be set to slow clock mode (SELFCK = 0).
- 3. Before IAP Write, the user should disable the LVR first and turn on LVR after IAP writing is completed.
- 4. TM52eF1375A automatically disables POR when entering Stop/Halt mode (PDOWN).
- 5. When the TM52eF1375D enters Stop/Halt mode (PDOWN), the POR status can be selected to enable or disable. (default: enable)

DS-TM52eF1375A_75D_E 2 Rev 0.93, 2024/5/xx

AMENDMENT HISTORY

Version	Date	Description
V0.90	Dec, 2022	New release.
V0.91	Apr, 2023	 Modify supply current in the DC characteristics. Add power on reset voltage in the DC characteristics. Some error correction.
V0.92	Aug, 2023	1. Add 28-pin SSOP package.
V0.93	May, 2024	Remark DS-TM52eF1375A_E change Doc No. to DS-TM52eF1375A_75D_E 1. Add description of POR. 2. Some error correction.

DS-TM52eF1375A_75D_E 3 Rev 0.93, 2024/5/xx

CONTENTS

PRE	ECAUTIONS	2
AMI	ENDMENT HISTORY	3
TM5	52 eF1xxx FAMILY	7
GEN	NERAL DESCRIPTION	9
BLO	OCK DIAGRAM	9
	ATURES	
	ASSIGNMENT	
	DESCRIPTION	
	SUMMERY	
	NCTIONAL DESCRIPTION	
1.	CPU Core	17
	1.1 Accumulator (ACC)	
	1.2 B Register (B)	
	1.3 Stack Pointer (SP)	
	1.4 Dual Data Pointer (DPTRs)	
	1.5 Program Status Word (PSW)	
2.	Memory	20
	2.1 Program Memory	20
	2.1.1 Program Memory Functional Partition	
	2.1.2 Flash ICP Mode	
	2.1.3 Flash IAP Mode (EEPROM like)	
	2.1.4 IAP Mode Access Routines	
	2.2 Data Memory	
	2.2.1 IRAW	
	2.2.3 SFRs	
3	LVR and LVD setting	
	Reset	
4.		
	4.1 Power on Reset	
	4.3 Software Command Reset	
	4.4 Watchdog Timer Reset	
	4.5 Low Voltage Reset	
5.	Clock Circuitry & Operation Mode	
	5.1 System Clock	
	5.2 Operation Modes	
	±	

6.	Interrupt & Wake-up	36
	6.1 Interrupt Enable and Priority Control	36
	6.2 Suggestions on interrupting subroutines	
	6.3 Pin Interrupt and LVD interrupt	
	6.4 Idle mode Wake up and Interrupt	
_	6.5 Halt/Stop mode Wake up and Interrupt	
7.		
	7.1 Port1 & Port2 & Port 3	
	7.2 Port0	
8.		
	8.1 Timer0 / Timer1	
	8.2 Timer2	
	8.3 Timer3	
Q	UARTs	
). PWMs	
10	10.1 16-bit PWM	
11	1. ADC	
11	11.1 ADC Channels	
	11.2 ADC Conversion Time	
12	2. Touch Key (FTK)	
	3. S/W Controller LCD Driver	
14	4. LED Controller/Driver	87
	14.1 LED Bi-Direction Matrix (BiD) Mode	87
	14.2 LED Dot Matrix Mode	
15	5. Serial Peripheral Interface (SPI)	95
16	5. Cyclic Redundancy Check (CRC)	100
17	7. Multiplier and divider	101
18	3. Master I C Interface	103
19	9. Slave I°C Interface	107
20). In Circuit Emulation (ICE) Mode	110
SFR	& CFGW MAP	111
SFR	& CFGW DESCRIPTION	113
	TRUCTION SET	

ELE	CTRICAL CHARACTERISTICS	132
1.	Absolute Maximum Ratings	132
2.	DC Characteristics.	133
3.	Clock Timing	135
4.	Reset Timing Characteristics	135
5.	ADC Electrical Characteristics	135
6.	Characteristic Graphs	136
Pack	sage and Dice Information	139

TM52 eF1xxx FAMILY

Common Feature

CPU	Flash Program memory	RAM bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LVD	LVR
Fast 8051 (2T)	16K~64K with IAP, ISP, ICP	1280 ~ 4352	SXT SRC FXT FRC	Fast Slow Idle Stop Halt	8051 St	andard	15-bit	16 level	8~16 level

Family Members Features

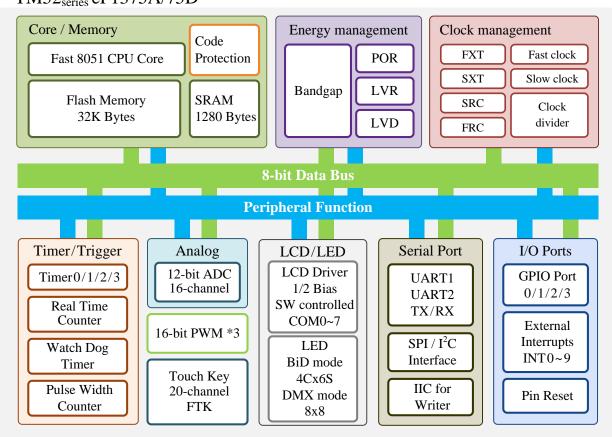
P/N	Program Memory	Data Memory	RAM Bytes	IO Pin	PWM	SAR ADC	Touch Key	LCD	LED	Interface
TM52-eF1716	Flash 16K Bytes	EEPROM 128 Bytes	1280	30	16-bit x3 8-bit x3	12-bit 16-ch	20-ch	8com	BiD 4Cx6S	SPI UARTx2 I ² C
TM52-eF1732	Flash 32K Bytes	EEPROM 128 Bytes	1280	30	16-bit x3 8-bit x3	12-bit 16-ch	20-ch	8com	BiD 4Cx6S	SPI UARTx2 I ² C
TM52-eF1374	Flash 20K Bytes	EEPROM 128 Bytes	1280	26	16-bit x3	12-bit 16-ch	20-ch	8com	BiD 4Cx6S DMX 8x8	SPI UARTx2 I ² C
TM52-eF1375	Flash 32K Bytes	EEPROM 128 Bytes	1280	26	16-bit x3	12-bit 16-ch	20-ch	8com	BiD 4Cx6S DMX 8x8	SPI UARTx2 I ² C
TM52-eF1375A TM52-eF1375D		EEPROM 128 Bytes	1280	26	16-bit x3	12-bit 16-ch	20-ch	8com	BiD 4Cx6S DMX 8x8	SPI UARTx2 I ² C
TM52-eF1385	Flash 32K Bytes	EEPROM 128 Bytes	4352	42	16-bit x9	12-bit 45-ch	21-ch x 2	4Cx20S ~ 8Cx16S	MX 8x8 DMX 7x8	SPI UARTx3 I ² C
TM52-eF1386	Flash 64K Bytes	EEPROM 128 Bytes	4352	42	16-bit x9	12-bit 45-ch	21-ch	4Cx20S ~ 8Cx16S	MX 8x8 DMX 7x8	SPI UARTx3 I ² C

DS-TM52eF1375A_75D_E 7 Rev 0.93, 2024/5/xx

	Operation		C	peration	Current	Max. System Clock (Hz)				
P/N	Voltage	Fact Slovy Idla			Stop	Stop Halt		SRC	FXT	FRC
TM52-eF1716 TM52-eF1732	2.5~5.5V	3.5mA	0.18mA	0.15 mA	7uA@5V 1.4uA@3V	11uA@5V 4uA@3V	32K	80K	16M	14.7456M
TM52-eF1374 TM52-eF1375	2.2~5.5V	3.4mA	0.2mA	0.17mA	12uA@5V 5uA@3V	15uA@5V 7uA@3V	32K	80K	18M	18.432M
TM52-eF1375A TM52-eF1375D*	2.5~5.5V	3.2mA	0.19mA	0.15mA	7.7uA@5V 1.5uA@3V		32K	80K	18M	18.432M
TM52-eF1385 TM52-eF1386	2.3~5.5V	3.5mA	0.2mA	0.18 mA	11uA@5V 4uA@3V	14uA@5V 6uA@3V	32K	80K	18M	18.432M

 $\textbf{\textit{Note:}}\ \textit{TM52eF1375D}\ \textit{need to disable POR before entering Stop/Halt mode for minimum power consumption.}$

DS-TM52eF1375A_75D_E 8 Rev 0.93, 2024/5/xx


GENERAL DESCRIPTION

TM52_{series} **eF1375A/75D** are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the **TM52** executes instructions six times faster than the standard 8051 architecture.

The **TM52-eF1375A/75D** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 32K Bytes Flash program memory, 1280 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD/LED driver, 3 set 16-bit PWMs, 16 channels 12-bit A/D Convertor, 20 channels Touch Key, I²C/SPI interface and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

TM52_{series} eF1375A/75D

DS-TM52eF1375A_75D_E 9 Rev 0.93, 2024/5/xx

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 32K Bytes
- Support IAP "In Application Programming" (EEPROM like)
- Code Protection Capability
- 10K erase times at least
- 10 years data retention at least

3. Total 1280 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 1024 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

4. Four System Clock type selections

- Fast clock from 1~18MHz Crystal (FXT)
- Fast clock from Internal RC (FRC, 18.432 MHz)
- Slow clock from 32768Hz Crystal (SXT)
- Slow clock from Internal RC (SRC,80 KHz)
- System Clock can be divided by 1/2/4/16 option

5. 8051 Standard Timer – Timer 0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1
- 16-bit Timer2, also supports T2O clock output for Buzzer application

6. 15-bit Timer3

- Clock source is Slow clock
- Interrupt period can be clock divided by 32768/16384/8192/128 option

7. UARTs

- UART1, 8051 standard UART
- UART2, the second UART, supports only mode1 and mode3

8. Three independent 16 bits PWMs with period-adjustment

• With PWM0/PWM1/PWM2 Interrupt

9. SPI Interface

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

DS-TM52eF1375A_75D_E 10 Rev 0.93, 2024/5/xx

10. I²C interface (Master / Slave)

11. 20-Channel Touch Key (FTK)

- Internal reference key
- With 4 scanning methods

12. 12-bit ADC with 13 channels External Pin Input and 3 channels Internal Reference Voltage

- Internal Reference Voltage: V_{BG} 1.22V @V_{CC}=5V~3V, 25°C
- Internal Reference Voltage: 1/4V_{CC}
- ADC reference voltage = $2.5 \text{V} / \text{V}_{\text{CC}}$

13. LCD Driver

- 1/8 duty
- Software controlled COM0~7
- 1/2 LCD Bias

14. LED Controller/Driver

- COM with Dead Time
- LED hold option
- Brightness uniform / enhancement option

[Bi-Direction matrix (BiD) mode]

- 4C x 6S, Max. 10 pins up to 48 dots
- 3groups, 8-level Brightness

[Dot matrix (DMX) mode]

- 8C x 8S, Max. 9 pins up to 64 dots
- 8-level Brightness

15. 14 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0~INT1 pin low level or falling edge Interrupt
- INT2~INT9 pin Falling-Edge Interrupt
- Port1 Pin Change Interrupt
- UART1/UART2 TX/RX Interrupt
- ADC/Touch Key Interrupt
- SPI Interrupt
- I²C interrupt
- PWM0/PWM1/PWM2 interrupt

16. Pin Interrupt can Wake up CPU from Power-Down (Halt/Stop) mode

- INT0~INT9 Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim9$)

17. Max. 26 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled
- All pin with High sink ($80\text{mA@V}_{CC}=5\text{V}$, $V_{OL}=0.1\text{V}_{CC}$)

18. Independent RC Oscillating Watch Dog Timer

• 400ms/200ms/100ms/50ms selectable WDT timeout options

19. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

20. 16-level Low Voltage Detect

4.3V/4.2V/4.0V/3.9V/3.8V/3.7V/3.6V/3.4V/
 3.3V/3.2V/3.1V/3.0V/2.8V/2.7V/2.6V/2.5V

21. 8-level Low Voltage Reset

4.2V/3.9V/3.7V/3.4V/3.2V/3.0V/2.7V/2.5V

22. Five Power Operation Modes

• Fast/Slow/Idle/Halt/Stop mode

23. Integrated 16-bit Cyclic Redundancy Check function

24. Multiplication and division

- 8 bit Multiplier & Divider (standard 8051)
- 16 bits Multiplier & Divider
- 32 bits ÷ 16 bits hardware Divider

25. On-chip Debug/ICE interface

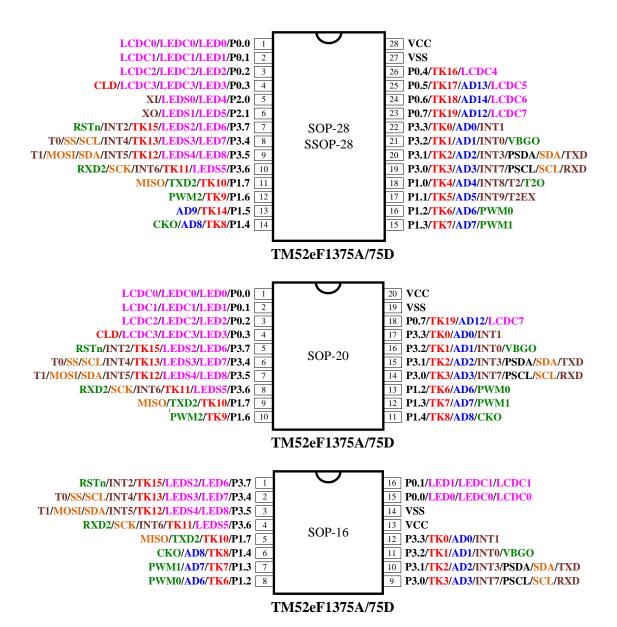
- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin

DS-TM52eF1375A_75D_E 12 Rev 0.93, 2024/5/xx

26. Operating Voltage and Current

- $V_{CC} = 2.5V \sim 5.5V @F_{SYSCLK} = 18.432MHz$
- $I_{CC} = 7.7 \mu A$ @Stop mode, $V_{CC} = 5V$
- $I_{CC} = 1.5 \mu A$ @Stop mode, $V_{CC} = 3V$
- $I_{CC} = 11 \mu A$ @Halt mode, $V_{CC} = 5V$
- $I_{CC} = 4.0 \mu A$ @Halt mode, $V_{CC} = 3V$
- $I_{CC} = 150 \mu A$ @Idle mode, $V_{CC} = 5V$

27. Operating Temperature Range


• -40°C ~ +105°C

28. Package Types

- 28-pin SOP (300 mil)
- 28-pin SSOP (150 mil)
- 20-pin SOP (300 mil)
- 16-pin SOP (150 mil)

PIN ASSIGNMENT

DS-TM52eF1375A_75D_E 14 Rev 0.93, 2024/5/xx

PIN DESCRIPTION

Name	In/Out	Pin Description
P0.0~P0.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull-up resistors are assignable by software.
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Halt/Stop mode.
P2.0~P2.1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo open drain" output. Pull-up resistors are assignable by software.
P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
INTO, INT1	I	External low level or falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
INT2~9	I	External falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
TXD2	I/O	UART2 Mode1/3 transmits data.
T0, T1, T2	I	Timer0, Timer1, Timer2 event count pin input.
T2EX	I	Timer2 external trigger input.
T0O	О	Timer0 overflow divided by 64 output
T2O	О	Timer2 overflow divided by 2 output
CKO	О	System Clock divided by 2 output
VBGO	О	Bandgap voltage output
PWM0~PWM2	О	16 bit PWM output
AD0~AD9 AD12~AD14	I	ADC input
TK0~TK19	I	Touch Key input
CLD	I	Touch Key charge collection capacitor connection pin
LCDC0~LCDC7	О	LCD 1/2 bias output
LEDC0~LEDC3	О	LED BiD matrix mode common output
LEDS0~LEDS5	О	LED BiD matrix mode segment output
LED0~LED8	О	LED Dot matrix mode output
MISO	I/O	SPI data input for master mode, data output for slave mode
MOSI	I/O	SPI data output for master mode, data input for slave mode
SS	I	SPI active low slave select input for slave mode
SCK	I/O	SPI clock output for master or clock input for slave mode
SCL	I/O	I ² C SCL
SDA	I/O	I ² C SDA
PSCL	I/O	I ² C SCL for program
PSDA	I/O	I ² C SDA for program
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable.
XI, XO	_	Crystal/Resonator oscillator connection for System clock (FXT or SXT)
VCC, VSS	P	Power input pin and ground

PIN SUMMERY

Pin #				I	npu	t	C	utp	ut			Al	tern	ativ	e Fu	ıncti	on			MISC
SOP-28	Pin Name	Type	Initial State	Pull-up Control	Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	O.D.	CCD	LED BiD matrix	LED Dot matrix	ADC	Touch Key	UART	PWM	Timer	SPI	$ m I^2C$	
1	P0.0	I/O	Hi-Z	•			•			•	•	•								
2	P0.1	I/O	Hi-Z	•			•			•	•	•								
3	P0.2	I/O	Hi-Z	•			•			•	•	•								
4	P0.3	I/O	Hi-Z	•			•			•	•	•								CLD
5	P2.0	I/O	Hi-Z	0			•		•		•	•								Crystal
6	P2.1	I/O	Hi-Z	0			•		•		•	•								Crystal
7	P3.7	I/O	PU	0	•	•	•		•		•	•		•						Reset
8	P3.4	I/O	Hi-Z	0	•	•	•		•		•	•		•			•	•	•	
9	P3.5	I/O	Hi-Z	0	•	•	•		•		•	•		•			•	•	•	
10	P3.6	I/O	Hi-Z	0	•	•	•		•		•			•	•			•		
11	P1.7	I/O	Hi-Z	0	•		•		•					•	•			•		
12	P1.6	I/O	Hi-Z	0	•		•		•					•		•				
13	P1.5	I/O	Hi-Z	0	•		•		•				•	•						
14	P1.4	I/O	Hi-Z	0	•		•		•				•	•						CKO
15	P1.3	I/O	Hi-Z	0	•		•		•				•	•		•				
16	P1.2	I/O	Hi-Z	0	•		•		•				•	•		•				
17	P1.1	I/O	Hi-Z	0	•	•	•		•				•	•			•			
18	P1.0	I/O	Hi-Z	0	•	•	•		•				•	•			•			T2O
19	P3.0	I/O	Hi-Z	0	•	•	•	•					•	•	•				•	
20	P3.1	I/O	Hi-Z	0	•	•	•	•					•	•	•				•	
21	P3.2	I/O	Hi-Z	0	•	•	•	•					•	•						VBGO
22	P3.3	I/O	Hi-Z	0	•	•	•		•				•	•						
23	P0.7	I/O	Hi-Z	•			•			•			•	•						
24	P0.6	I/O	Hi-Z	•			•			•			•	•						
25	P0.5	I/O	Hi-Z	•			•			•			•	•						
26	P0.4	I/O	Hi-Z	•			•			•				•						
27	VSS	P																		
28	VCC	P																		

Symbol:

P.P.: Push-Pull O.D: Open Drain P.O.D: Pseudo Open Drain PU: Pull up PS:

- 1. Port1, Port2, Port3 these pins control Pull up resistor by operation modes
- 2. Port0, control Pull up resistor while PxOE.n=0 and Px.n=1

DS-TM52eF1375A_75D_E 16 Rev 0.93, 2024/5/xx

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 **ACC:** Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

DS-TM52eF1375A_75D_E 17 Rev 0.93, 2024/5/xx

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
SP		SP												
R/W		R/W												
Reset	0	0	0	0	0	1	1	1						

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPL		DPL						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPH		DPH						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

DS-TM52eF1375A_75D_E 18 Rev 0.93, 2024/5/xx

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

		Flag	
Instruction	С	Flag OV X X X X X	AC
ADD	X	X	X
ADDC	X	X	X
SUBB	X	X	X
MUL	0	X	
DIV	0	X	
DA	X		
RRC	X		
RLC	X		
SETB C	1		

Instruction		Flag	
Instruction	C	ov	AC
CLR C	0		
CPL C	X		
ANL C, bit	X		
ANL C, /bit	X		
ORL C, bit	X		
ORL C, /bit	X		
MOV C, bit	X		
CJNE	X		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	P
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

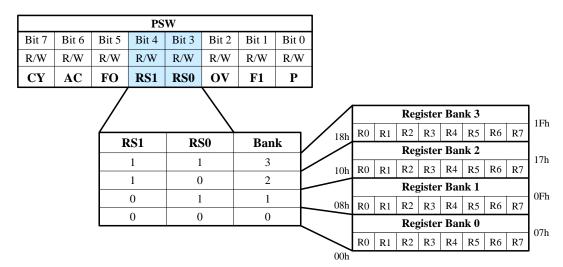
D0h.6 **AC:** ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

00: Bank 0 (00h~07h)

01: Bank 1 (08h~0Fh)


10: Bank 2 (10h~17h)

11: Bank 3 (18h~1Fh)

D0h.2 **OV:** ALU overflow flag

D0h.1 **F1:** General purpose user-definable flag

D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

2. Memory

2.1 Program Memory

The Chip has a 32K Bytes Flash program memory for **TM52eF1375A/75D** which can support In Application Programming (IAP) function modes. The Flash write endurance is at least 100K cycles. The program memory address continuous space (0000h~7FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last bytes (7FFFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~007Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. For **TM52eF1375A/75D**, the address space 7A00h~7DFFh is defined as the IAP area. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 6C00h~6FFFh for ICE System communication.CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

•	32K Bytes program memory
0000h 007Fh	Reset / Interrupt Vector
0080h	User Code area
6C00h 6FFFh	ICE mode reserve area
	User Code area
7A00h	User Code or IAP area
7DFFh	(EEPROM like)
	User Code area
7FF0h	CRC16L
7FF1h	CRC16H
7FF2h	
	tenx reserve area
7FFFh	CFGWH
	TM52eF1375A/75D

DS-TM52eF1375A_75D_E 20 Rev 0.93, 2024/5/xx

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1

2.1.3 Flash IAP Mode (EEPROM like)

The **eF1375A/75D** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time.

There are two pages (7A00h~7BFFh and 7C00h~7DFF) can be IAP write and erase. When using IAP to write, you need to erase first and then write bytes. After erasing, each address can only be written once

IAP erase operation will erase 512 bytes at a time from 7A00h~7BFFh or 7C00h~7DFF. When writing any value in address 7B2Dh, 512 bytes of 7A00h~7BFFh can be erased. Similarly, when writing any value in address 7D69h, 512 bytes of 7C00h~7DFFh can be erased.

Before IAP writing or erasing, there are two SFR, IAPWE and SWCMD, should be set as flowing table. After IAP writing or erasing, IAPWE and SWCMD should be cleared immediately.

Through the "MOVX @DPTR, A" instruction, IAP can be written and erased simply and IAP reading can be done easily by "MOVC" instruction.

SFR Setting	IAP Write	IAP page Erase (Erase 512 bytes)	IAP Disable
Address 7A00h ~ 7BFFh	SWCMD = 65h $IAPWE = 4Ah$	SWCMD = 65h $IAPWE = BAh$	SWCMD = 0h $IAPWE = 0h$
Address 7C00h ~ 7DFFh	SWCMD = 65h $IAPWE = 4Ch$	SWCMD = 65h $IAPWE = BCh$	SWCMD = 0h $IAPWE = 0h$

Address	Byte Write	Page Erase
0000h ~ 79FFh	N	N
7A00h ~ 7BFFh	Y Byte write	Y Page Erase
7C00h ~ 7DFFh	Y Byte write	Y Page Erase
7E00h ~ 7FFFh	N	N

DS-TM52eF1375A_75D_E 21 Rev 0.93, 2024/5/xx

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address from 7A00h to 7DFEh, and the ACC contains the data being written. The eF1375A/75D accepts IAP write commands only when IAPWE and SWCMD are set to appropriate values. Flash IAP writing one byte requires approximately 20 us and erasing one page requires approximately 2ms. While IAP writing or erasing the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing/erase time. The software must handle the pending interrupts after an IAP write. The eF1375A/75D has a build-in IAP Time-out function for escaping write fail state. Flash IAP writing needs higher V_{CC} voltage, V_{CC}>2.5V.

Before IAP Write, user should disable the LVR first.

How to erase page 7A00h~7BFFh

- (1) Set the DPTR to 7B2Dh
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to BAh
- (4) MOVX @DPTR, A (write any data to 7B2Dh to erase 7A00h~7BFFh)

```
; IAP example code
```

; need $2.5V < V_{CC} < 5.5V$

SETB LVRPD ; Disable LVR

MOV DPTR, #7B2Dh ; DPTR=7B2Dh=target IAP address

MOV SWCMD, #65h ; IAP write enable

MOV IAPWE, #BAh ; IAP 7A00h~7BFFh erase enable

MOVX @DPTR, A ; write any data to 7B2Dh to erase 7A00h~7BFFh

; 7A00h~7BFFh convert to '1' after IAP erase

; 2ms H/W writing time, CPU wait

MOV IAPWE, #00h ; IAP write disable, immediately after IAP write

CLR LVRPD ; Enable LVR

How to erase page 7C00h~7DFFh

- (1) Set the DPTR to 7D69h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to BCh
- (4) MOVX @DPTR, A (write any data to 7D69h to erase 7C00h~7DFFh)

; IAP example code

; need $2.5V < V_{CC} < 5.5V$

SETB LVRPD ; Disable LVR

MOV DPTR, #7D69h ; DPTR=7D69h=target IAP address

MOV SWCMD, #65h ; IAP write enable

MOV IAPWE, #0BCh ; IAP 7C00h~7DFFh erase enable

MOVX @DPTR. A : write any data to 7D69h to erase 7C00h~7DFFh

; 7C00h~7DFFh convert to '1' after IAP erase

; 2ms H/W writing time, CPU wait

MOV IAPWE, #00h ; IAP write disable, immediately after IAP write

CLR LVRPD ; Enable LVR

How to write a byte from 7A00h to 7BFFh

- (1) Set the DPTR to 7A00h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to 4Ah
- (4) MOVX @DPTR, A (write data to 7A00h)

; IAP example code

; need $2.5V < V_{CC} < 5.5V$

SETB LVRPD ; Disable LVR

MOV DPTR, #7A00h ; DPTR=7A00h=target IAP address MOV A, #5Ah ; A=5Ah=target IAP write data

MOV SWCMD, #65h ; IAP write enable

MOV IAPWE, #4Ah ; IAP write range 7A00h~7BFFh enable

MOVX @DPTR, A ; Flash[7A00h] =5Ah, after IAP write

; 20us H/W writing time, CPU wait

MOV IAPWE, #00h ; IAP write disable, immediately after IAP write

 $\begin{array}{lll} \text{CLR} & \text{A} & \text{; A=0} \\ \text{MOVC} & \text{A, @A+DPTR} & \text{; A=5Ah} \\ \text{CLR} & \text{LVRPD} & \text{; Enable LVR} \end{array}$

How to write a byte from 7C00h to 7DFFh

- (1) Set the DPTR to 7C00h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to 4Ch
- (4) MOVX @DPTR, A (write data to 7C00h)

; IAP example code

; need $2.5V < V_{CC} < 5.5V$

SETB LVRPD ; Disable LVR

MOV DPTR, #7C00h ; DPTR=7C00h=target IAP address MOV A, #5Ah ; A=5Ah=target IAP write data

MOV SWCMD, #65h ; IAP write enable

MOV IAPWE, #4Ch ; IAP write range 7C00h~7DFFh enable

MOVX @DPTR, A ; Flash[7C00h] =5Ah, after IAP write

; 20us H/W writing time, CPU wait

MOV IAPWE, #00h ; IAP write disable, immediately after IAP write

CLR A ; A=0

 $\begin{array}{lll} \text{MOVC} & \text{A, } @ \text{A+DPTR} & \text{; A=5Ah} \\ \text{CLR} & \text{LVRPD} & \text{; Enable LVR} \\ \end{array}$

DS-TM52eF1375A_75D_E 23 Rev 0.93, 2024/5/xx

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROTN	XRSTEN		LVR		_	MVCLOCKN	FRCPSC

7FFFh.1 MVCLOCKN: If 0, the MOVC & MOVX cannot access address from 0000h to 01FFh.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CWCMD				IAPEN/	SWRST			
SWCMD			_	_			WDTO	IAPEN
R/W			V	V			R	R
Reset			_	_			0	0

97h.7~0 **IAPEN (W):**

Write 65h to enable IAP write/erase;

Write other value to disable IAP write/erase. It is recommended to clear it immediately after IAP access.

97h.0 **IAPEN (R):** Flag indicates Flash memory sectors can be accessed by IAP or not.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
I A DXX/E				IAPWE							
IAPWE	IAPWE	IAPTO	-								
R/W	R	R		W							
Reset	0	0									

C9h.7~0 **IAPWE (W):**

Write 4Ah to enable IAP one byte write to ROM[7A00~7BFF]

Write 4Ch to enable IAP one byte write to ROM[7C00~7DFF]

Write BAh to enable IAP ERASE 512 byte of ROM[7A00~7BFF]

Write BCh to enable IAP ERASE 512 byte of ROM[7C00~7DFF]

Write other value to disable IAP write/page erase

C9h.7 **IAPWE** (**R**):

0: IAP write/page erase disable

1: IAP write/page erase enable

C9h.6 **IAPTO** (**R**):

IAP Time-Out flag, Set by H/W when IAP Time-out occurs. Cleared by H/W when IAPWE=0.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	OTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.2~1 **IAPTE:** IAP write watchdog timer enable

00: Disable

01: wait 0.8 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 3.2 ms trigger watchdog time-out flag, and escape the write fail state

11: wait 6.4 ms trigger watchdog time-out flag, and escape the write fail state

DS-TM52eF1375A_75D_E 24 Rev 0.93, 2024/5/xx

2.2 Data Memory

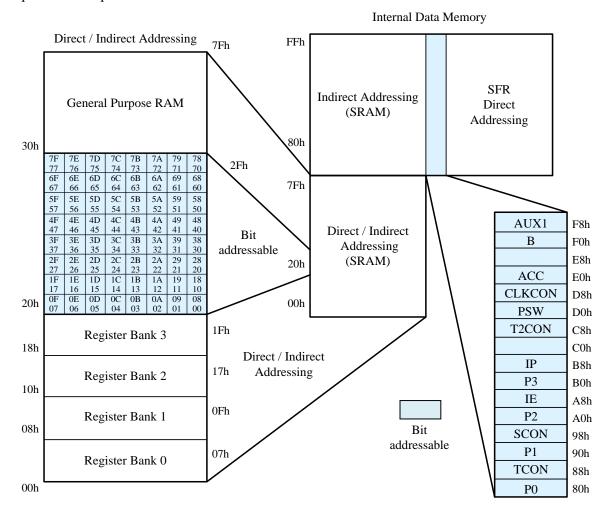
As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 1024 Bytes XRAM, 8 Bytes LCD RAM, 10 Bytes ICE RAM, 24 Bytes TK ITRIM RAM and 64 Bytes TK DATA RAM, which can be only accessed by MOVX instruction.

	Inte		
	Data M	lemory	-
FFh			
	IRAM	SFR	
	Indirect Addressing	Direct Addressing	
80h			
7Fh	IRAM		
	Direct/Indirect Addressing		
00h			

	External Data Memory
7A00h 7BFFh	IAP Area PAGE1
7C00h	IAP Area PAGE2
7DFFh	TAGE2
C000h	ICE RAM
C800h	LRAM
C807h	Lixavi
E000h	TK ITRIM RAM
E017h	- 11 12 12 1
E100h	TK DATA
E13Fh	RAM
FC00h	
	YPAM
	XRAM
FFFFh	

DS-TM52eF1375A_75D_E 25 Rev 0.93, 2024/5/xx

2.2.1 IRAM


IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.2.2 XRAM

XRAM is located in the 8051 external data memory space (address from FC00h to FFFFh). The 1024 Bytes XRAM can be only accessed by "MOVX" instruction.

2.2.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/LCD, which are unique to the Chip.

DS-TM52eF1375A_75D_E 26 Rev 0.93, 2024/5/xx

-	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN		CFGBG	CFGWL	AUX2
E8h		SIADR	SICON	SIRCD1	SITXRCD2			PWRCON
E0h	ACC	MICON	MIDAT			EFTCON	EXA	EXB
D8h	CLKCON	PWM0PRDH	PWM0PRDL	PWM1PRDH	PWM1PRDL	PWM2PRDH	PWM2PRDL	
D0h	PSW	PWM0DH	PWM0DL	PWM1DH	PWM1DL	PWM2DH	PWM2DL	
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2	EXA2	EXA3
C0h		TKPINSEL0	TKPINSEL1	TKPINSEL2		ATKCH0	ATKCH1	ATKCH2
B8h	IP	IPH	IP1	IP1H	SPCON	SPSTA	SPDAT	LVDS
B0h	P3	LEDCON	LEDCON2	LEDCON3	TKTMRL	TKCON2		
A8h	ΙE	INTE1	ADCDL	ADCDH		TKCON	CHSEL	P0ADIE
A0h	P2	PWMCON	P1MODL	P1MODH	P3MODL	P3MODH	PINMOD	TKCHS
98h	SCON	SBUF					PWMOE	PWMCLR
90h	P1	P0OE	P0LOE	P2MOD	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SCON2	SBUF2
80h	P0	SP	DPL	DPH	INTEX	INTEXF	INTPWM	PCON

DS-TM52eF1375A_75D_E 27 Rev 0.93, 2024/5/xx

3. LVR and LVD setting

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 8-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS. The SFR PWRSAV/LVRPD bits also affect LVR function as tables below.

Operation	Sl	FR	CFGWH	LVD	E water	Nice
Mode	LVRPD	PWRSAV	LVRE	LVR	Function	Note
	0	X	000	ON	LV Reset 2.5V	
	0	X	001	ON	LV Reset 2.7V	
	0	X	010	ON	LV Reset 3.0V	
Fast	0	X	011	ON LV Reset 3.2V		
Slow	0	X	100	ON	LV Reset 3.4V	
	0	X	101	ON	LV Reset 3.7V	
	0	X	110	ON	LV Reset 3.9V	
	0	X	111	ON LV Reset 4.2V		
	0	0	000	ON	LV Reset 2.5V	
	0	0	001	ON	LV Reset 2.7V	
	0	0	010	ON	LV Reset 3.0V	
Idle	0	0	011	ON	LV Reset 3.2V	Idle: 150uA Halt: 60uA
Stop Halt	0	0	100	ON	LV Reset 3.4V	Stop: 56uA
Tiuit	0	0	101	ON	LV Reset 3.7V	Stop. Sour
	0	0	110	ON	LV Reset 3.9V	
	0	0	111	ON	LV Reset 4.2V	
Idle	0	1	XXX	ON	POR 2.4V	130uA
Stop Halt	0	1	XXX	OFF	Disable	Halt: 11uA Stop: 7.7uA
Fast Slow Idle	1	X	XXX	ON	POR 2.4V	Idle: 130uA
Stop Halt	1	X	XXX	OFF	Disable	Halt: 11uA Stop: 7.7uA

Note: The current consumption of Halt mode is more than Stop mode about $2 \sim 4uA$, because SRC is enabled.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAF		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

F7h.5 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.3 **LVRPD:** Low Voltage Reset function select

0: enable 1: disable

DS-TM52eF1375A_75D_E 28 Rev 0.93, 2024/5/xx

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDIE	LVDO	_	_	LVDS			
R/W	R/W	R	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	_	0	0	0	0

BFh.7 **LVDIE:** Low Voltage Detect interrupt enable

0: Disable

1: Enable (note: EXLVDIE must be 1 at the same time to generate LVD interrupt)

BFh.6 **LVDO:** Low Voltage Detect output

BFh.3~0 LVDS: Low Voltage Detect select (Auto disable in Idle/Halt/Stop mode)

0000: Set LVD at 2.5V 0001: Set LVD at 2.6V 0010: Set LVD at 2.7V 0011: Set LVD at 2.8V 0100: Set LVD at 3.0V 0101: Set LVD at 3.1V 0110: Set LVD at 3.2V 0111: Set LVD at 3.3V 1000: Set LVD at 3.4V 1001: Set LVD at 3.6V 1010: Set LVD at 3.7V 1011: Set LVD at 3.8V 1100: Set LVD at 3.8V

1101: Set LVD at 4.0V 1110: Set LVD at 4.2V 1111: Set LVD at 4.3V

 Flash 7FFFh
 Bit 7
 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit 0

 CFGWH
 PROTN
 XRSTEN
 LVRE
 MVCLOCKN
 FRCPSC

7FFFh.5~3 LVRE: Low Voltage Reset function select

000: Set LVR at 2.5V

001: Set LVR at 2.7V

010: Set LVR at 3.0V

011: Set LVR at 3.2V

100: Set LVR at 3.4V

101: Set LVR at 3.7V

110: Set LVR at 3.9V 111: Set LVR at 4.2V

DS-TM52eF1375A_75D_E 29 Rev 0.93, 2024/5/xx

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from ROM's last six bytes. The Power on Reset needs VCC pin's voltage first discharge to near VSS level, then rise beyond 2.4V. TM52F1375A automatically disables POR when entering Stop/Halt mode (PDOWN). When the TM52F1375D enters Stop/Halt mode (PDOWN), the POR status can be selected to enable (PORPD=00h) or disable (PORPD=01h), determined by setting SFR PORPD (94h). PORPD can only write 00h or 01h, not other values, and cannot be read.

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Halt/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 8-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS.

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROTN	XRSTEN		LVRE		_	MVCLOCKN	FRCPSC

7FFFh.6 **XRSTEN:** External Pin Reset control

0: Enable External Pin Reset

1: Disable External Pin Reset

7FFFh.5~3 LVRE: Low Voltage Reset function select

000: Set LVR at 2.5V

001: Set LVR at 2.7V

010: Set LVR at 3.0V

011: Set LVR at 3.2V

100: Set LVR at 3.4V

101: Set LVR at 3.7V

110: Set LVR at 3.9V

111: Set LVR at 4.2V

DS-TM52eF1375A_75D_E 30 Rev 0.93, 2024/5/xx

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	_	R/W		R/	W	R/	W
Reset	0	_	0	0	0	0	0	0

94h.5~4 **WDTPSC:** Watchdog Timer pre-scalar time select

00: 400ms WDT overflow rate 01: 200ms WDT overflow rate 10: 100ms WDT overflow rate 11: 50ms WDT overflow rate

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R/W	_	R/W	R/W	_	_	R/W	R/W
Reset	0	_	0	0	_	_	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag

Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD		IAPEN/SWRST						
R/W		W						R/W
Reset			_	0				

97h.7~0 **SWRST:** Write 56h to generate S/W Reset

SFR F4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORPD		PORPD						
R/W		W						
Reset		_						

F4h.7~0 **PORPD:** Power-on reset control

00h: POR enable 01h: POR disable

Writing other values than 00h or 01h is prohibited.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.7 **CLRWDT:** Set to clear WDT, H/W auto clear it at next clock cycle

F8h.3 **LVRPD:** Low Voltage Reset function select

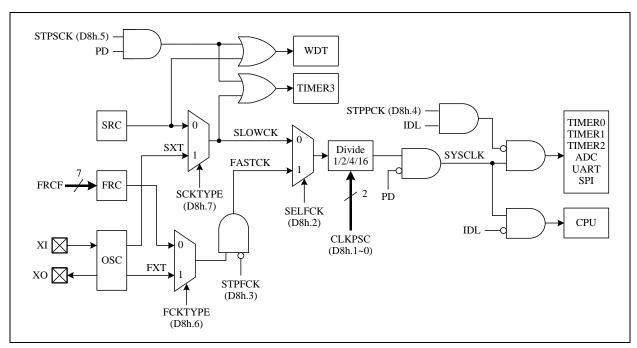
0: enable 1: disable

DS-TM52eF1375A_75D_E 31 Rev 0.93, 2024/5/xx

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~18 MHz) or FRC (Fast Internal RC, 18.432 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 80 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.


After Reset, the device is running at Slow mode with 80 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 18 MHz System clock rate requires $V_{CC} > 2.5V$.

The Chip has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~18 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

If user wants to switch Fsys from Slow clock to FXT, user should be following the step below

- 1. Set FCKTYPE (D8h.6)
- 2. Wait 2ms until FXT oscillation stable
- 3. Set SELFCK (D8h.2)

Clock Structure

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by TCOE SFR (*see section 7*).

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock. Also refer to AP-TM52XXXXX 01S and AP-TM52XXXXX 02S about System Clock Application Note.

DS-TM52eF1375A_75D_E 32 Rev 0.93, 2024/5/xx

		CLKCO	N (D8h)	
SYSCLK	bit7 SCKTYPE	bit6 FCKTYPE	bit3 STPFCK	bit2 SELFCK
Fast FXT	0/1	1	0	1
Fast FRC	0/1	0	0	1
Slow SXT	1	0/1	0/1	0
Slow SRC	0	0/1	0/1	0
Fast type change	0/1	0 ← → 1	0/1	0
Slow type change	0 ← → 1	0/1	0	1
Stop FRC/FXT	0/1	0/1	0 → 1	0
Switch to FRC/FXT	0/1	0/1	0	0 → 1
Switch to SRC/SXT	0/1	0/1	0	1 → 0

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_		FRCF					
R/W	_		R/W					
Reset	_	_	_	_	_	_	_	_

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC

1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC

1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

D8h.5 **STPSCK:** Set 1 to stop SRC clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UARTs/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 **CLKPSC:** System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

5.2 Operation Modes

There are five operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR and STPSCK is set. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up. Must be set to slow clock mode (SELFCK=0) before entering Stop mode (PDOWN).

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt.

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enable. (INTn=0 and EXn=1, $n=0\sim9$)

Note: FW must turn off Bandgap to obtain Tiny Current (VBGOUT=0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC 1: SXT

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC 1: FXT

D8h.5 STPSCK: Set 1 to stop SRC clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 **CLKPSC:** System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

DS-TM52eF1375A_75D_E 34 Rev 0.93, 2024/5/xx

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAF		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

VBGOUT: V_{BG} voltage output to P3.2 0: Disable F7h.4

1: Enable

35 DS-TM52eF1375A_75D_E Rev 0.93, 2024/5/xx

6. Interrupt & Wake-up

This Chip has a 14-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Halt/Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description		
0003	IE0	INTO external pin Interrupt (can wake up Halt/Stop mode)		
000B	TF0	Timer0 Interrupt		
0013	IE1	INT1 external pin Interrupt (can wake up Halt/Stop mode)		
001B	TF1	Timer1 Interrupt		
0023	RI+TI	Serial Port (UART1) Interrupt		
002B	TF2+EXF2	Timer2 Interrupt		
0033	_	Reserved for ICE mode use		
003B	TF3	Timer3 Interrupt		
0043	P1IF	Port1 external pin change Interrupt (can wake up Halt/Stop mode)		
004B	IE2~IE9	INT2~INT9 external pin Interrupt (can wake up Halt/Stop mode)		
004B	LVDIF	LVD interrupt		
0053	ADIF+TKIF	ADC/Touch Key Interrupt		
005B	SPIF+WCOL+MODF	SPI Interrupt		
0063	RI2+TI2	Serial Port (UART2) Interrupt		
	MIIF			
006B	TXDF	I ² C interrupt Vector		
ОООБ	RCD2F	1 C interrupt vector		
	RCD1F			
	PWM0IF			
0073	PWM1IF	PWM0~2 Interrupt Vector		
	PWM2IF			

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P1WKUP SFR controls the individual Port1 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

6.2 Suggestions on interrupting subroutines

The period and duty cycle of PWM are 16-bit operations. When writing and reading the high and low bytes of PWMxDH, PWMxDL, PWMxPRDH and PWMxPRDL, interrupts should be avoided. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

DS-TM52eF1375A_75D_E 36 Rev 0.93, 2024/5/xx

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEX	EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

84h.7~0 **EX9~EX2:** External INT9~INT2 pin Interrupt enable and Halt/Stop mode wake up enable.

0: Disable INTx pin Interrupt and Halt/Stop mode wake up

1: Enable INTx pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1. (note: EXLVDIE must be 1 at the same time to generate INTx interrupt and wake up)

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P1WKUP		P1WKUP								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

0: Disable 1: Enable

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1IE	PWM0IE	_	_	_	PWM2OE	PWM10E	PWM00E
R/W	R/W	R/W				R/W	R/W	R/W
Reset	0	0	_	_	_	0	0	0

9Eh.7 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

9Eh.6 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCLR	PWM2IE	_	_	_	_	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/W	_	_	_	_	R/W	R/W	R/W
Reset	0				_	0	0	0

9Fh.7 **PWM2IE:** PWM2 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

DS-TM52eF1375A_75D_E 37 Rev 0.93, 2024/5/xx

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

- A8h.7 **EA:** Global interrupt enable control.
 - 0: Disable all Interrupts.
 - 1: Each interrupt is enabled or disabled by its individual interrupt control bit
- A8h.5 **ET2:** Timer2 interrupt enable
 - 0: Disable Timer2 interrupt
 - 1: Enable Timer2 interrupt
- A8h.4 **ES:** Serial Port (UART1) interrupt enable
 - 0: Disable Serial Port (UART1) interrupt
 - 1: Enable Serial Port (UART1) interrupt
- A8h.3 **ET1:** Timer1 interrupt enable
 - 0: Disable Timer1 interrupt
 - 1: Enable Timer1 interrupt
- A8h.2 **EX1:** External INT1 pin Interrupt enable and Halt/Stop mode wake up enable
 - 0: Disable INT1 pin Interrupt and Halt/Stop mode wake up
 - 1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.
- A8h.1 **ET0:** Timer0 interrupt enable
 - 0: Disable Timer0 interrupt
 - 1: Enable Timer0 interrupt
- A8h.0 **EX0:** External INT0 pin Interrupt enable and Halt/Stop mode wake up enable
 - 0: Disable INT0 pin Interrupt and Halt/Stop mode wake up
 - 1: Enable INTO pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.7 **PWMIE:** PWM0~PWM2 interrupt enable

0: Disable PWM0~PWM2 interrupt

1: Enable PWM0~PWM2 interrupt

I2CE: I²C (master/slave) interrupt enable A9h.6

0: Disable I²C interrupt

1: Enable I²C interrupt

ES2: Serial Port (UART2) interrupt enable A9h.5

0: Disable Serial Port (UART2) interrupt

1: Enable Serial Port (UART2) interrupt

A9h.4 **SPIE:** SPI interrupt enable

0: Disable SPI interrupt

1: Enable SPI interrupt

ADTKIE: ADC/Touch Key interrupt enable A9h.3

0: Disable ADC/Touch Key interrupt

1: Enable ADC/Touch Key interrupt

A9h.2 EXLVDIE: External INT2~INT9 and LVD interrupt enable and Halt/Stop mode wake up enable

0: Disable INT2~INT9 pin Interrupt and Halt/Stop mode wake up

Disable LVD interrupt

1: Enable INT2~INT9 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

Enable LVD interrupt.

A9h.1 P1IE: Port1 pin change interrupt enable. This bit does not affect the Port1 pin's Halt/Stop mode wake

up capability.

0: Disable Port1 pin change interrupt

1: Enable Port1 pin change interrupt

A9h.0 TM3IE: Timer3 interrupt enable

0: Disable Timer3 interrupt

1: Enable Timer3 interrupt

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_		R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2 :** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

10: Level 2 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH**, **PS**: Serial Port (UART1) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1:** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H, PX1**: External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0 :** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H**, **PX0**: External INT0 pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	PPWMH	PI2CH	PS2H	PSPIH	PADTKIH	PX2_9LVDH	PP1H	PT3H
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	PPWM	PI2C	PS2	PSPI	PADTKI	PX2_9LVD	PP1	PT3
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

BBh.7, BAh.7 **PPWMH, PPWM:** PWM0~PWM2 Interrupt Priority control. Definition as above.

BBh.6, BAh.6 PI2CH, PI2C: I2C (Master/Slave) Interrupt Priority control. Definition as above.

BBh.5, BAh.5 **PS2H, PS2:** Serial Port (UART2) Interrupt Priority control. Definition as above.

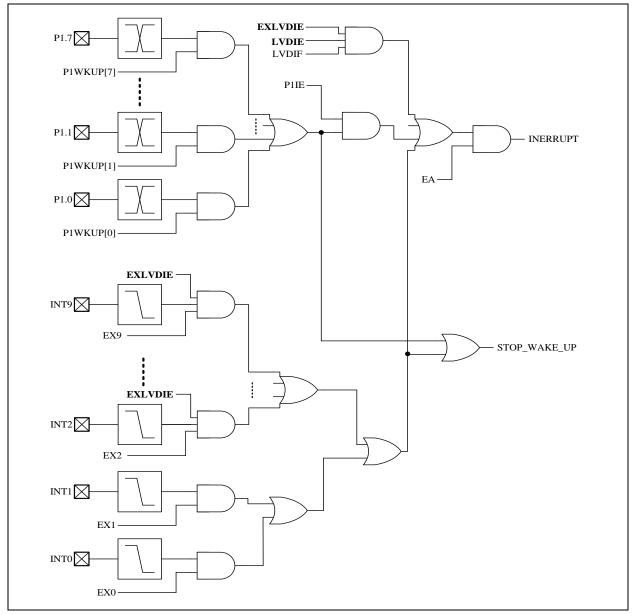
BBh.4, BAh.4 **PSPIH, PSPI:** SPI Interrupt Priority control. Definition as above.

BBh.3, BAh.3 **PADTKIH, PADTKI:** ADC/Touch Key Interrupt Priority control. Definition as above.

BBh.2, BAh.2 **PX2_9LVDH**, **PX2_9LVD:** External INT2~INT9 pin and LVD Interrupt Priority control.

Definition as above.

BBh.1, BAh.1 **PP1H, PP1:** Port1 Pin Change Interrupt Priority control. Definition as above.


BBh.0, BAh.0 **PT3H, PT3:** Timer3 Interrupt Priority control. Definition as above.

DS-TM52eF1375A_75D_E 40 Rev 0.93, 2024/5/xx

6.3 Pin Interrupt and LVD interrupt

Pin Interrupts include INT0~INT9 and Port1 Change. INT0~INT9 and Port1 also have the Halt/Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2~INT9 is falling edge triggered and Port1 Change Interrupt is triggered by Port1 state change. LVD interrupt can be used to detect the V_{CC} voltage level and generate an interrupt.

Pin interrup/Wake up & LVD interrupt

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, n=0~9)

DS-TM52eF1375A_75D_E 41 Rev 0.93, 2024/5/xx

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEX	EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

84h.7~0 **EX9~EX2:** External INT9~INT2 pin Interrupt enable and Halt/Stop mode wake up enable.

0: Disable INTx pin Interrupt and Halt/Stop mode wake up

1: Enable INTx pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1. (note: EXLVDIE must be 1 at the same time to generate INTx interrupt wake up)

SFR 85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEXF	IE9	IE8	IE7	IE6	IE5	IE4	IE3	IE2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

85h.7~0 **IE9~2:** External Interrupt INT9~INT2 edge flag.

Set by H/W when an INTx pin falling edge is detected, no matter the EXx is 0 or 1.

S/W Write 0 to clear interrupt flag, no automatic clear after the interrupt service routine.

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.3 **IE1:** External Interrupt 1 (INT1 pin) edge flag.

Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.2 **IT1:** External Interrupt 1 control bit

0: Low level active (level triggered) for INT1 pin

1: Falling edge active (edge triggered) for INT1 pin

88h.1 **IE0:** External Interrupt 0 (INT0 pin) edge flag

Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.0 **IT0:** External Interrupt 0 control bit

0: Low level active (level triggered) for INT0 pin

1: Falling edge active (edge triggered) for INT0 pin

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R	_	R/W	R/W	_	_	R/W	R/W
Reset	_	_	0	0	_	_	0	0

95h.7 **LVDIF:** LVD interrupt flag

Set by H/W, S/W can write 7Fh to INTFLG to clear this bit.

95h.1 **P1IF:** Port1 pin change interrupt flag

Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting.

It is cleared automatically when the program performs the interrupt service routine.

S/W can write FDh to INTFLG to clear this bit. (Note1)

Note1: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

DS-TM52eF1375A_75D_E 42 Rev 0.93, 2024/5/xx

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P1WKUP		P1WKUP								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0								

96h.7~0 P1WKUP: P1.7~P1.0 pin individual Wake-up / Interrupt enable control

> 0: Disable 1: Enable

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.2 EX1: External INT1 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT1 pin Interrupt and Halt/Stop mode wake up

1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A8h.0 EX0: External INTO pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INT0 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.2 **EXLVDIE:** External INT2~INT9 and LVD interrupt enable and Halt/Stop mode wake up enable

0: Disable INT2~INT9 pin Interrupt and Halt/Stop mode wake up

Disable LVD interrupt

1: Enable INT2~INT9 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1. Enable LVD interrupt.

43 Rev 0.93, 2024/5/xx DS-TM52eF1375A_75D_E

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDIE	LVDO	_	_		LV	DS	
R/W	R/W	R	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	_	0	0	0	0

BFh.7 **LVDIE:** Low Voltage Detect interrupt enable

0: Disable

1: Enable (note: EXLVDIE must be 1 at the same time to generate LVD interrupt)

BFh.3~0 LVDS: Low Voltage Detect select (Auto disable in Idle/Halt/Stop mode)

0000: Set LVD at 2.5V

0001: Set LVD at 2.6V

0010: Set LVD at 2.7V

0011: Set LVD at 2.8V

0100: Set LVD at 3.0V

0101: Set LVD at 3.1V

0110: Set LVD at 3.2V

0111: Set LVD at 3.3V

1000: Set LVD at 3.4V

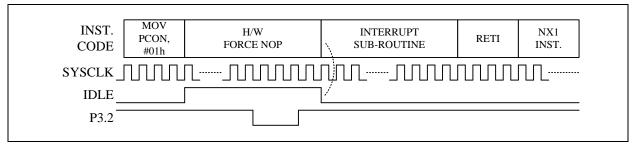
1001: Set LVD at 3.6V

1010: Set LVD at 3.7V

1011: Set LVD at 3.8V

1100: Set LVD at 3.9V

1101: Set LVD at 4.0V


1110: Set LVD at 4.2V

1111: Set LVD at 4.3V

6.4 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, ADC, TK, SPI and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

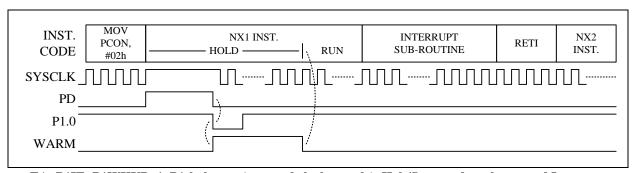
SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD		_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0		_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

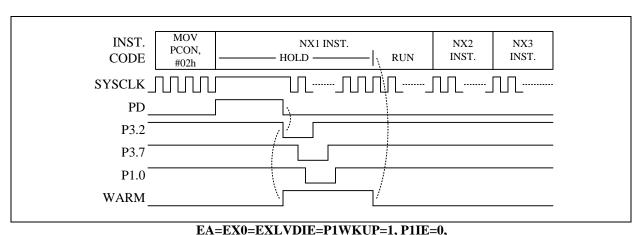
87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

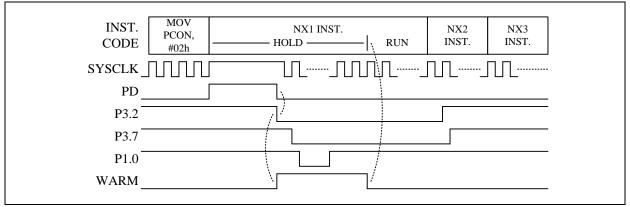
6.5 Halt/Stop mode Wake up and Interrupt

Halt/Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1/EXLVDIE can enable INT0/INT1/INT2 pins' Halt/Stop mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Halt/Stop mode wake up capability. Upon Halt/Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 (P1WKUP also needs P1IE=1) and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Halt/Stop mode wake up.


 $\it Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.$

DS-TM52eF1375A_75D_E 45 Rev 0.93, 2024/5/xx




EA=EX0=1, P3.2 (INT0) is sampled after warm-up, Halt/Stop mode wake-up and Interrupt

EA=P1IE=P1WKUP=1, P1.0 change (not need clock sample), Halt/Stop mode wake-up and Interrupt

Halt/Stop mode wake-up but not Interrupt. P3.2/P3.7 pulse too narrow

EX0=EXLVDIE=P1WKUP=P1IE=1, EA=0, Halt/Stop mode wake-up but not Interrupt

DS-TM52eF1375A_75D_E 46 Rev 0.93, 2024/5/xx

7. I/O Ports

The Chip has total 26 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

7.1 Port1 & Port2 & Port 3

These pins can operate in four different modes as below.

Mode	Port1, Port2, Port	3 pin function	Px.n SFR	Pin State	Resistor	Digital
Mode	P3.0~P3.2	Others	data	Fill State	Pull-up	Input
Mode 0	Pseudo	On an Duain	0	Drive Low	N	N
Mode 0	Open Drain	Open Drain	1	Pull-up	Y	Y
Mada 1	Pseudo	On on Duoin	0	Drive Low	N	N
Mode 1	Open Drain	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS O	lutout	0	Drive Low	N	N
Mode 2	CMOS Output		1	Drive High	N	N
Mode 3	Analog input for ADC, digital input		X		N	N
Widde 3	buffer is di	isabled	(don't care)	_	11	14

Port1, Port2, Port3 I/O Pin Function Table

If Port1, Port2 or Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port1, Port2 and Port3 pin has one or more alternative functions, such as LED, ADC and Touch Key. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins have standard 8051 auxiliary definition such as INTO/1, TO/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

DS-TM52eF1375A_75D_E 47 Rev 0.93, 2024/5/xx

Pin Name	8051	Wake-up	CKO	ADC	TK	LED BiD	LED DMX	others
P1.7	TXD2	Y			TK10			MISO
P1.6		Y			TK9			PWM2
P1.5		Y		AD9	TK14			
P1.4		Y	CKO	AD8	TK8			
P1.3		Y		AD7	TK7			PWM1
P1.2		Y		AD6	TK6			PWM0
P1.1	T2EX	Y		AD5	TK5			
P1.0	T2	Y	T2O	AD4	TK4			

Port1 multi-function Table

Pin Name	8051	Wake-up	CKO	ADC	TK	LED BiD	LED DMX	others
P3.7	INT2	Y			TK15	LEDS2	LED6	RSTn
P3.6	RXD2	Y			TK11	LEDS5		SCK
P3.5	T1	Y			TK12	LEDS4	LED8	MOSI/SDA
P3.4	T0	Y	T0O		TK13	LEDS3	LED7	SS/SCL
P3.3	INT1	Y		AD0	TK0			
P3.2	INT0	Y		AD1	TK1			VBGO
P3.1	TXD	Y		AD2	TK2			SDA
P3.0	RXD	Y		AD3	TK3			SCL

Port3 multi-function Table

Pin Name	8051	Wake-up	CKO	ADC	TK	LED BiD	LED DMX	others
P2.1						LEDS1	LED5	XO
P2.0						LEDS0	LED4	XI

P2 multi-function Table

DS-TM52eF1375A_75D_E 48 Rev 0.93, 2024/5/xx

The necessary SFR setting for Port1/Port2/Port3 pin's alternative function is list below.

•		Px.n	tz/Port3 pin's alternative function is list below	Other necessary
Alternative Function	Mode	SFR data	Pin State	SFR setting
T0, T1, T2, T2EX,	0	1	Input with Pull-up	
INT0, INT1, INT2	1	1	Input	
DVD TVD	0	1	Input with Pull-up / Pseudo Open Drain Output	
RXD, TXD	1	1	Input / Pseudo Open Drain Output	
DVD4 TVD4	0	1	Input with Pull-up / Open Drain Output	
RXD2,TXD2	1	1	Input / Open Drain Output	
	0	X	Clock Open Drain Output with Pull-up	
T0O, T2O, CKO	1	X	Clock Open Drain Output	PINMOD
	2	X	Clock Output (CMOS Push-Pull)	
VBGO	X	X	Bandgap Voltage output	VBGOUT
LEDS0~ LEDS5 LEDC0~ LEDC3	X	X	LED BiD mode Output	LEDCON
LED0~ LED8	X	X	LED DMX mode Output	LEDCON3
TK0~TK15	3	X	Touch Key (CMOS output high)	TKCHS ATKCH0 ATKCH1 ATKCH2
AD0~AD14	3	X	ADC Channel	ADCHS
	0	X	PWM Open Drain Output with Pull-up	
PWM0~PWM2	1	X	PWM Open Drain Output	PWMOE
	2	X	PWM Output (CMOS Push-Pull)	
XI, XO	0	1	Crystal oscillation	CLKCON
I ² C Master SCL	0	X	I ² C Clock Output (Open Drain Output, Pull-up)	
	1	X	I ² C Clock Output (CMOS Push-Pull)	
I ² C Slave SCL	1	1	I ² C Clock Input (Hi-Z)	
I ² C Master/Slaver SDA	0	1	I ² C DATA (Pull-up)	
SPI Master Mode MISO	1	1	SPI Data Input	
SPI Master Mode SCK, MOSI	2	X	SPI Clock/Data Output (CMOS Push-Pull)	
SPI Slave Mode MISO	2	X	SPI Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode SCK, MOSI	1	1	SPI Clock/Data Input	
SS	1	1	SPI Chip Selection	7

Mode Setting for Port1, Port2, Port3 Alternative Function

For tables above, a "CMOS Output" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current ($<20 \,\mu\text{A}$). It can be used as input or output function and typically needs an external pull up resistor.

An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4 mA current when output is at low level, and drives at least 4 mA current for $1\sim2$ clock cycle when output transits from low to high, then keeps driving a small current ($<20~\mu$ A) to maintain the pin at high level. It can be used as input or output function.

Note2: for the necessary SFR setting above, LCD/LED pin has the highest priority. Therefore, if a pin is not used for Segment (ex: pin is I/O, ADC, TK, and SPI...), S/W must disable the LCD/LED function.

DS-TM52eF1375A_75D_E 49 Rev 0.93, 2024/5/xx

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

A0h.1~0 **P2.7~P2.0:** P2.7~P2.0 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Р3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port1 data

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode **FCKTYPE:** Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode

DS-TM52eF1375A_75D_E 50 Rev 0.93, 2024/5/xx

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODL	P1M	OD3	P1MOD2		P1M	OD1	P1MOD0	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A2h.7~6 **P1MOD3:** P1.3 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.3 is ADC input

A2h.5~4 **P1MOD2:** P1.2 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.2 is ADC input

A2h.3~2 **P1MOD1:** P1.1 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.1 is ADC input

A2h.1~0 **P1MOD0:** P1.0 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.0 is ADC input

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH	P1M	OD7	P1M	OD6	P1M	OD5	P1M	OD4
R/W	R/	R/W		W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A3h.7~6 **P1MOD7:** P1.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3,

A3h.5~4 **P1MOD6:** P1.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3,

A3h.3~2 **P1MOD5:** P1.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.5 is ADC input

A3h.1~0 **P1MOD4:** P1.4 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.4 is ADC input

DS-TM52eF1375A_75D_E 51 Rev 0.93, 2024/5/xx

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	OD3	P3MOD2		P3M	OD1	P3M	OD0
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A4h.7~6 **P3MOD3:** P3.3 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.3 is ADC input

A4h.5~4 **P3MOD2:** P3.2 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.2 is ADC input

A4h.3~2 **P3MOD1:** P3.1 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.1 is ADC input

A4h.1~0 **P3MOD0:** P3.0 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.0 is ADC input

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3MOD6		P3M	OD5	P3MOD4	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	0	0	1	0	1	0	1

A5h.7~6 **P3MOD7:** P3.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A5h.5~4 **P3MOD6:** P3.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A5h.3~2 **P3MOD5:** P3.5 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A5h.1~0 **P3MOD4:** P3.4 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2MOD	_	_	_	_	P2M	OD1	P2M	OD0
R/W	_	_	_	_	R/W		R/	W
Reset	_	_	_	_	0	1	0	1

93h.3~2 **P2MOD1:** P2.1 pin control

00: Mode0 01: Mode1 10: Mode2 11: not defined

93h.1~0 **P2MOD0:** P2.0 pin control

00: Mode0 01: Mode1 10: Mode2 11: not defined

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	I2CSEL	TCOE	T2OE	HSNK2EN	HSNK1EN	HSNK0EN	T0OE
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

A6h.5 **TCOE:** System clock signal output (CKO) control

0: Disable "System clock divided by 2" output to P1.4 pin1: Enable "System clock divided by 2" output to P1.4 pin

A6h.4 **T2OE:** Timer2 signal output (T2O) control

0: Disable "Timer2 overflow divided by 2" output to P1.0 pin 1: Enable "Timer2 overflow divided by 2" output to P1.0 pin

A6h.0 **T0OE:** Timer0 signal output (T0O) control

0: Disable "Timer0 overflow divided by 64" output to P3.4 pin 1: Enable "Timer0 overflow divided by 64" output to P3.4 pin

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1IE	PWM0IE	_	_	_	PWM2OE	PWM10E	PWM0OE
R/W	R/W	R/W	_	_	_	R/W	R/W	R/W
Reset	0	0	_	_	_	0	0	0

9Eh.2 **PWM2OE:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P1.6

9Eh.1 **PWM10E:** PWM1 control

0: PWM1 disable

1: PWM1 enable and signal output to P1.3

9Eh. 0 **PWM0OE:** PWM0 control

0: PWM0 disable

1: PWM0 enable and signal output to P1.2

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEI	LEDEN		LEDPSC I		LEDBRIT		
R/W	R/W		R/	W	R/W		R/W	
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED BiD mode

00: LED BiD mode disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically

11: LED 1/10 duty (COM0~3, SEG0~5), the LED pins' state will be controlled automatically

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON3	LEDMTEN	LED8EN	LED7EN	LED6EN	LED5EN	LED4EN	LED3EN	LED2EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **LEDMTEN:** LED DMX mode enable control

0: LED DMX mode disable

1: LED DMX mode enable and LED0, LED1 enable

B3h.6 **LED8EN:** LED DMX mode pin enable control

0: LED8 disable

1: LED8 enable

B3h.5 **LED7EN:** LED DMX mode pin enable control

0: LED7 disable

1: LED7 enable

B3h.4 **LED6EN:** LED DMX mode pin enable control

0: LED6 disable

1: LED6 enable

B3h.3 **LED5EN:** LED DMX mode pin enable control

0: LED5 disable 1: LED5 enable

B3h.2 **LED4EN:** LED DMX mode pin enable control

0: LED4 disable 1: LED4 enable

B3h.1 **LED3EN:** LED DMX mode pin enable control

0: LED3 disable 1: LED3 enable

B3h.0 **LED2EN:** LED DMX mode pin enable control

0: LED2 disable 1: LED2 enable

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	SSDIS	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

BCh.7 **SPEN:** SPI enable

0: SPI disable1: SPI enable

BCh.3 **SSDIS:** SS pin disable

0: Enable SS pin 1: Disable SS pin

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.4 **VBGOUT:** Bandgap voltage output control

0: Disable

1: Bandgap voltage output to P3.2 pin

7.2 Port0

These pins are shared with TK, ADC and LCD/LED. If a Port0 is defined as I/O pin, it can be used as CMOS push-pull output or Schmitt-trigger input. The pin's pull up function is enable while SFR bit P0OE.n=0 and P0.n=1.

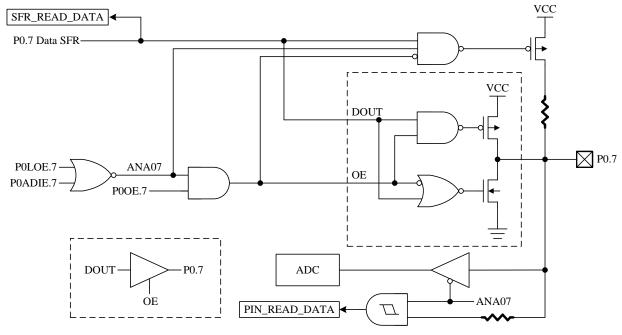
Port0 pin function	P0OE.n	P0.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innut	0	0	Hi-Z	N	Y
Input	0	1	Pull-up	Y	Y
CMOS Output	1	0	Drive Low	N	N
CMOS Output	1	1	Drive High	N	N

Port0 Pin Function Table

Pin Name	Wake-up	ADC	TK	LCD	LED BiD	LED DMX
P0.7		AD12	TK19	LCDC7		
P0.6		AD14	TK18	LCDC6		
P0.5		AD13	TK17	LCDC5		
P0.4			TK16	LCDC4		
P0.3			CLD	LCDC3	LEDC3	LED3
P0.2				LCDC2	LEDC2	LED2
P0.1				LCDC1	LEDC1	LED1
P0.0				LCDC0	LEDC0	LED0

Port0 multi-function Table

The necessary SFR setting for Port0 pin's alternative function is list below.


Alternative Function	PxOE.n	Px.n SFR data	Pin State	other necessary SFR setting
LEDC0~ LEDC3	X	X	LED BiD mode Output	LEDCON
LED0~ LED3	X	X	LED DMX mode Output	LEDCON3
LCDC0~ LCDC7	X	X	1/2 Bias Output	P0LOE
AD12~AD14	X	X	ADC Channel	P0ADIE
CLD	1	0	Touch Key Capacitor Connection	TKXCAP
TK16~TK19	1	1 Touch Key (CMOS output high)		TKCHS

Mode Setting for Port0 Alternative Function Table

Note: POLOE and POADIE have higher priority than POOE.

DS-TM52eF1375A_75D_E 55 Rev 0.93, 2024/5/xx

P0.7 Pin Structure

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

80h.7~0 **P0:** Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n = 0 (input mode), the pull-up is enabled.

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POOE		POOE							
R/W		R/W							
Reset	0	0 0 0 0 0 0 0							

91h.7~0 **POOE:** Port0 CMOS Push-Pull output enable control

0: Disable1: Enable

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P0LOE		POLOE							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

92h.7~0 **P0LOE:** Port0 LCD 1/2 bias output enable control

0: Disable1: Enable

DS-TM52eF1375A_75D_E 56 Rev 0.93, 2024/5/xx

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POADIE	P0ADIE			_	_	_	_	_
R/W	R/W			_	_	_	_	_
Reset	0	0	0	_	_	_	_	_

AFh.7~5 **P0ADIE:** ADC channel input Enable

000: P0.7~P0.5 are digital input

1xx: P0.7 is ADC input x1x: P0.6 is ADC input xx1: P0.5 is ADC input

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEI	DEN	LEDPSC LEDHOLD LEI				LEDBRIT	
R/W	R	W	R/	W	R/W			
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED BiD mode Enable

00: LED BiD mode disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically 11: LED 1/10 duty (COM0~3, SEG0~5), the LED pins' state will be controlled automatically

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON3	LEDMTEN	LED8EN	LED7EN	LED6EN	LED5EN	LED4EN	LED3EN	LED2EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **LEDMTEN:** LED DMX mode enable control

0: LED DMX mode disable

1: LED DMX mode enable and LED0, LED1 enable

B3h.6 **LED8EN:** LED DMX mode pin enable control

0: LED8 disable 1: LED8 enable

B3h.5 **LED7EN:** LED DMX mode pin enable control

0: LED7 disable 1: LED7 enable

B3h.4 **LED6EN:** LED DMX mode pin enable control

0: LED6 disable 1: LED6 enable

B3h.3 **LED5EN:** LED DMX mode pin enable control

0: LED5 disable
1: LED5 enable

B3h.2 **LED4EN:** LED DMX mode pin enable control

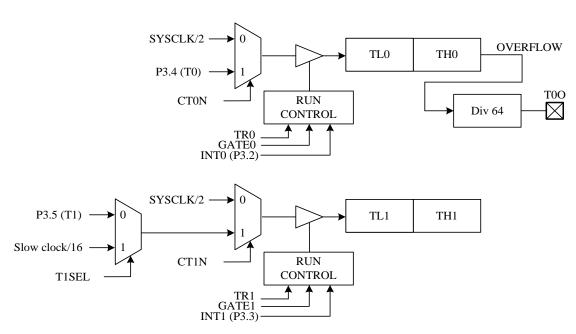
0: LED4 disable 1: LED4 enable

B3h.1 **LED3EN:** LED DMX mode pin enable control

0: LED3 disable 1: LED3 enable

B3h.0 **LED2EN:** LED DMX mode pin enable control

0: LED2 disable 1: LED2 enable



8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function. The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.7 **TF1:** Timer1 overflow flag

Set by H/W when Timer/Counter 1 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.6 **TR1:** Timer1 run control

0: Timer1 stops

1: Timer1 runs

88h.5 **TF0:** Timer0 overflow flag

Set by H/W when Timer/Counter 0 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.4 **TR0:** Timer0 run control

0: Timer0 stops
1: Timer0 runs

DS-TM52eF1375A_75D_E 58 Rev 0.93, 2024/5/xx

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMOD	GATE1	CT1N	TMOD1		GATE0	CT0N	TMO	OD0
R/W	R/W	R/W	R/W		R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

89h.7 **GATE1:** Timer1 gating control bit

0: Timer1 enable when TR1 bit is set

1: Timer1 enable only while the INT1 pin is high and TR1 bit is set

89h.6 **CT1N:** Timer1 Counter/Timer select bit

0: Timer mode, Timer1 data increases at 2 System clock cycle rate

1: Counter mode, Timer1 data increases at T1 pin's negative edge

89h.5~4 **TMOD1:** Timer1 mode select

00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow.

11: Timer1 stops

89h.3 **GATE0:** Timer0 gating control bit

0: Timer0 enable when TR0 bit is set

1: Timer0 enable only while the INT0 pin is high and TR0 bit is set

89h.2 **CT0N:** Timer0 Counter/Timer select bit

0: Timer mode, Timer0 data increases at 2 System clock cycle rate

1: Counter mode, Timer0 data increases at T0 pin's negative edge

89h.1~0 **TMOD0:** Timer0 mode select

00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.

11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL0		TL0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL1		TL1							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH0		TH0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

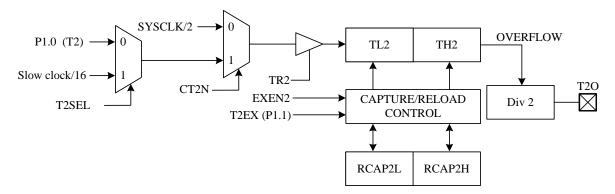
8Dh.7~0 **TH1:** Timer1 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.1 **T1SEL:** Timer1 counter mode (CT1N=1) input select

0: P3.5 (T1) pin (8051 standard)

1: Slow clock divide by 16 (SLOWCLK/16)


Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority.

Note: See also Chapter 7 for details on TOO pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

C8h.7 **TF2:** Timer2 overflow flag

Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.

C8h.6 **EXF2:** T2EX interrupt pin falling edge flag

Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.

C8h.5 **RCLK:** UART receive clock control bit

0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3

1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3

C8h.4 TCLK: UART transmit clock control bit

0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3

1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3

C8h.3 **EXEN2:** T2EX pin enable

0: T2EX pin disable

1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0

C8h.2 **TR2:** Timer2 run control

0: Timer2 stops

1: Timer2 runs

C8h.1 CT2N: Timer2 Counter/Timer select bit

0: Timer mode, Timer2 data increases at 2 System clock cycle rate

1: Counter mode, Timer2 data increases at T2 pin's negative edge

C8h.0 **CPRL2N:** Timer2 Capture/Reload control bit

0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1.

1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1.

If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.

DS-TM52eF1375A_75D_E 61 Rev 0.93, 2024/5/xx

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RCP2L		RCP2L							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RCP2H		RCP2H							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL2		TL2								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0								

CCh.7~0 TL2: Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH2		TH2							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CDh.7~0 **TH2:** Timer2 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.2 **T2SEL:** Timer2 counter mode (CT2N=1) input select

0: P1.0 (T2) pin (8051standard)

1:Slow clock divide by 16 (SLOWCLK/16)

F8h.1 **T1SEL:** Timer1 counter mode (CT1N=1) input select

0: P3.5 (T1) pin (8051 standard)

1: Slow clock divide by 16 (SLOWCLK/16)

Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority.

Note: See also Chapter 7 for details on T2O pin output settings.

DS-TM52eF1375A_75D_E 62 Rev 0.93, 2024/5/xx

8.3 Timer3

Timer3 works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 32768, 16384, 8192, or 128 depending on the TM3PSC SFR. The Timer3 clock source is Slow clock (SRC or SXT). This is ideal for real-time-clock (RTC) functionality when the clock source is SXT.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADO	CKS	TM3	PSC
R/W	R/W	_	R/W		R/	W	R/	W
Reset	0	_	0	0	0	0	0	0

94h.1~0 **TM3PSC:** Timer3 Interrupt rate

00: Timer3 Interrupt rate is 32768 Slow clock cycle 01: Timer3 Interrupt rate is 16384 Slow clock cycle 10: Timer3 Interrupt rate is 8192 Slow clock cycle

11: Timer3 Interrupt rate is 128 Slow clock cycle

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R	_	R/W	R/W	_	_	R/W	R/W
Reset	_	_	0	0	_	_	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note1*)

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.6 **CLRTM3:** Set 1 to clear Timer3, H/W auto clear it at next clock cycle.

Note: also refer to Section 6 for more information about Timer3 Interrupt enable and priority.

8.4 TOO and T2O Output Control

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The T0O and T2O waveform is divided by Timer0/Timer2 overflow signal. The T0O waveform is Timer0 overflow divided by 64, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed. Set T0OE and T2OE SFRs can output these waveforms.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	I2CSEL	TCOE	T2OE	HSNK2EN	HSNK1EN	HSNK0EN	T0OE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

A6h.4 **T2OE:** Timer2 signal output (T2O) control

0: Disable Timer2 overflow divided by 2 output to P1.0

1: Enable Timer2 overflow divided by 2 output to P1.0

A6h.0 **T0OE:** Timer0 signal output (T0O) control

0: Disable Timer0 overflow divided by 64 output to P3.4 1: Enable Timer0 overflow divided by 64 output to P3.4

DS-TM52eF1375A_75D_E 63 Rev 0.93, 2024/5/xx

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The **UART1** uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

The **UART2** uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2, it also does not support Timer2 and one wire UART mode. On other hand, the option of SMOD is not use for UART2. UART2 double baud rate is always enabled.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_		R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.7 **SMOD:** UART1 double baud rate control bit

0: Disable UART1 double baud rate1: Enable UART1 double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	_	R/W		R/	W	R/	W
Reset	0	_	0	0	0	0	0	0

94h.7 **UART1W:** One wire UART1 mode enable, both TXD/RXD use P3.1 pin

0: Disable one wire UART1 mode1: Enable one wire UART1 mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6 **SM0,SM1:** UART1 serial port mode select bit 0,1

00: Mode0: 8 bit shift register, Baud Rate=F_{SYSCLK}/2

01: Mode1: 8 bit UART1, Baud Rate is variable

10: Mode2: 9 bit UART1, Baud Rate=F_{SYSCLK}/32 or/64

11: Mode3: 9 bit UART1, Baud Rate is variable

98h.5 **SM2:** Serial port mode select bit 2

SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.

98h.4 **REN:** UART1 reception enable

0: Disable reception

1: Enable reception

98h.3 **TB8:** Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3

98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 if SM2=0

DS-TM52eF1375A_75D_E 64 Rev 0.93, 2024/5/xx

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes.

Must be cleared by S/W.

98h.0 **RI:** Receive interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF		SBUF							
R/W		R/W							
Reset	_	_	_	_	_	_	_	_	

99h.7~0 **SBUF:** UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON2	SM	_		REN2	TB82	RB82	TI2	RI2
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
Reset	0	_	_	0	0	0	0	0

8Eh.7 **SM:** UART2 Serial port mode select bit

0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable

(UART2 does not support Mode0/Mode2)

8Eh.4 **REN2:** UART2 reception enable

0: Disable reception1: Enable reception

8Eh.3 **TB82:** Transmit Bit 8, the ninth bit to be transmitted in Mode 3

8Eh.2 **RB82:** Receive Bit 8, contains the ninth bit that was received in Mode3

8Eh.1 **TI2:** Transmit interrupt flag

Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.

8Eh.0 **RI2:** Receive interrupt flag

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF2		SBUF2							
R/W		R/W							
Reset	_	_	_	_	_	_	_	_	

8Fh.7~0 **SBUF2:** UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

• Mode 0: (UART2 invalid)

Baud Rate=F_{SYSCLK}/2

• Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD + 1) x F_{SYSCLK}/ (32 x 2 x (256 – TH1))

Mode 1, 3: if using Timer2 (UART2 invalid)
 Baud Rate=Timer2 overflow rate/16 = F_{SYSCLK}/ (32 x (65536 – RCP2H, RCP2L))

• Mode 2: (UART2 invalid)

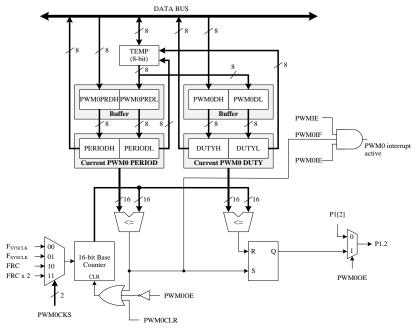
Baud Rate= $(SMOD + 1) \times F_{SYSCLK}/64$

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. **Note:** also refer to Section 8 for more information about how Timer2 controls UART clock.

DS-TM52eF1375A_75D_E 65 Rev 0.93, 2024/5/xx

10. PWMs

10.1 16-bit PWM


The Chip has three independent 16-bit PWM modules PWM0, PWM1 and PWM2. PWM0~2 have the same operation structure. The following takes PWM0 as an example for description. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRC x 2), FRC or F_{SYSCLK} as its clock source.

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (see section 7)

The 16-bit PWM0PRD, PWM0D registers all have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. **Briefly speaking**, write low byte first and then high byte; read high byte first and then low byte.

The PWM0OE bit is used to select the output to PWM0. If PWM0OE are cleared, the PWM0 will be cleared and stopped, otherwise the PWM0 is running. The PWM0CLR bit has the same function. When PWM0CLR bit is set, the PWM0 will be cleared and held, otherwise the PWM0 is running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWM0PRDH and PWM0PRDL registers. After writing the PWM0D or PWM0PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM0 is cleared. PWM0~2 has a corresponding interrupt flag, and an interrupt flag is generated at the end of the period.

PWMxDH, PWMxDL, PWMxPRDH or PWMxPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

PWM0 Structure

DS-TM52eF1375A_75D_E 66 Rev 0.93, 2024/5/xx

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPWM	_	_	_	_	_	PWM2IF	PWM1IF	PWM0IF
R/W	_	_	_	_	_	R/W	R/W	R/W
Reset	_	_	_	_	_	0	0	0

86h.2 **PWM2IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.1 **PWM1IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.0 **PWM0IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1IE	PWM0IE	_	_	_	PWM2OE	PWM10E	PWM0OE
R/W	R/W	R/W	_	_	_	R/W	R/W	R/W
Reset	0	0	_	_	_	0	0	0

9Eh.7 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

9Eh.6 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

9Eh.2 **PWM2OE:**

0: disable 1: PWM2 enable and signal output to P1.6 pin

9Eh.1 **PWM10E:**

0: disable 1: PWM1 enable and signal output to P1.3 pin

9Eh.0 **PWM0OE**:

0: disable 1: PWM0 enable and signal output to P1.2 pin

SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCLR	PWM2IE				-	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/W					R/W	R/W	R/W
Reset	0	_	_	_	_	0	0	0

9Fh.7 **PWM2IE:** PWM2 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

9Fh.2 **PWM2CLR:**

0: PWM2 is running 1: PWM2 is cleared and held

9Fh.1 **PWM1CLR:**

0: PWM1 is running 1: PWM1 is cleared and held

9Fh.0 **PWM0CLR:**

0: PWM0 is running 1: PWM0 is cleared and held

DS-TM52eF1375A_75D_E 67 Rev 0.93, 2024/5/xx

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	_	_	PWM2CKS		PWM1CKS		PWM0CKS	
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	1	0	1	0	1	0

A1h.5~4 **PWM2CKS:** PWM2 Clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRC x 2

A1h.3~2 **PWM1CKS:** PWM1 Clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRC x 2

A1h.1~0 **PWM0CKS:** PWM0 Clock source

 $00: F_{SYSCLK}$

01: F_{SYSCLK}

10: FRC

11: FRC x 2

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **PWMIE:** PWM0~2 interrupt enable

0: Disable PWM0~2 interrupt

1: Enable PWM0~2 interrupt

DS-TM52eF1375A_75D_E 68 Rev 0.93, 2024/5/xx

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

D1h.7~0 **PWM0DH:** PWM0 duty high byte

write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DL		PWM0DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D2h.7~0 **PWM0DL:** PWM0 duty low byte

write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DH		PWM1DH							
R/W		R/W							
Reset				0	0	0	0	0	

D3h.7~0 **PWM1DH:** PWM1 duty high byte

write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DL		PWM1DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D4h.7~0 **PWM1DL:** PWM1 duty low byte

write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DH		PWM2DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

D5h.7~0 **PWM2DH:** PWM2 duty high byte

write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DL		PWM2DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D6h.7~0 **PWM2DL:** PWM2 duty low byte

write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRDH		PWM0PRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

D9h.7~0 **PWM0PRDH:** PWM0 period high byte

write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0PRDL		PWM0PRDL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

DAh.7~0 **PWM0PRDL:** PWM0 period low byte

write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1PRDH	PWM1PRDH								
R/W	R/W								
Reset	1	1	1	1	1	1	1	1	

DBh.7~0 **PWM1PRDH:** PWM1 period high byte

write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1PRDL	PWM1PRDL								
R/W	R/W								
Reset	1	1	1	1	1	1	1	1	

DCh.7~0 **PWM1PRDL:** PWM1 period low byte

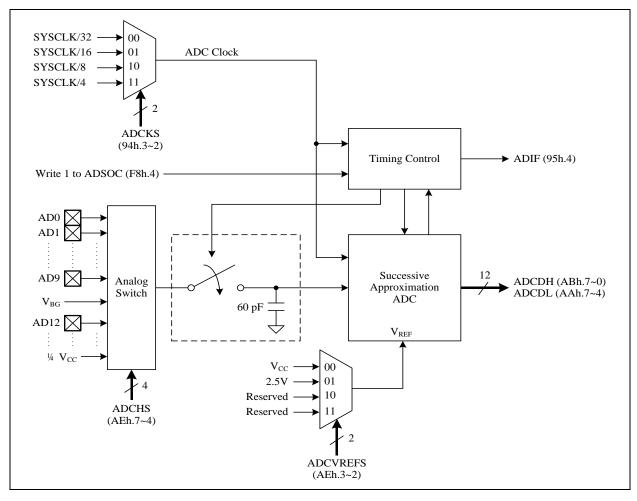
write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2PRDH	PWM2PRDH								
R/W	R/W								
Reset	1	1	1	1	1	1	1	1	

DDh.7~0 **PWM2PRDH:** PWM2 period high byte

write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

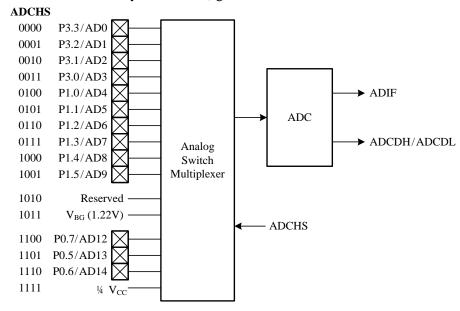
SFR DEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2PRDL	PWM2PRDL								
R/W	R/W								
Reset	1	1	1	1	1	1	1	1	


DEh.7~0 **PWM2PRDL:** PWM2 period low byte

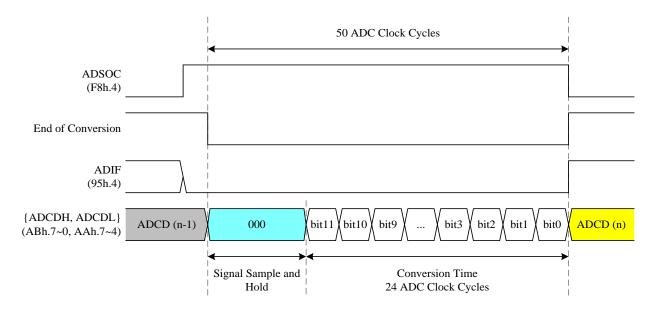
write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

11. ADC

The Chip offers a 12-bit ADC consisting of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit. Because certain channels are shared with the Touch Key, the ADC channel must be configured differently from the Touch Key channel to avoid affecting the channel input sensitivity. The VREF of the ADC can be selected from the following two voltages: $V_{\rm CC}$ and 2.5V. When ADCHS is selected to $V_{\rm BG}$, ADCVREFS must be set to $V_{\rm CC}$, otherwise ADC conversion will be invalid.



DS-TM52eF1375A_75D_E 71 Rev 0.93, 2024/5/xx


11.1 ADC Channels

The 12-bit ADC has a total of 16 channels, designated AD0~AD9, AD12~AD14, V_{BG} and $1/4V_{CC}$. The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by the ADCHS register. V_{BG} is an internal voltage reference at 1.22V. When ADC channel select to V_{BG} , V_{BG} generator will enable automatically. User can get more stable V_{BG} voltage by setting SFR VBGEN=1 to always enable V_{BG} generator.

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 50 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

DS-TM52eF1375A_75D_E 72 Rev 0.93, 2024/5/xx

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	_	R/	W	R/	W	R/	W
Reset	0	_	0	0	0	0	0	0

94h.3~2 **ADCKS:** ADC clock rate select

00: $F_{SYSCLK}/32$ 01: $F_{SYSCLK}/16$ 10: $F_{SYSCLK}/8$ 11: $F_{SYSCLK}/4$

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R	_	R/W	R/W	_	_	R/W	R/W
Reset	_	_	0	0	_	_	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDL	ADCDL			_				
R/W		F	₹			-	_	
Reset	_	_	_	_	_	_	_	_

AAh.7~4 **ADCDL:** ADC data bit 3~0

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDH		ADCDH						
R/W				F	₹			
Reset	_	_	_	_	_	_	_	_

ABh.7~0 ADCDH: ADC data bit 11~4

DS-TM52eF1375A_75D_E 73 Rev 0.93, 2024/5/xx

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CHSEL		ADCHS				REFS	VBGEN	_
R/W		R/	W		R/W	R/W	R/W	_
Reset	1	1	1	1	0	0	0	_

AEh.7~4 ADCHS: ADC channel select

0000: AD0 (P3.3)

0001: AD1 (P3.2)

0010: AD2 (P3.1)

0011: AD3 (P3.0)

0100: AD4 (P1.0)

0101: AD5 (P1.1)

0110: AD6 (P1.2)

0111: AD7 (P1.3)

1000: AD8 (P1.4)

1001: AD9 (P1.5)

1010: reserved

1011: V_{BG} (Internal Bandgap Reference Voltage)

1100: AD12 (P0.7)

1101: AD13 (P0.5)

1110: AD14 (P0.6)

1111: 1/4 V_{CC}

AEh.3~2 ADCVREFS: ADC reference voltage

00: V_{CC}

01: 2.5V

10: reserved

11: reserved

AEh.1 **VBGEN:** force V_{BG} generator enable

0: V_{BG} generator is automatically enable and disable

1: Force V_{BG} generator enable included in Idle mode but disabled in Halt/Stop mode.

Note: F/W must turn off Bandgap to obtain Tiny Current (ADCHS ≠1011b)

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.4 **ADSOC:** Start ADC conversion

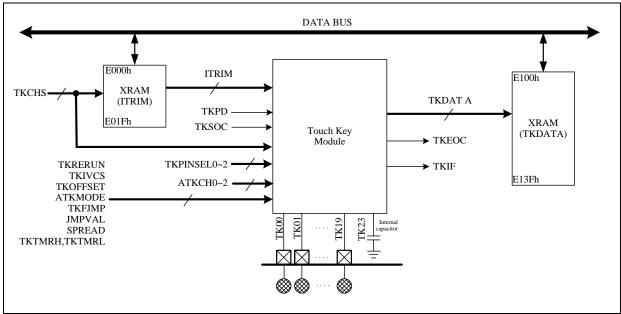
Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

DS-TM52eF1375A_75D_E 74 Rev 0.93, 2024/5/xx

12. Touch Key (FTK)

The Touch Key offers an easy simple and reliable method to implement finger touch detection. During the key scan operation, the device support 20 channels touch key detection.

To use the Touch Key, user should setup correctly. There are two ways to set IO as TK channel. Set SFR PxMODx to 11b or set SFR TKPINSEL0~2 to force IO as TK channel. If TKPINSEL0~2 are set, the corresponding IO pins will be fixed as TK channels and will no longer be affected by PxMODx.


TKPINSEL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKPINSEL0	TK07	TK06	TK05	TK04	TK03	TK02	TK01	TK00
TKPINSEL1	TK15	TK14	TK13	TK12	TK11	TK10	TK09	TK08
TKPINSEL2					TK19	TK18	TK17	TK16

Set TKPINSEL0~2 to fix IO as TK channel

In the TK Mode, user assigns TKPD=0 to turn on the TK module, then set the TKSOC bit to start touch key conversion, the TKSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the XRAM. After TKEOC=1, user must wait at least 50 µs for next conversion. But if TKRERUN=1, TK will always be converted, and there is no need to set TKSOC for each conversion. Reducing/increasing TKTMR can reduce/increase the TKDATA to accommodate the condition of the system.

The FTK has an internal built-in reference capacitor to simulate the KEY behavior. Set TKCHS=17h and start the scanning can get the TK Data Count of internal reference capacitor (TKCAP). Since the internal capacitor would not be affected by water or mobile phone, it is useful for comparing the environment background noise. Setting the TKFJMP, the frequency of Touch Key clock can be change automatically by H/W controlled. It may help to improve the ability to resist noise.

ITRIM are 7 bits data for TK channel reference voltage fine tune. E000h.6~0 is TK00 reference voltage fine tune. E001h.6~0 is TK01 reference voltage fine tune. E017h.6~0 is TKCAP (TK23) reference voltage fine tune etc. Users can use ITRIM to obtain similar reference voltages for different TK channels

FTK Structure

DS-TM52eF1375A_75D_E 75 Rev 0.93, 2024/5/xx

SFR ATKCH0~2 are used to specify scan TK channel, and each bit is mapped to TK pin. TK scan will scan from low bit to high bit. If ATKMODE = 0, TK can scan up to 21 channels, TK00~TK19 and TKCAP (TK23), each channel is scanned once. If ATKMODE = 1, TK can scan up to 16 channels, each channel is scanned twice. If ATKMODE = 2, TK can scan up to 8 channels, each channel is scanned 4 times. If ATKMODE = 3, TK can scan up to 4 channels, each channel is scanned 8 times. TKCHS is used to specify the first channel for TK to start scanning.

For example:

Condition ATKMODE=0, scan TK16/TK14/TK08/TK07/TK06/TK02

- ⇒ TKPINSEL2=0000_0001, TKPINSEL1=0100_0001, TKPINSEL0=1100_0100
- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first Touch Key channel)

The arrangement of TK data stored in XRAM is as follows.

	XRAM
E100h	TK00 DATAL
E101h	TK00 DATAH
E102h	TK01 DATAL
E103h	TK01 DATAH
	•••
E126h	TK19 DATAL
E127h	TK19 DATAH
	•••
E12Eh	TK23 DATAL
E12Fh	TK23 DATAH
	•••
E13Fh	

The TK scan result is 14-bit data, which are DATAH 6-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 14-bit data: first read the low byte (DATAL), then read the high word byte (DATAH)

DS-TM52eF1375A_75D_E 76 Rev 0.93, 2024/5/xx

Condition ATKMODE=1, scan TK16/TK14/TK08/TK07/TK06/TK02

- ⇒ TKPINSEL2=0000_0001, TKPINSEL1=0100_0001, TKPINSEL0=1100_0100
- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first Touch Key channel)

The arrangement of TK data stored in XRAM is as follows.

	XRAM
E100h	TK02 1 st DATAL
E101h	TK02 1 st DATAH
E102h	TK02 2 nd DATAL
E103h	TK02 2 nd DATAH
E104h	TK06 1 st DATAL
E105h	TK06 1 st DATAH
E106h	TK06 2 nd DATAL
E107h	TK06 2 nd DATAH
	•••
E114h	TK16 1 st DATAL
E115h	TK16 1 st DATAH
E116h	TK16 2 nd DATAL
E117h	TK16 2 nd DATAH
E13Fh	

The TK scan result is 14-bit data, which are DATAH 6-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 14-bit data: first read the low byte (DATAL), and then read the high word byte (DATAH)

DS-TM52eF1375A_75D_E 77 Rev 0.93, 2024/5/xx

Condition ATKMODE=2, scan TK16/TK14/TK08/TK07/TK06/TK02

- ⇒ TKPINSEL2=0000_0001, TKPINSEL1=0100_0001, TKPINSEL0=1100_0100
- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first Touch Key channel)

The arrangement of TK data stored in XRAM is as follows.

	XRAM
E100h	
E101h	
E102h	
E103h	
E104h	TK02 3 rd DATAL
E105h	TK02 3 rd DATAH
E106h	
E107h	
E108h	
E109h	
E10Ah	TK06 2 nd DATAL
E10Bh	
E10Ch	TK06 3 rd DATAL
E10Dh	
E10Eh	
E10Fh	TK06 4 th DATAH
	•••
E128h	TK16 1 st DATAL
E129h	TK16 1 st DATAH
E12Ah	TK16 2 nd DATAL
E12Bh	
E12Ch	TK16 3 rd DATAL
E12Dh	TK16 3 rd DATAH
E12Eh	TK16 4 th DATAL
E12Fh	TK16 4 th DATAH
E13Fh	

The TK scan result is 14-bit data, which are DATAH 6-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 14-bit data: first read the low byte (DATAL), then read the high word byte (DATAH)

DS-TM52eF1375A_75D_E 78 Rev 0.93, 2024/5/xx

Condition ATKMODE=3, scan TK08/TK07/TK06/TK02

- ⇒ TKPINSEL2=0000_0000, TKPINSEL1=0000_0001, TKPINSEL0=1100_0100
- ⇒ ATKCH2=0000_0000, ATKCH1=0000_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first Touch Key channel)

The arrangement of TK data stored in XRAM is as follows.

	XRAM
E100h	TK02 1 st DATAL
E101h	TK02 1 st DATAH
E102h	TK02 2 nd DATAL
E103h	TK02 2 nd DATAH
E104h	TK02 3 rd DATAL
E105h	TK02 3 rd DATAH
E106h	TK02 4 th DATAL
E107h	TK02 4 th DATAH
E108h	TK02 5 th DATAL
E109h	TK02 5 th DATAH
E10Ah	TK02 6 th DATAL
E10Bh	TK02 6 th DATAH
E10Ch	TK02 7 th DATAL
E10Dh	TK02 7 th DATAH
E10Eh	TK02 8 th DATAL
E10Fh	TK02 8 th DATAH
	•••
E1201	
E130h	TK08 1 st DATAL
E131h	TK081 st DATAH
E131h E132h	TK081 st DATAH TK08 2 nd DATAL
E131h E132h E133h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH
E131h E132h E133h E134h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH
E131h E132h E133h E134h E135h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH TK08 3 rd DATAL TK08 3 rd DATAH
E131h E132h E133h E134h E135h E136h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH TK08 3 rd DATAL TK08 3 rd DATAH TK08 4 th DATAL
E131h E132h E133h E134h E135h E136h E137h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAL TK08 3 rd DATAL TK08 4 th DATAL TK08 4 th DATAL
E131h E132h E133h E134h E135h E136h E137h E138h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAL TK08 3 rd DATAL TK08 4 th DATAL TK08 4 th DATAL TK08 5 th DATAH
E131h E132h E133h E134h E135h E136h E137h E138h E139h	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAL TK08 3 rd DATAL TK08 4 th DATAL TK08 4 th DATAL TK08 5 th DATAH
E131h E132h E133h E134h E135h E136h E137h E138h E139h E13Ah	TK081st DATAH TK08 2nd DATAL TK08 2nd DATAH TK08 3rd DATAL TK08 3rd DATAL TK08 4th DATAL TK08 4th DATAL TK08 4th DATAH TK08 5th DATAL TK08 5th DATAL
E131h E132h E133h E134h E135h E136h E137h E138h E139h E13Ah E13Bh	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH TK08 3 rd DATAH TK08 4 rd DATAH TK08 4 th DATAL TK08 4 th DATAH TK08 5 th DATAL TK08 5 th DATAH TK08 5 th DATAH TK08 6 th DATAH
E131h E132h E133h E134h E135h E136h E137h E138h E139h E13Ah E13Bh E13Ch	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH TK08 3 rd DATAH TK08 3 rd DATAH TK08 4 th DATAL TK08 4 th DATAL TK08 5 th DATAL TK08 5 th DATAL TK08 5 th DATAH TK08 6 th DATAH TK08 6 th DATAL
E131h E132h E133h E134h E135h E136h E137h E138h E139h E13Ah E13Bh E13Ch E13Dh	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAL TK08 3 rd DATAL TK08 3 rd DATAL TK08 4 th DATAL TK08 4 th DATAL TK08 5 th DATAL TK08 5 th DATAL TK08 5 th DATAL TK08 6 th DATAL TK08 6 th DATAL TK08 6 th DATAL
E131h E132h E133h E134h E135h E136h E137h E138h E139h E13Ah E13Bh E13Ch	TK081 st DATAH TK08 2 nd DATAL TK08 2 nd DATAH TK08 3 rd DATAH TK08 3 rd DATAH TK08 3 rd DATAH TK08 4 th DATAL TK08 4 th DATAL TK08 5 th DATAL TK08 5 th DATAL TK08 5 th DATAH TK08 6 th DATAH TK08 6 th DATAL

The TK scan result is 14-bit data, which are DATAH 6-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 14-bit data: first read the low byte (DATAL), then read the high word byte (DATAH)

DS-TM52eF1375A_75D_E 79 Rev 0.93, 2024/5/xx

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R	_	R/W	R/W	_	_	R/W	R/W
Reset	_	_	0	0	_	_	0	0

95h.5 **TKIF:** Touch Key Interrupt Flag

Set by H/W at the end of Touch Key conversion if SYSCLK is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag.

SFR ADh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON	TKPD	TKEOC	TKRERUN	TKIVCS	TKXCAP	TKOFFSET	ATKM	1ODE
R/W	R/W	R	R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	0

- ADh.7 **TKPD:** Touch Key power down
 - 0: Touch Key enable
 - 1: Touch Key disable
- ADh.6 **TKEOC:** Touch Key end of conversion flag, TKEOC may have 3uS delay after TKSOC=1, so F/W must wait enough time before polling this Flag.
 - 0: Indicates conversion is in progress
 - 1: Indicates conversion is finished
- ADh.5 **TKRERUN:** Touch Key Auto re-start, doesn't need to set TKSOC again to restart TK converter.
 - 0: Auto re-start disable. TKSOC needs to be executed once for each TK conversion
 - 1: Auto re-start enable. After TKSOC is executed once, TK will be converted continuously without re-executing TKSOC
- ADh.4 **TKIVCS:** Touch Key internal voltage control select
 - 0: V_{CHG}=2.8V; V_{INT}=1.4V
 - 1: V_{CHG}=3.6V; V_{INT}=1.8V
- ADh.3 **TKXCAP:** Touch Key external capacitor select
 - 0: disable Touch Key external capacitor
 - 1: enable Touch Key external capacitor
- ADh.2 **TKOFFSET:** status of non-scan Touch Key
 - 0: connect to V_{SS}
 - 1: connect to AC shielding, connect to V_{SS}@EOC
- ADh.1~0 ATKMODE: Touch Key Scan Mode
 - 00: TK scan method, each channel scan 1 time, max 21 TK channels
 - 01: TK scan method, each channel scan 2 times, max 16 TK channels
 - 10: TK scan method, each channel scan 4 times, max 8 TK channels
 - 11: TK scan method, each channel scan 8 times, max 4 TK channels

Note: also refer to Section 6 for more information about Touch Key Interrupt enable and priority.

SFR B4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKTMRL		TKTMRL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

B4h.7~0 **TKTMRL:** Touch Key Scan length bit 7~0 adjustment.

00: shortest, FF: longest

SFR B5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON2	TKFJMP	JMP	VAL	SPREAD	TKTMRH			
R/W	R/W	R/	W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0

B5h.7 **TKFJMP:** Internal Touch Key clock frequency auto adjust option

0: Disable 1: Enable

B5h.6~5 **JMPVAL**: Touch Key Clock frequency fine tune, only available in TKFJMP=0

00=frequency slowest, 11=frequency fastest

B5h.4 **SPREAD:** Touch Key spread spectrum

0: Disable1: Enable

B5h.3~0 **TKTMRH:** Touch Key Scan length 11~8 adjustment.

0000: shortest, 1111: longest

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.5 **TKSOC:** Touch Key Start of Conversion

Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion while TKRERUN=0. S/W can also write 0 to clear this flag.

DS-TM52eF1375A_75D_E 81 Rev 0.93, 2024/5/xx

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCHS	_	_	_			TKCHS		
R/W	_	_	_	R/W				
Reset	_	_	_	1	1	1	1	1

A7h.4~0 **TKCHS:** Specify the first Touch Key channel

00000: TK0 (P3.3)

00001: TK1 (P3.2)

00010: TK2 (P3.1)

00011: TK3 (P3.0)

00100: TK4 (P1.0)

00101: TK5 (P1.1)

00110: TK6 (P1.2)

00111: TK7 (P1.3)

01000: TK8 (P1.4)

01001: TK9 (P1.6)

01010: TK10 (P1.7)

01011: TK11 (P3.6)

01100: TK12 (P3.5)

01101: TK13 (P3.4) 01110: TK14 (P1.5)

01111: TK15 (P3.7)

10000: TK16 (P0.3)

10001: TK17 (P0.5)

10010: TK18 (P0.6)

10011: TK19 (P0.7)

10111: TK reference capacitor

SFR C1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKPINSEL0		TKPINSEL0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		
C1h.7	TK07 Pin fix	as TK chan	nel: 0: disabl	e 1: enable	e					
C1h.6	TK06 Pin fix	as TK chan	nel: 0: disable	e 1: enable	e					
C1h.5	TK05 Pin fix	as TK chan	nel: 0: disabl	e 1: enable	1: enable					

C1h.5	TK05 Pin fix as TK channel: 0: disable	1: enable
C1h.4	TK04 Pin fix as TK channel: 0: disable	1: enable
C1h.3	TK03 Pin fix as TK channel: 0: disable	1: enable
C1h.2	TK02 Pin fix as TK channel: 0: disable	1: enable
C1h.1	TK01 Pin fix as TK channel: 0: disable	1: enable
C1h.0	TK00 Pin fix as TK channel: 0: disable	1: enable

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKPINSEL1		TKPINSEL1						
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

C2h.7	TK15 Pin fix as TK channel: 0: disable	1: enable	
C2h.6	TK14 Pin fix as TK channel: 0: disable	1: enable	
C2h.5	TK13 Pin fix as TK channel: 0: disable	1: enable	
C2h.4	TK12 Pin fix as TK channel: 0: disable	1: enable	
C2h.3	TK11 Pin fix as TK channel: 0: disable	1: enable	
C2h.2	TK10 Pin fix as TK channel: 0: disable	1: enable	
C2h.1	TK09 Pin fix as TK channel: 0: disable	1: enable	
C2h.0	TK08 Pin fix as TK channel: 0: disable	1: enable	

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKPINSEL2		TKPINSEL2						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

C3h.3	TK19 Pin fix as TK channel: 0: disable	1: enable
C3h.2	TK18 Pin fix as TK channel: 0: disable	1: enable
C3h.1	TK17 Pin fix as TK channel: 0: disable	1: enable
C3h.0	TK16 Pin fix as TK channel: 0: disable	1: enable

DS-TM52eF1375A_75D_E 83 Rev 0.93, 2024/5/xx

		1		1	1		1				
SFR C5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATKCH0		ATKCH0									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

C5h.7	TK07 scan enable: 0: disable	1: enable
C5h.6	TK06 scan enable: 0: disable	1: enable
C5h.5	TK05 scan enable: 0: disable	1: enable
C5h.4	TK04 scan enable: 0: disable	1: enable
C5h.3	TK03 scan enable: 0: disable	1: enable
C5h.2	TK02 scan enable: 0: disable	1: enable
C5h.1	TK01 scan enable: 0: disable	1: enable
C5h.0	TK00 scan enable: 0: disable	1: enable

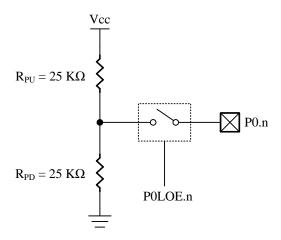
SFR C6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATKCH1	ATKCH1										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

C6h.7	TK15 scan enable: 0: disable	1: enable
C6h.6	TK14 scan enable: 0: disable	1: enable
C6h.5	TK13 scan enable: 0: disable	1: enable
C6h.4	TK12 scan enable: 0: disable	1: enable
C6h.3	TK11 scan enable: 0: disable	1: enable
C6h.2	TK10 scan enable: 0: disable	1: enable
C6h.1	TK09 scan enable: 0: disable	1: enable
C6h.0	TK08 scan enable: 0: disable	1: enable

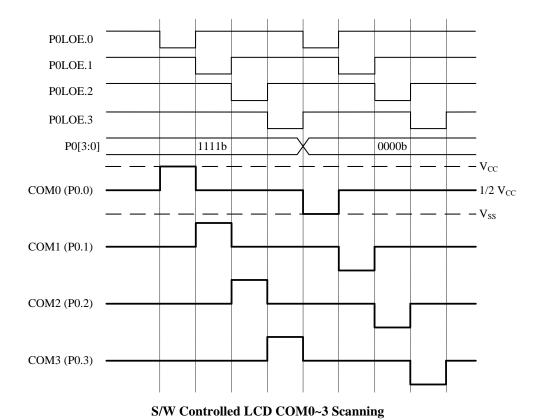
SFR C7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATKCH2		ATKCH2									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

C7h.7 TKCAP (TK23) internal reference capacitor channel scan enable: 0: disable 1: enable

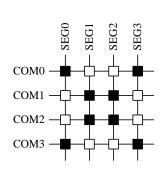
C7h.6~4 Reservd

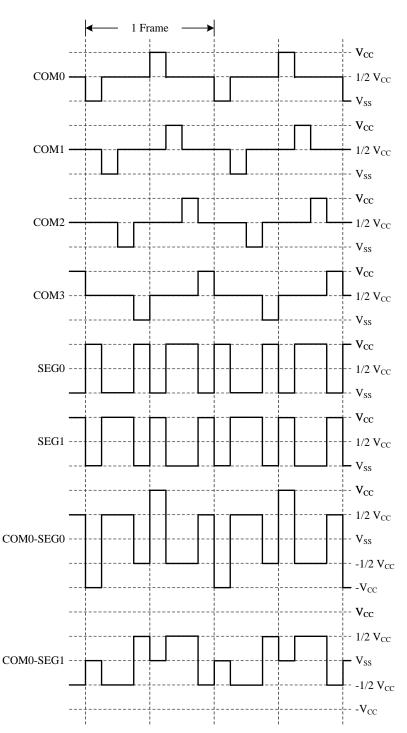

C7h.3 TK19 scan enable: 0: disable 1: enable C7h.2 TK18 scan enable: 0: disable 1: enable C7h.1 TK17 scan enable: 0: disable 1: enable C7h.0 TK16 scan enable: 0: disable 1: enable

DS-TM52eF1375A_75D_E 84 Rev 0.93, 2024/5/xx


13. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. It is capable of driving the LCD panel with 144 dots (Max.) by 8 Commons (COM) and 18 Segments (SEG). The P0.0~P0.7 are used for Common pins COM0~COM7 and others pins can be used for Segment pins. COM0~COM7 are capable of driving 1/2 bias when P0.0~P0.7's P0LOE=1. Refer to the following figures.


LCD COM0~7 Circuit


The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.

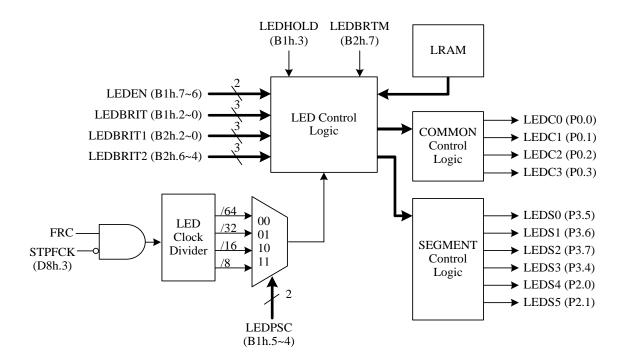
1/4 Duty, 1/2 Bias Output Waveform

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P0LOE		POLOE									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

92h.7~0 **P0LOE:** P0.7~P0.0 LCD 1/2 bias output enable control

0: Disable 1: Enable

DS-TM52eF1375A_75D_E 86 Rev 0.93, 2024/5/xx



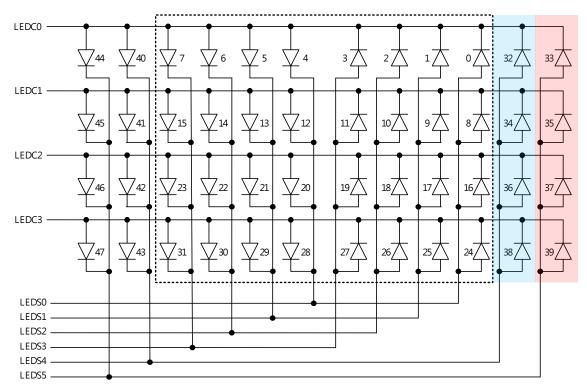
14. LED Controller/Driver

The module can be configured with two drive modes: LED Bi-Direction matrix (BiD) mode and LED dot matrix (DMX) mode. By register configuration, it only supports one mode of operation at the same time.

14.1 LED Bi-Direction Matrix (BiD) Mode

The LED BiD mode can drive more number of LED pixels than the tradition mode, when they use the same number of pins. In this mode, it provides maximum 10 pins (LEDC0~C3, LEDS0~S5) to drive a LED module with 48 pixels. All 10 pins have a high sink current for driving LED directly by setting HSNK0EN. This LED controller also provides 3groups 8-level of brightness adjustment for all 10 pin. In addition to brightness adjustment, LEDBRITM is used to set the brightness and uniformity bit. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM= 1, better display brightness can be obtained. To avoid LED flicker when the common signal is changing, the chip provides a dead time control. In the dead time period, segment pins will output a short inactive signal instead of changing the signal immediately. To start the LED scanning, it only has to set the LEDEN. Then H/W will control the Pin mode automatically. It also provides the scan hold function by setting LEDHOLD.

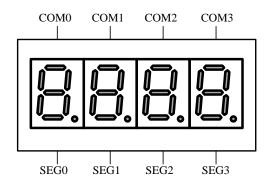
LEDEN	Duty	Matrix	Max pixels
0	Disable	-	-
1	1/8	4COM x 4SEG	32 (4x4x2)
2	1/9	4COM x 5SEG	40 (4x5x2)
3	1/10	4COM x 6SEG	48 (4x6x2)

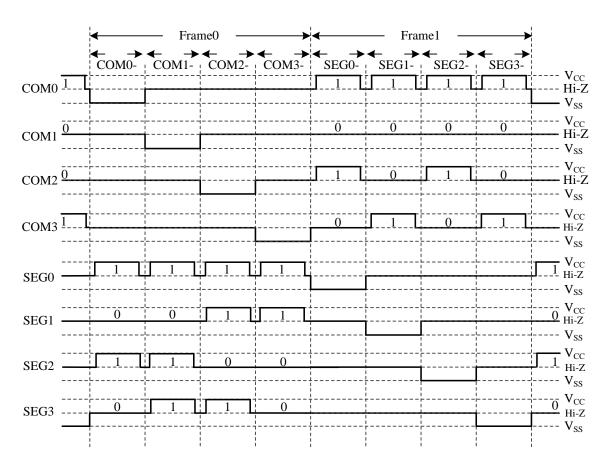

DS-TM52eF1375A_75D_E 87 Rev 0.93, 2024/5/xx

LRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	SEG3-COM0+	SEG2-COM0+	SEG1-COM0+	SEG0-COM0+	COM0-SEG3+	COM0-SEG2+	COM0-SEG1+	COM0-SEG0+
C801h	SEG3-COM1+	SEG2-COM1+	SEG1-COM1+	SEG0-COM1+	COM1-SEG3+	COM1-SEG2+	COM1-SEG1+	COM1-SEG0+
C802h	SEG3-COM2+	SEG2-COM2+	SEG1-COM2+	SEG0-COM2+	COM2-SEG3+	COM2-SEG2+	COM2-SEG1+	COM2-SEG0+
C803h	SEG3-COM3+	SEG2-COM3+	SEG1-COM3+	SEG0-COM3+	COM3-SEG3+	COM3-SEG2+	COM3-SEG1+	COM3-SEG0+
C804h	COM3-SEG5+	COM3-SEG4+	COM2-SEG5+	COM2-SEG4+	COM1-SEG5+	COM1-SEG4+	COM0-SEG5+	COM0-SEG4+
C805h	SEG5-COM3+	SEG5-COM2+	SEG5-COM1+	SEG5-COM0+	SEG4-COM3+	SEG4-COM2+	SEG4-COM1+	SEG4-COM0+

LRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40

LED BiD mode corresponding display configuration table


LED 4*6 Bi-Direction matrix


Note: LEDBRIT (B1h.2~0): LED number 0~31, 40~47 brightness control LEDBRIT1 (B2h.2~0): LED number 32, 34, 36, 38 brightness control LEDBRIT2 (B2h.6~4): LED number 33, 35, 37, 39 brightness control

DS-TM52eF1375A_75D_E 88 Rev 0.93, 2024/5/xx

Application Circuit: 4COM x 4SEG (1/8 Duty)

♦ Example:

MOV DPTR,#0C800h ; LEDRAM0

MOV A,#0FFh

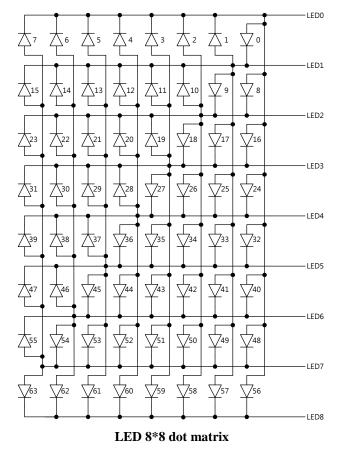
MOVX @DPTR, A ; C800h = FFh

MOV LEDCON,#056h ; LED duty = 1/8

; LEDPSC = FRC/32

; Brightness=6

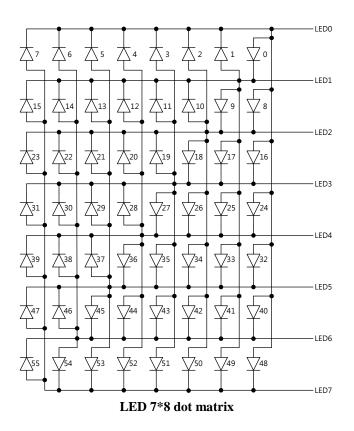
DS-TM52eF1375A_75D_E 89 Rev 0.93, 2024/5/xx

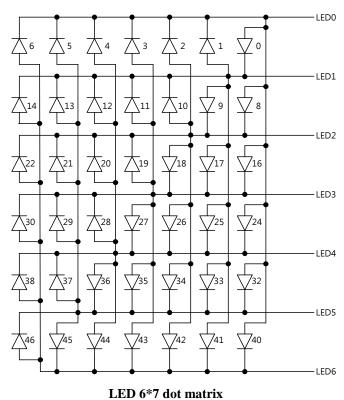


14.2 LED Dot Matrix Mode

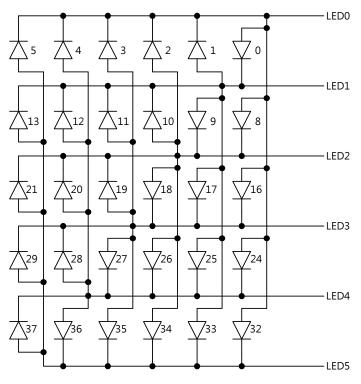
If LEDMTEN=1, LED DMX mode will enable. The LED DMX mode corresponds to the LED0~LED8 pins, and up to 8 * 8 = 64 LED points can be configured to drive. The corresponding LED dot matrix position is marked in the figure below. The display configuration table in LRAM corresponds to the LED lighting status of the address (1 means lighting, 0 means not lighting). Support up to 64 lights LED drive. Using LEDCON3 to choose dot matrix 4*5, 5*6, 6*7, 7*8 or 8*8, the corresponding LED address remains unchanged. By setting HSNK0EN, LED0~LED8 pins also have a high sink current for driving LED directly. The brightness of the LED can be set by LCDBRIT2. When it is set to 1111b, it is the highest brightness. In addition, LEDBRITM is used to set the brightness or uniformity. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM=1, better display brightness can be obtained. The LED SEG signal is also with dead time to avoid the LED flickering. The LED DMX mode also provides the scan hold function by setting LEDHOLD.

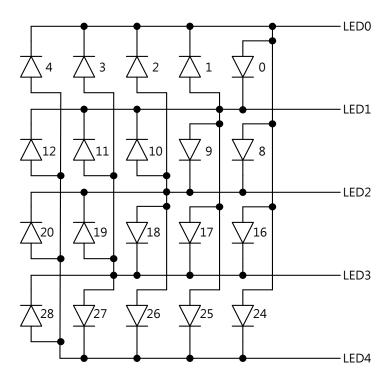
XRAM Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40
C806h	55	54	53	52	51	50	49	48
C807h	63	62	61	60	59	58	57	56


LED DMX mode corresponding display configuration table



Note: LEDBRIT2 (B2h.6~4): LED number 0~63 brightness control


DS-TM52eF1375A_75D_E 90 Rev 0.93, 2024/5/xx



LED 5*6 dot matrix

LED 4*5 dot matrix

DS-TM52eF1375A_75D_E 92 Rev 0.93, 2024/5/xx

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEI	DEN	LEDPSC		LEDHOLD	LEDBRIT		
R/W	R/	W	R/W		R/W	R/W		
Reset	0	0	0	0	0	1	1	1

B1h.7~6 **LEDEN:** LED Bi-Direction matrix (BiD) mode enable and duty select

00: LED BiD mode disable

01: LED 1/8 duty (4COM x 4SEG)

10: LED 1/9 duty (4COM x 5SEG)

11: LED 1/10 duty (4COM x 6SEG)

B1h.5~4 **LEDPSC:** LED clock prescaler select

00: LED clock is FRC divided by 64

01: LED clock is FRC divided by 32

10: LED clock is FRC divided by 16

11: LED clock is FRC divided by 8

B1h.3 **LEHOLD:** LED clock hold

0: LED scan

1: LED clock hold

B1h.2~0 **LEDBRIT**:

BiD mode: LED number 0~31, 40~47 brightness control

000: Level 0 (Darkest)

. . .

111: Level 7 (Brightest)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON2	LEDBRITM		LEDBRIT2		_	LEDBRIT1		
R/W	R/W		R/W		_	R/W		
Reset	0	1	1	1	_	1	1	1

B2h.7 **LEDBRITM:** Brightness mode control

0: Uniform brightness mode

1: Brightness enhancement mode

B2h.6~4 **LEDBRIT2:**

BiD mode: LED number 33, 35, 37, 39 brightness control

DMX mode: LED number 0~63 brightness control

000: Level 0 (Darkest)

. . .

111: Level 7 (Brightest)

B2h.2~0 **LEDBRIT1:**

BiD mode: LED number 32, 34, 36, 38 brightness control

000: Level 0 (Darkest)

. . .

111: Level 7 (Brightest)

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON3	LEDMTEN	LED8EN	LED7EN	LED6EN	LED5EN	LED4EN	LED3EN	LED2EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **LEDMTEN:** LED Dot matrix (DMX) mode enable control

0: LED DMX mode disable

1: LED DMX mode enable and LED0, LED1 enable

B3h.6 **LED8EN:** LED DMX mode pin enable control

0: LED8 disable

1: LED8 enable

B3h.5 **LED7EN:** LED DMX mode pin enable control

0: LED7 disable

1: LED7 enable

B3h.4 **LED6EN:** LED DMX mode pin enable control

0: LED6 disable

1: LED6 enable

B3h.3 **LED5EN:** LED DMX mode pin enable control

0: LED5 disable 1: LED5 enable

B3h.2 **LED4EN:** LED DMX mode pin enable control

0: LED4 disable 1: LED4 enable

B3h.1 **LED3EN:** LED DMX mode pin enable control

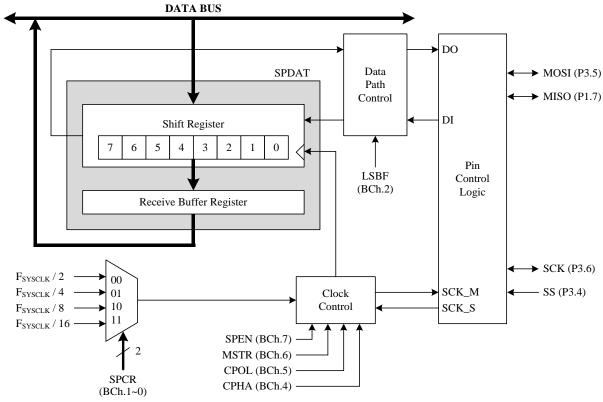
0: LED3 disable 1: LED3 enable

B3h.0 **LED2EN:** LED DMX mode pin enable control

0: LED2 disable 1: LED2 enable

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.



15. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) module is capable of full-duplex, synchronous, serial communication between the MCU and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or flash memory, etc. The SPI runs at a clock rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven. Following figure shows the SPI system block diagram.

The features of the SPI module include:

- Master or Slave mode operation
- 3-wire or 4-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI Function Pin	PxMODx	Px.n SFR data	Pin State
Master Mode MISO	1	1	SPI Data Input
Master Mode SCK, MOSI	2	X	SPI Clock/Data Output (CMOS Push-Pull)
Slave Mode MISO	2	X	SPI Data Output (CMOS Push-Pull)
Slave Mode SCK, MOSI	1	1	SPI Clock/Data Input
SS	1	1	SPI Chip Selection

Pin Mode Setting for SPI

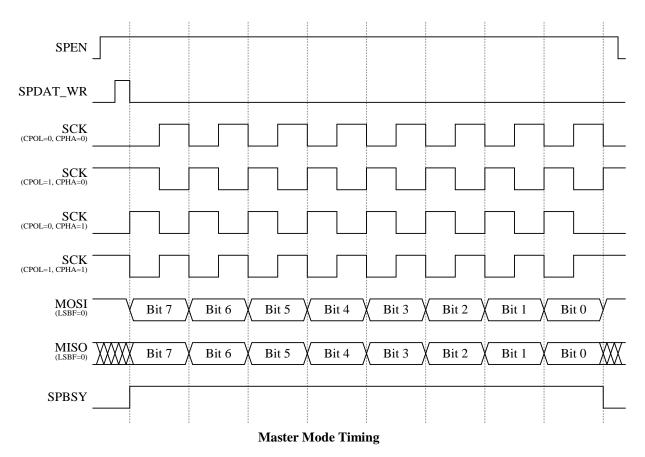
DS-TM52eF1375A_75D_E 95 Rev 0.93, 2024/5/xx

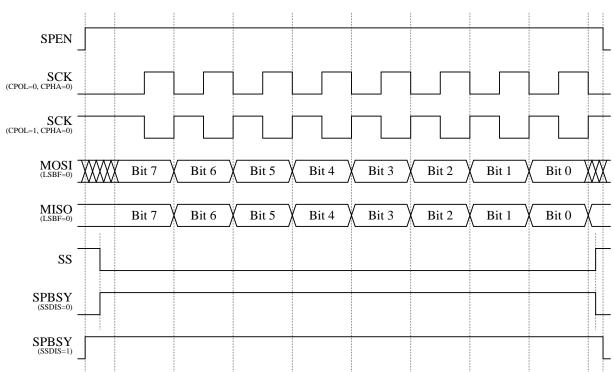
The four signals used by SPI are described below. The MOSI signal is an output from a Master Device and an input to Slave Devices. The signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO signal is an output from a Slave Device and an input to a Master Device. The signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred most-significant bit (MSB) or least-significant bit (LSB) first by setting the LSBF bit. The SCK signal is an output from a Master Device and an input to Slave Devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode. The SS signal is a low active slave select pin. In 4-wire Slave mode, the signal is ignored when the Slave is not selected (SS=1). The SS is ignored when the SSDIS in SPCON is set in both Master and Slave modes. In Slave mode and the SSDIS is clear, the SPI active when SS stay low. For multiple-slave mode, only one slave device is selected at a time to avoid bus collision on the MISO line. In Master mode and the SSDIS is cleared, the MODF in SPSTA is set when this signal is low. For multiple-master mode, enable SS line to avoid multiple driving on MOSI and SCK lines from multiple masters.

Master Mode

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If the SPBSY bit is cleared, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the slave shift in from the MISO line at the same time. When the SPIF bit in the SPSTA becomes set at the end of the transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

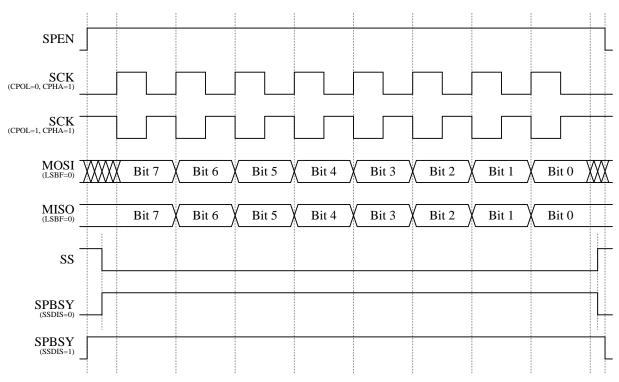
Slave Mode


The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. If the SSDIS is cleared, the transmission will start when the SS become low and remain low until the end of a data transfer. If the SSDIS is set, the transmission will start when the SPEN bit in the SPCON is set, and don't care the SS. The data from a master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if the RCVBF is cleared. If the RCVBF is set, the newer receive data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{SYSCLK}/4$. In Slave mode, the SPBSY bit refers to the SS pin when the SSDIS bit is cleared, and refer to the SPEN bit when SSDIS bit is set.


Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when the CPOL bit is cleared, and is high when the CPOL bit is set. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when the CPHA bit is cleared. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when the CPHA bit is set. The figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.

DS-TM52eF1375A_75D_E 96 Rev 0.93, 2024/5/xx



Slave Mode Timing (CPHA=0)

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF bit is set by H/W at the end of a data transfer and generates an interrupt if SPI interrupt is enabled. The SPIF bit is cleared automatically when the program performs the interrupt service routines. S/W can also write 0 to clear this flag. If write data to SPDAT when the SPBSY is set, the WCOL bit will be set by H/W and generates an interrupt if SPI interrupt is enabled. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written. Write 0 to this bit or when SPBSY is cleared and rewrite data to SPDAT will clear this flag. The MODF bit is set when SSDIS is cleared and SS pin is pulled low in Master mode. If SPI interrupt is enabled, an interrupt will be generated. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W. Write 0 to this bit will clear this flag.

DS-TM52eF1375A_75D_E 98 Rev 0.93, 2024/5/xx

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	SSDIS	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

BCh.7 **SPEN:** SPI enable

0: SPI disable 1: SPI enable

BCh.6 **MSTR:** Master mode enable

0: Slave mode 1: Master mode

BCh.5 **CPOL:** SPI clock polarity

0: SCK is low in idle state

1: SCK is high in idle state

BCh.4 **CPHA:** SPI clock phase

0: Data sample on first edge of SCK period

1: Data sample on second edge of SCK period

BCh.3 **SSDIS:** SS pin disable

0: Enable SS pin 1: Disable SS pin

BCh.2 **LSBF:** LSB first

0: MSB first 1: LSB first

BCh.1~0 SPCR: SPI clock rate

00: F_{SYSCLK}/2 01: F_{SYSCLK}/4 10: F_{SYSCLK}/8 11: F_{SYSCLK}/16

SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPSTA	SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	_	_
R/W	R/W	R/W	R/W	R/W	R/W	R	_	_
Reset	0	0	0	0	0	0	_	_

BDh.7 **SPIF:** SPI interrupt flag

This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear this flag.

BDh.6 WCOL: Write collision interrupt flag

Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag.

BDh.5 **MODF:** Mode fault interrupt flag

Set by H/W when SSDIS is cleared and SS pin is pulled low in Master mode. Write 0 to this bit will clear this flag. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W.

BDh.4 **RCVOVF:** Received buffer overrun flag

Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to this bit or read SPDAT register will clear this flag.

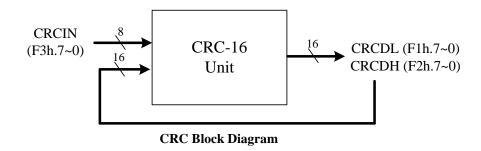
BDh.3 **RCVBF:** Receive buffer full flag

Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.

BDh.2 **SPBSY:** SPI busy flag

Set by H/W when a SPI transfer is in progress.

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SPDAT	SPDAT								
R/W	R/W								
Reset	0	0	0	0	0	0	0	0	


BEh.7~0 **SPDAT:** SPI transmit and receive data

The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.

16. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes a 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: $X^{16} + X^{15} + X^2 + 1$

SFR F1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCDL	CRCDL								
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

F1h.7~0 **CRCDL:** 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDH	CRCDH							
R/W	R/W							
Reset	1	1	1	1	1	1	1	1

F2h.7~0 **CRCDL:** 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCIN	CRCIN								
W		W							
Reset	_	-	_	_	_	_	-	_	

F3h.7~0 **CRCIN:** CRC input data register

DS-TM52eF1375A_75D_E 100 Rev 0.93, 2024/5/xx

17. Multiplier and divider

The chip provide multiplier and divider have the following functions. The 8 bit operation is fully compatible with industry standard 8051.

- $8 \text{ bits} \times 8 \text{ bits} = 16 \text{ bit (standard } 8051)$
- 8 bits \div 8 bits = 8 bits, 8 bits remainder (standard 8051)
- $16 \text{ bits} \times 16 \text{ bits} = 32 \text{ bit}$
- 16 bits \div 16 bits = 16 bits, 16 bits remainder
- 32 bits \div 16 bits = 32 bits, 16 bits remainder

No matter 8bit / 16bit / 32bit operation, it's easy to execute by MUL AB and DIV AB instruction. There is extra SFR EXA/EXA2/EXA3/EXB for 16bit / 32bit multiply and divide operation.

For 8 bit multiplier/divider operation, be sure SFR bit muldiv16=0 and div32=0.

For 16 bit multiplier operation, multiplier and product as follows. 16 bit multiplier takes 16 System clock cycles to execute.

Condition	SFR bit muldiv16=1 and div32=0							
Multiplication	Byte3	Byte2	Byte1	Byte0				
Multiplicand	-	-	EXA	A				
Multiplier	-	-	EXB	В				
Product	EXB	В	A	EXA				
OV	Product (EX	(B or B) !=0	-	-				

For 16 bit divider operation, dividend, divisor, quotient, remainder read as follows. 16 bit divider takes 16 System clock cycles to execute.

Condition	SFR bit muldiv16=1 and div32=0								
Division	Byte3	Byte2	Byte1	Byte0					
Dividend	ı	-	EXA	A					
Divisor	-	-	EXB	В					
Quotient	-	-	A	EXA					
Remainder	-	-	В	EXB					
OV		Divisor E	XB = B = 0						

For 32 bits ÷ 16 bits operation, dividend, divisor, quotient, remainder read as follows. 32 bit divider takes 32 System clock cycles to execute.

Condition	SFR bit muldiv16=1 and div32=1								
Division	Byte3	Byte2	Byte1	Byte0					
Dividend	EXA3	EXA2	EXA	A					
Divisor	-	-	EXB	В					
Quotient	A	EXA	EXA2	EXA3					
Remainder	-	-	В	EXB					
OV		Divisor EXB=B =0							

DS-TM52eF1375A_75D_E 101 Rev 0.93, 2024/5/xx

SFR CEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA2				EX	A2			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

CEh.7~0 **EXA2:** Expansion accumulator 2

SFR CFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA3				EX	A3			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

CFh.7~0 **EXA3:** Expansion accumulator 3

SFR E6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA				ЕУ	ΚA			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E6h.7~0 **EXA:** Expansion accumulator

SFR E7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXB				ЕХ	KΒ			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E7h.7~0 **EXB:** Expansion B register

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAF	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

F7h.3 **DIV32:** (only active when MULDVI16=1)

0: instruction DIV as 16/16 bit division operation

1: instruction DIV as 32/16 bit division operation

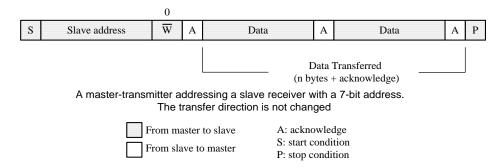
F7h.0 **MULDIV16:**

0: instruction MUL/DIV as 8*8, 8/8 operation

1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation

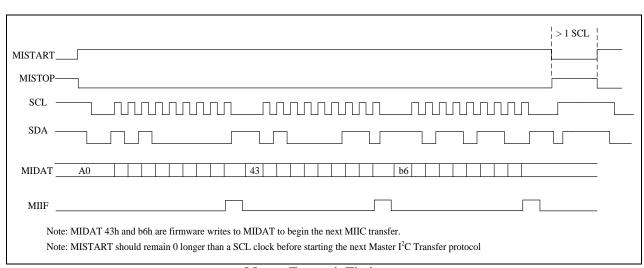
	ARITHMETIC			
Mnemonic	Description	byte	cycle	opcode
MUL AB	Multiply A by B	1	8/16	A4
DIV AB	Divide A by B	1	8/16/32	84

DS-TM52eF1375A_75D_E 102 Rev 0.93, 2024/5/xx



18. Master I²C Interface

Master I'C interface transmit mode:


At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and write MIDAT to start first data transmission. When MIIF convert to 1, data transfer to slave was complete. User can write MIDAT again to transfer next data to slave. Set MISTOP to finish transmit mode.

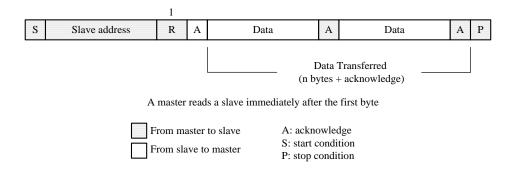
MISTART must remain at 1 for the next transfer. After the final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.

Master I2C Transmit flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF
- (4) Write data to MIDAT to start next transfer (MISTART must remain at 1)
- (5) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF, Loop (4) ~ (5) for next transfer.
- (6) Clear MISTART and set MISTOP to stop the I2C transfer

Master Transmit Timing

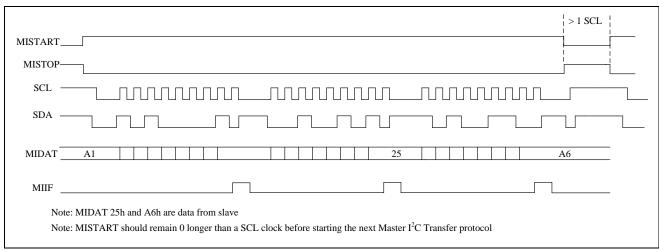
Note: MISTART should remain 0 longer than a SCL period before starting the next Master I^2C protocol.


DS-TM52eF1375A_75D_E 103 Rev 0.93, 2024/5/xx

Master I'C interface Receive mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and read MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave). When MIIF convert to 1, data receive from slave was complete. User can read MIDAT to get data from slave, and start next receive. Set MISTOP to finish receive mode.

MISTART must remain at 1 for the next transfer. After final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.



Master I2C Receive flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request)
- (4) Clear MIIF
- (5) Read data from MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave)
- (6) Wait until MIIF convert to 1
- (7) Clear MIIF
- (8) Read slave data from MIDAT and receive next data
- (9) Loop (6) \sim (8)
- (10) Set MISTOP to stop the I²C transfer

DS-TM52eF1375A_75D_E 104 Rev 0.93, 2024/5/xx

Master Receive Timing

I ² C Function Pin	P3modx	P3.n SFR data	Pin State
I ² C Master SCL	0	X	I ² C Clock Output (Open Drain Output, Pull-up)
i C Master SCL	2	X	I ² C Clock Output (CMOS Push-Pull)
I ² C Master/Slaver SDA	0	1	I ² C DATA (Pull-up)

Pin Mode Setting for Master I2C

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

E1h.7 **MIEN**:Master I²C enable

0: disable 1: enable

E1h.6 MIACKO: When Master I²C receive data, send acknowledge to I²C Bus

0: ACK to slave device

1: NACK to slave device

E1h.5 **MIIF**: Master I²C Interrupt flag

0: write 0 to clear it

1: Master I2C transfer one byte complete

E1h.4 **MIACKI**: When Master I²C transfer, acknowledgement form I²C bus (read only)

0: ACK received

1: NACK received

E1h.3 **MISTART**: Master I²C Start bit

1: start I²C bus transfer

E1h.2 **MISTOP**: Master I²C Stop bit

1: send STOP signal to stop I²C bus

E1h.1~0 MICR: Master I²C (SCL) clock frequency selection

00: Fsys/4 (ex. If Fsys=16MHz, I2C clock is 4 MHz)

01: Fsys/16 (ex. If Fsys=16MHz, I2C clock is 1 MHz)

10: Fsys/64 (ex. If Fsys=16MHz, I2C clock is 250 KHz)

11: Fsys/256 (ex. If Fsys=16MHz, I2C clock is 62.5 KHz)

DS-TM52eF1375A_75D_E 105 Rev 0.93, 2024/5/xx

SFR E2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MIDAT				MID	PAT			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E2h.7~0 **MIDAT**: Master I²C data shift register

(W): After Start and before Stop condition, write this register will resume transmission to I^2C bus (R): After Start and before Stop condition, read this register will resume receiving from I^2C bus

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

EAh.7 **MIIE:** I²C Master interrupt enable

0: disable 1: enable

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

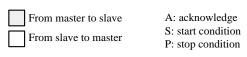
A9h.6 **I2CE:** I*C interrupt enable

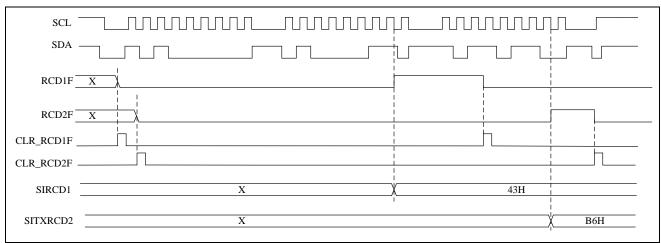
0: Disable I℃ interrupt 1: Enable I℃ interrupt

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	I2CSEL	TCOE	T2OE	HSNK2EN	HSNK1EN	HSNK0EN	T00E
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

A6h.6 **I2CSEL:** I²C pin select

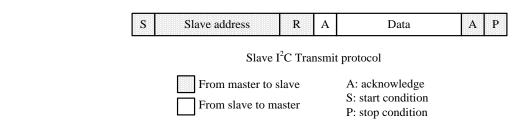

0: SCL/SDA = P3.4/P3.5 1: SCL/SDA = P3.0/P3.1

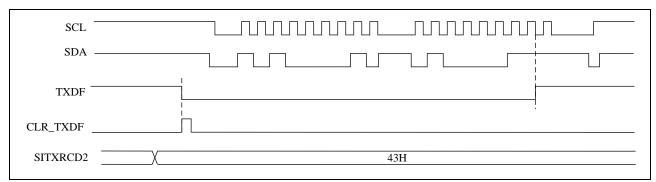

DS-TM52eF1375A_75D_E 106 Rev 0.93, 2024/5/xx



19. Slave I2C Interface

The chip provides Slave I℃ interface receive protocol as following. Slave I℃ module allow to receive one or two byte data each time after start condition. Before receiving DATA1, be aware that RCD1F must be 0. After DATA1 reception is completed, RCD1F will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear RCD1F before receiving next DATA1 again. User can write RCD1F to 0 to clear RCD1F. DATA2 and RCD2F operate in the same way as DATA1 and RCD1. After DATA1 or DATA2 reception is completed, the Master side should restart the transfer protocol to transmit the next DATA1 and DATA2.




Slave Receive Timing

DS-TM52eF1375A_75D_E 107 Rev 0.93, 2024/5/xx

The chip provides Slave I²C interface transmission protocol as following. Slave I²C module allow to transmit one byte data each time after start condition. Before data transmitting, be aware that TXDF must be 0. After data transmission is completed, TXDF will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear TXDF before transmitting next data again. User can write TXDF to 0 to clear TXDF. After each transmission is completed, the host should restart the transmission protocol to transmit the next data.

Slave Transmit Timing

I ² C Function Pin	P3MODx	P3.n SFR data	Pin State
I ² C Slave SCL	1	1	I ² C Clock Input (Hi-Z)
I ² C Master/Slaver SDA	Slaver SDA 0 1		I ² C DATA (Pull-up)

Pin Mode Setting for Slave I²C

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **I2CE:** I*C interrupt enable 0: Disable I*C interrupt

1: Enable I'C interrupt

SFR E9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIADR	SA							SIEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	0	1	0	0

E9h.7~1 SA: Slave I C address assigned

E9h.0 **SIEN:** Slave I C enable

0: disable 1: enable

DS-TM52eF1375A_75D_E 108 Rev 0.93, 2024/5/xx

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

EAh.6 **TXDIE:** Slave I C transmission completed interrupt enable

0: disable

1: enable

EAh.5 **RCD2IE:** Slave I*C DATA2 (SITXRCD2) reception completed interrupt enable

0: disable

1: enable

EAh.4 **RCD1IE:** Slave I C DATA1 (SIRCD1) reception completed interrupt enable

0: disable

1: enable

EAh.2 **TXDF:** Slave I C transmission completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C transmission complete

EAh.1 **RCD2F:** Slave I*C DATA2 (SITXRCD2) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA2 (SITXRCD2) reception complete

EAh.0 **RCD1F:** Slave I*C DATA1 (SIRCD1) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA1 (SIRCD1) reception complete

SFR EBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIRCD1				SIR	CD1			
R/W	R	R	R	R	R	R	R	R
Reset	_	_	_	_	_	_	_	_

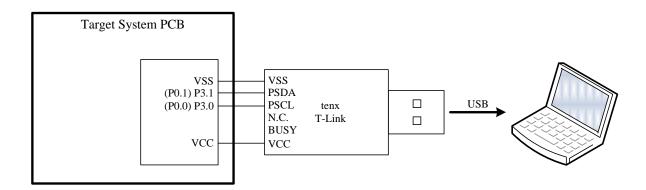
EBh.7~0 **SIRCD1:** Slave I℃ data receive register1 (DATA1)

SFR ECh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SITXRCD2				SITX	RCD2			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	_	_	_	_	_

ECh.7~0 SITXRCD2: Slave I C transmit and receive data register

(R): Slave I C data receive register 2 (DATA2)

(W): Slave I²C data transmission register (TXD)


DS-TM52eF1375A_75D_E 109 Rev 0.93, 2024/5/xx

20. In Circuit Emulation (ICE) Mode

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode (P3MOD0 = 0/1 and P3MOD1=0/1).
- 3. The Program Memory's addressing space 6C00h~6FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The T-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1 (only in ICE Mode).
- 6. The V_{DD} level is controlled by T-Link module.

	32K Bytes program memory
0000h	
0.0.4	Reset / Interrupt Vector
006Fh	
0070h	
	User Code area
6BFFh	
6C00h	
	ICE mode reserve area
6FFFh	
	User Code area
7A00h	User Code or IAP area
	(EEPROM like)
7DFFh	
	User Code area
7FF0h	CRC16L
7FF1h	CRC16H
7FF2h	
	tenx reserve area
7FFEh	
7FFFh	CFGWH
' <u>•</u>	TM52eF1375A/75D

DS-TM52eF1375A_75D_E 110 Rev 0.93, 2024/5/xx

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
80h	0000-0000	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
81h	0000-0111	SP					SP	I.				
	0000-0000	DPL				D	PL	L				
	0000-0000	DPH				D	PH					
84h	0000-0000	INTEX	EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2		
85h	0000-0000	INTEXF	IE9	IE8	IE7	IE6	IE5	IE4	IE3	IE2		
86h	xxxx-x000	INTPWM	_	1	_	1	_	PWM2IF	PWM1IF	PWM0IF		
87h	0xxx-0000	PCON	SMOD	_	_	_	GF1	GF0	PD	IDL		
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
89h	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N	TM	OD0		
	0000-0000	TL0				T	L0					
8Bh	0000-0000	TL1				T	Ľ1					
	0000-0000	TH0					H0					
	0000-0000	TH1			1		H1	1	T			
-	0100-0000	SCON2	SM	-	_	REN2	TB82	RB82	TI2	RI2		
-		SBUF2	D1.5	D1 <	D1.5		UF2	D1.0	D1.1	D1.0		
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0		
	0000-0000	P0OE P0LOE					OE .					
					1		LOE DOM	IOD1	DOM	IODO		
93h 94h	0000-0101 0000-0000	P2MOD OPTION	UART1W		- WD	– ΓPSC		IOD1 CKS		IOD0 BPSC		
	0x00-xx00	INTFLG	LVDIF		TKIF	ADIF	_ AD		P1IF	TF3		
	0000-0000		LVDII		TKII		/KUP		PHF 1F3			
I	xxxx-xx00	SWCMD					RST / WDTO					
	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	XXXX-XXXX	SBUF					BUF					
I	00xx-x000		PWM1IE	PWM0IE	_	_	_	PWM2OE	PWM10E	PWM0OE		
9Fh	0xxx-x000	PWMCLR	PWM2IE	-	_	_	_		PWM1CLR	PWM0CLR		
A0h	0000-0011	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0		
Alh	xx10-1010	PWMCON	-	Ī	PWM	2CKS	PWM	I1CKS	PWM	IOCKS		
A2h	0101-0101	P1MODL	P1M	OD3	P1M	IOD2	P1M	IOD1	P1M	IOD0		
A3h	0101-0101	P1MODH	P1M		P1M	IOD6		IOD5	P1MOD4			
	0101-0101	P3MODL	P3M			IOD2		IOD1	P3MOD0			
-	0001-0101	P3MODH	P3M			IOD6		IOD5	P3MOD4			
-	x000-0000	PINMOD	_	I2CSEL	TCOE	T2OE	HSNK2EN	HSNK1EN	HSNK0EN	T0OE		
	xxx1-1111	TKCHS	T7 A	_	ETO	EG	E/E1	TKCHS	ETO	EVO		
I	0x00-0000 xx00-0000	IE INTE1	EA PWMIE	I2CE	ET2 ES2	ES SPIE	ET1 ADTKIE	EX1 EXLVDIE	ET0 P1IE	EX0 TM3IE		
	XXXX-XXXX	ADCDL	1 WIVIIE		CDL	SUL	ADTRIE	EALVDIE		TIVIJIE		
-	XXXX-XXXX	ADCDH		АД	CDL	ΔD	CDH					
	1100-0000	TKCON	TKPD	TKEOC	TKRERUN	TKIVCS	1	TKOFFSET	ATKI	MODE		
	1111-000x	CHSEL			CHS	1111,00		/REFS	VBGEN			
	000x-xxxx	POADIE		P0ADIE		_	_	_	_	_		
	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0		
		LEDCON	LEI	DEN	LED	PSC	LEDHOLD		LEDBRIT			
B2h	0111-x111	LEDCON2	LEDBRITM		LEDBRIT2		_		LEDBRIT1			
B3h	0000-0000	LEDCON3	LEDMTEN	LED8EN	LED7EN	LED6EN	LED5EN	LED4EN	LED3EN	LED2EN		
B4h	1111-1111	TKTMRL				TKT	MRL					
	0000-0000		TKFJMP	JMP		SPREAD			TMRH			
	xx00-0000	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0		
	xx00-0000	IPH	-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
	xx00-0000	IP1	-	_	PS2	PSPI	PADTKI	PX2_9LVD	PP1	PT3		
	xx00-0000	IP1H	_	_	PS2H	PSPIH	PADTKIH	PX2_9LVDH	PP1H	PT3H		
BCh	0000-0000	SPCON	SPEN	MSTR	CPOL	СРНА	SSDIS	LSBF	SP	CR		

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
BDh	0000-0xxx	SPSTA	SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	_	_				
BEh	0000-0000	SPDAT				SPI	DAT							
BFh	0xxx-0000	LVDS	LVDIE	LVDO	_	1		LV	'DS					
		TKPINSELO		TKPINSEL0										
C2h	0000-0000	TKPINSEL1		TKPINSEL1										
C3h	0000-0000	TKPINSEL2				TKPII	NSEL2							
C5h	0000-0000	ATKCH0		ATKCH0										
C6h	0000-0000	ATKCH1		ATKCH1										
C7h	0000-0000	ATKCH2		ATKCH2										
C8h	0000-0000	T2CON	TF2											
C9h	00xx-xxxx	IAPWE				IAPWE	/ IAPTO							
CAh	0000-0000	RCP2L				RC	P2L							
CBh	0000-0000	RCP2H				RC	P2H							
CCh	0000-0000	TL2				T	L2							
CDh	0000-0000	TH2				T	H2							
_	0000-0000	EXA2				EX	XA2							
	0000-0000	EXA3				EX	XA3							
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	P				
		PWM0DH					MODH							
		PWM0DL				PWN	MODL .							
		PWM1DH		PWM1DH										
		PWM1DL		PWM1DL										
		PWM2DH		PWM2DH										
D6h	0000-0000	PWM2DL		PWM2DL										
D8h	00x0-0011	CLKCON	SCKTYPE	CKTYPE FCKTYPE STPSCK STPPCK STPFCK SELFCK CLKPSC										
		PWM0PRDH		PWM0PRDH										
		PWM0PRDL)PRDL							
		PWM1PRDH				PWM:	IPRDH							
DCh	1111-1111	PWM1PRDL				PWM	1PRDL							
_		PWM2PRDH					2PRDH							
_		PWM2PRDL			ı		2PRDL		T					
	0000-0000		ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0				
	000x-0100		MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	M	ICR				
	0000-0000						DAT		1					
	0000-0000		EFT2CS	EFT1CS	EF	Γ1S		EFTWCPU	EFTWOUT	CKHLDE				
-	0000-0000	EXA					XA							
	0000-0000	EXB					XB			QIES:				
	0110-1000		MITTE	myrste	DODAIE	SA		myse	DODAE	SIEN				
	0000-x100		MIIE	TXDIE	RCD2IE	RCD1IE	- CD1	TXDF	RCD2F	RCD1F				
	XXXX-XXXX	SIRCD1					CD1							
		SITXRCD2		SITXRCD2										
		PWRCON	- D 7	- D. C	- D. 7		WARMTIME		PWRIDLE	PWRSLOW				
	0000-0000	CDCDI	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0				
	1111-1111	CRCDL					CDL							
	1111-1111	CRCDH					CDH							
	0000-0000	CRCIN				CR	CIN	DCTDD4						
	XXXX-XXXX	CFGBG	_	_	_		EDCE	BGTRIM						
	XXXX-XXXX	CFGWL	-	VTE	DWDGAN	VDCOLE	FRCF	7.1)TE	MIII DIVII				
	0000-1110	AUX2		OTE CLDTM2	PWRSAV	VBGOUT	DIV32	IAF	1	MULDIV16				
røn	0000-0000	AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL				

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
7FFFh	CFGWH	PROTN	XRSTEN		LVRE		-	MVCLOCKN	FRCPSC

SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	PO	7~0	P0	R/W	00h	Port0 data
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
OSII	DIII	7	EX9	R/W	0h	
		6	EX8	R/W		External INT9~INT2 pin Interrupt enable and Halt/Stop mode wake
		5	EX7	R/W	0h	up enable.
		4	EX7	R/W	0h	0: Disable INTx pin Interrupt and Halt/Stop mode wake up 1: Enable INTx pin Interrupt and Halt/Stop mode wake up, it can
84h	INTEX	3	EX5	R/W	0h	wake up CPU from Halt/Stop mode no matter EA is 0 or 1
		2	EX3 EX4	R/W	0h	wake up ci o from Hald Stop mode no matter E24 is 6 of 1
		1	EX3	R/W	0h	(note: EXLVDIE must be 1 at the same time to generate INTx
		0	EX3	R/W		interrupt and wake up)
		7	IE9	R/W	0h	INT9 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		-				
		5	IE8 IE7	R/W R/W	Oh Oh	INT8 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		4				INT7 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
85h	INTEXF	3	IE6 IE5	R/W	0h	INT6 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
				R/W	0h	INT5 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		2	IE4	R/W	0h	INT4 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		1	IE3	R/W	0h	INT3 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	IE2	R/W	0h	INT2 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
0.41		2	PWM2IF	R/W	0h	PWM2 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
86h	INTPWM	1	PWM1IF	R/W	0h	PWM1 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	PWM0IF	R/W	0h	PWM0 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		7	SMOD	R/W	0	Set 1 to enable UART1 double baud rate
0=1		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter Halt/Stop mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter Idle mode
		7	TF1	R/W	0	Timer1 overflow flag
		/	111	K/W	U	Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
			11(1	10/ 11	- 0	Timer0 overflow flag
		5	TF0	R/W	0	Set by H/W when Timer/Counter 0 overflows. Cleared by H/W
						when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
						External Interrupt 1 (INT1 pin) edge flag
88h	TCON	3	IE1	R/W	0	Set by H/W when an INT1 pin falling edge is detected. Cleared by
						H/W when CPU vectors into the interrupt service routine.
			T/D1	D ATT	0	External Interrupt 1 control bit
		2	IT1	R/W	0	0: Low level active (level triggered) for INT1 pin
						1: Falling edge active (edge triggered) for INT1 pin External Interrupt 0 (INT0 pin) edge flag
		1	IE0	R/W	0	Set by H/W when an INT0 pin falling edge is detected. Cleared by
					~	H/W when CPU vectors into the interrupt service routine.
						External Interrupt 0 control bit
		0	IT0	R/W	0	0: Low level active (level triggered) for INT0 pin
						1: Falling edge active (edge triggered) for INT0 pin

DS-TM52eF1375A_75D_E 113 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set
		/	UATEI	IX/ VV	U	1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
						Timer1 Counter/Timer select bit
		6	CT1N	R/W	0	0: Timer mode, Timer1 data increases at 2 System clock cycle rate
						1: Counter mode, Timer1 data increases at T1 pin's negative edge Timer1 mode select
						00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)
		5~4	TMOD1	R/W	00	01: 16-bit timer/counter
		3~4	TMODI	IX/ VV	00	10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at
						overflow. 11: Timer1 stops
89h	TMOD					Timer0 gating control bit
		3	GATE0	R/W	0	0: Timer0 enable when TR0 bit is set
						1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
		2	CT0N	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate
			CTON	IX/ W	U	1: Counter mode, Timero data increases at 2 System clock cycle rate
						Timer0 mode select
						00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)
		1~0	TMOD0	R/W	00	01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at
		10	TMODO	10 11	00	overflow.
						11: TL0 is an 8-bit timer/counter.
0.41	TOT O	7.0	TEXT O	D/III	0.01	TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah 8Bh	TL0 TL1	7~0 7~0	TL0 TL1	R/W R/W	00h 00h	Timer0 data low byte Timer1 data low byte
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte
						UART2 Serial port mode select bit
		7	SM	R/W	0	0: Mode1: 8 bit UART2, Baud Rate is variable
						1: Mode3: 9 bit UART2, Baud Rate is variable UART2 reception enable
		4	REN2	R/W	0	0: Disable reception
						1: Enable reception
8Eh	SCON2	3	TB82	R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode3
		2	RB82	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode3
		1	TI2	R/W	0	Transmit interrupt flag Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be
		-		10 //	,	cleared by S/W.
						Receive interrupt flag
		0	RI2	R/W	0	Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.
		+				UART2 transmit and receive data. Transmit data is written to this
8Fh	SBUF2	7~0	SBUF2	R/W	_	location and receive data is read from this location, but the paths are
001	D1	7.0	D1	D/337	יכוכן	independent.
90h	P1	7~0	P1	R/W	FFh	Port1 data Port0 CMOS Push-Pull output enable control
91h	P0OE	7~0	P0OE	R/W	00h	0: Disable
						1: Enable
0.21-	DOI OF	7.0	DOLOT	D /W7	001-	Port0 LCD 1/2 bias output enable control
92h	P0LOE	7~0	P0LOE	R/W	00h	0: Disable 1: Enable
						P2.1 Pin Control
		3~2	P2MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
93h	P2MOD	\vdash		-		11: not defined
		1~0	P2MOD0	R/W	01	P2.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		1. 0	1 21/10/00	1.7 11	01	11: not defined

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	UART1W	R/W	0	Set 1 to enable one wire UART1 mode, both TXD/RXD use P3.1 pin.
		5~4	WDTPSC	R/W	00	Watchdog Timer pre-scalar time select 00: 480ms WDT overflow rate 01: 240ms WDT overflow rate 10: 120ms WDT overflow rate 11: 60ms WDT overflow rate
94h	OPTION	3~2	ADCKS	R/W	00	ADC clock rate select 00: F _{SYSCLK} /32 01: F _{SYSCLK} /16 10: F _{SYSCLK} /8 11: F _{SYSCLK} /4
		1~0	TM3PSC	R/W	00	Timer3 Interrupt rate 00: Timer3 Interrupt rate is 32768 Slow clock cycle 01: Timer3 Interrupt rate is 16384 Slow clock cycle 10: Timer3 Interrupt rate is 8192 Slow clock cycle 11: Timer3 Interrupt rate is 128 Slow clock cycle
		7	LVDIF	R	ı	Low Voltage Detect flag Set by H/W when a low voltage occurs.
		5 TKIF	R/W	0	Touch Key Interrupt Flag Set by H/W at the end of TK conversion if SYSCLK is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag.	
		4	ADIF	R/W	0	ADC interrupt flag Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.
95h	INTFLG	1	P1IF	R/W	0	Port1 pin change Interrupt flag Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit.
		0	TF3	R/W	0	Timer3 Interrupt Flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.
96h	P1WKUP	7~0	P1WKUP	R/W	00h	P1.7~P1.0 pin individual Wake-up/Interrupt enable control 0: Disable; 1: Enable.
		7~0	SWRST	W		Write 56h to generate S/W Reset
97h	$\mathbf{SWCMD} \qquad \frac{7 \sim 0}{1}$	7~0	IAPEN	W		Write 65h to set IAPEN control flag; Write other value to clear IAPEN flag. It is recommended to clear it immediately after IAP access.
9/11		1	WDTO	R	0	WatchDog Time-Out flag
		0	IAPEN	R	0	Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

DS-TM52eF1375A_75D_E 115 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	SM0	R/W	0	UART1 Serial port mode select bit 0, 1 (SM0, SM1) =
						00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2
		6	SM1	R/W	0	01: Mode1: 8 bit UART1, Baud Rate is variable 10: Mode2: 9 bit UART1, Baud Rate=F _{SYSCLK} /32 or /64
						11: Mode3: 9 bit UART1, Baud Rate is variable
						Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single serial line
		5	SM2	R/W	0	and modifies the above as follows. In Modes 2 & 3, if SM2 is set
						then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated
98h	SCON					unless a valid stop bit is received. In Mode 0, SM2 should be 0.
7011	SCON	4	REN	R/W	0	Set 1 to enable UART1 Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and
			KD6	IX/ VV	U	3 or the stop bit is Mode 1 if SM2=0
		1	TI	R/W	0	Transmit Interrupt flag
		1	11	K/W	U	Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W
						Receive Interrupt flag
		0	RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling
						point of the stop bit in other modes. Must be cleared by S/W.
99h	SBUF	7~0	SBUF	R/W		UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are
9911	SBUF	/~0	SBUF	IX/ VV	_	independent.
			PWM1IE I	R/W		PWM1 Interrupt Enable.
		7			0	0: disable
		,				1: enable
						(note: PWMIE must be 1 at the same time to generate PWM interrupt) PWM0 Interrupt Enable
			DITH TOTE	D 411	0	0: disable
		6	PWM0IE	R/W		1: enable
						(note: PWMIE must be 1 at the same time to generate PWM interrupt)
9Eh	PWMOE	2	PWM2OE	R/W		PWM2 enable and signal output to P1.6 pin 0: disable
		2	PWM2OE	K/W	0	1: enable
						PWM1 enable and signal output to P1.3 pin
		1	PWM10E	R/W	0	0: disable
						1: enable
		0	PWM0OE	R/W	0	PWM0 enable and signal output to P1.2 pin 0: disable
		U	F W MOOE	IX/ VV	U	1: enable
						PWM2 Interrupt Enable
		7	PWM2IE	R/W	0	0: disable
		,	1 WWIZIE	10/11	U	1: enable
						(note: PWMIE must be 1 at the same time to generate PWM interrupt) PWM2 clear enable
		2	PWM2CLR	R/W	0	0: PWM2 is running
9Fh	PWMCLR					1: PWM2 is cleared and held
					_	PWM1 clear enable
		1 PWM1CLR R	R/W	0	0: PWM1 is running 1: PWM1 is cleared and held	
					PWM0 clear enable	
	0	PWM0CLR	R/W	0	0: PWM0 is running	
						1: PWM0 is cleared and held
A0h	P2	7~0	P2	R/W	03h	P2 data

DS-TM52eF1375A_75D_E 116 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						PWM2 clock source
		5~4	PWM2CKS	R/W	10	00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 2
Alh	PWMCON	3~2	PWM1CKS	R/W	10	PWM1 clock source 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 2
		1~0	PWM0CKS	R/W	10	PWM0 clock source 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 2
		7~6	P1MOD3	R/W	01	P1.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.3 is ADC input
A2h	P1MODL	5~4	P1MOD2	R/W	01	P1.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.2 is ADC input
71211	TIMODE	3~2	P1MOD1	R/W	01	P1.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.1 is ADC input
		1~0	P1MOD0	R/W	01	P1.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.0 is ADC input
		7~6	P1MOD7	R/W	01	P1.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3
A 21-	DIMODII	5~4	P1MOD6	R/W	01	P1.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3
A3h	P1MODH	3~2	P1MOD5	R/W	01	P1.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.5 is ADC input
		1~0	P1MOD4	R/W	01	P1.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.4 is ADC input
		7~6	P3MOD3	R/W	01	P3.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.3 is ADC input
A4h	P3MODL	5~4	P3MOD2	R/W	01	P3.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.2 is ADC input
A4II	1 MODE	3~2	P3MOD1	R/W	01	P3.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.1 is ADC input
		1~0	P3MOD0	R/W	01	P3.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.0 is ADC input
		7~6	P3MOD7	R/W	00	P3.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
		5~4	P3MOD6	R/W	01	P3.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
A5h	РЗМОДН —	3~2	P3MOD5	R/W	01	P3.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
		1~0	P3MOD4	R/W	01	P3.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						I2C Pin Select
		6	I2CSEL	R/W	0	0: SCL/SDA = P3.4/P3.5
		5	TCOE	R/W	0	1: SCL/SDA = P3.0/P3.1 Set 1 to enable "System clock divided by 2" (CKO) output to P1.4 pin
		4	T2OE	R/W	0	Set 1 to enable "Timer2 overflow divided by 2" (T2O) output to P1.0 pin
		_	120L	10/ 11	- 0	Pin H-sink enable (Group 2: P10~P17)
		3	HSNK2EN	R/W	0	0: Group 2 High-sink disable
A6h	PINMOD					1: Group 2 High-sink enable
		2	HOMETEN	D/W	0	Pin H-sink enable (Group 1: P04 ~P07, P30 ~P33)
		2	HSNK1EN	R/W	0	0: Group 1 High-sink disable 1: Group 1 High-sink enable
						Pin H-sink enable (Group 0: P00~P03, P20, P21, P34~P37)
		1	HSNK0EN	R/W	0	0: Group 0 High-sink disable
						1: Group 0 High-sink enable
		0	T0OE	R/W	0	Set 1 to enable "Timer0 overflow divided by 64" (T0O) output to P3.4 pin
						Specify the first Touch Key channel 00000: TK0 (P3.3)
						00000: TK0 (13.3) 00001: TK1 (P3.2)
						00010: TK2 (P3.1)
A7h						00011: TK3 (P3.0)
						00100: TK4 (P1.0)
						00101: TK5 (P1.1)
						00110: TK6 (P1.2)
	TKCHS					00111: TK7 (P1.3) 01000: TK8 (P1.4)
						01000: 1K8 (P1.4) 01001: TK9 (P1.6)
		4~0	TKCHS	R/W	1Fh	01001: TK9 (F1.0) 01010: TK10 (P1.7)
						01011: TK11 (P3.6)
						01100: TK12 (P3.5)
						01101: TK13 (P3.4)
						01110: TK14 (P1.5)
						01111: TK15 (P3.7)
						10000: TK16 (P0.3)
						10001: TK17 (P0.5)
						10010: TK18 (P0.6) 10011: TK19 (P0.7)
						10111: TK reference capacitor
						Global interrupt enable control.
		7	EA	R/W	0	0: Disable all Interrupts.
		,	LA	IX/ VV	U	1: Each interrupt is enabled or disabled by its own interrupt control
			Ema	D /337		bit.
		5	ET2 ES	R/W R/W	0	Set 1 to enable Timer2 interrupt Set 1 to enable Social Port (UAPTI) Interrupt
A8h	IE	3	ES ET1	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt Set 1 to enable Timer1 Interrupt
						Set 1 to enable external INT1 pin Interrupt & Halt/Stop mode wake
		2	EX1	R/W	0	up capability
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt
		0	EX0	R/W	0	Set 1 to enable external INT0 pin Interrupt & Halt/Stop mode wake up capability
		7	PWMIE	R/W	0	Set 1 to enable PWM0~PWM2 interrupt
		6	I2CE	R/W	0	Set 1 to enable I ² C (master/slave) interrupt
		5	ES2	R/W	0	Set 1 to enable Serial Port (UART2) interrupt
4.01	INTE1	4	SPIE	R/W	0	Set 1 to enable SPI interrupt
A9h		3	ADTKIE	R/W	0	Set 1 to enable ADC/Touch Key Interrupt Set 1 to enable external INT2~INT9 pin Interrupt, Halt/Stop mode
		2	EXLVDIE	R/W	0	wake up capability and LVD interrupt.
		1	P1IE	R/W	0	Set 1 to enable Port1 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt
AAh	ADCDL	7~4	ADCDL	R	_	ADC data bit 3~0
ABh	ADCDH	7~0	ADCDH	R	_	ADC data bit 11~4

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	TKPD	R/W	1	Touch Key Power Down 0: Touch Key enable; 1: Touch Key disable
		6	TKEOC	R	1	Touch Key end of conversion flag 0: Indicates conversion is in progress 1: Indicates conversion is finished
		5	TKRERUN	R/W	0	Touch Key Auto re-start, doesn't need to set TKSOC again to restart TK converter. 0: Auto re-start disable. TKSOC needs to be executed once for each TK conversion 1: Auto re-start enable. After TKSOC is executed once, TK will be converted continuously without re-executing TKSOC
ADh	TKCON	4	TKIVCS	R/W	0	Touch Key internal voltage control select 0: V _{CHG} =2.8V; V _{INT} =1.4V 1: V _{CHG} =3.6V; V _{INT} =1.8V
		3	TKXCAP	R/W	0	Touch Key external capacitor select 0: disable Touch Key external capacitor 1: enable Touch Key external capacitor
		2	TKOFFSET	R/W	0	status of non-scan Touch Key 0: connect to V _{SS} 1: connect to AC shielding, connect to V _{SS} @EOC
		1~0	ATKMODE	R/W	00	Touch Key Scan Mode 00: TK scan method, each channel scan 1 time, max 21 TK channels 01: TK scan method, each channel scan 2 times, max 16 TK channels 10: TK scan method, each channel scan 4 times, max 8 TK channels 11: TK scan method, each channel scan 8 times, max 4 TK channels
AEh	CHSEL	7~4	ADCHS	R/W	1111	ADC channel select 0000: AD0 (P3.3) 0001: AD1 (P3.2) 0010: AD2 (P3.1) 0011: AD3 (P3.0) 0100: AD4 (P1.0) 0101: AD5 (P1.1) 0110: AD6 (P1.2) 0111: AD7 (P1.3) 1000: AD8 (P1.4) 1001: AD9 (P1.5) 1010:Reserved 1011: V _{BG} (Internal Bandgap Reference Voltage) 1100: AD12 (P0.7) 1101: AD13 (P0.5) 1110: AD14 (P0.6) 1111: 1/4 V _{CC}
		3~2	ADCVREFS	R/W	00	ADC reference voltage 00: V _{CC} 01: 2.5V 1x: Reserved
		1	VBGEN	R/W	0	force V_{BG} generator enable 0: V_{BG} generator is automatically enable and disable 1: Force V_{BG} generator enable included in Idle mode but disabled in Halt/Stop mode
AFh	P0ADIE	7~5	P0ADIE	R/W	000	ADC channel input enable 000: P0.7~P0.4 are digital input 1xx: P0.7 is ADC input x1x: P0.6 is ADC input xx1: P0.5 is ADC input
B0h	Р3	7~0	P3	R/W	FFh	Port3 data

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7~6	LEDEN	R/W	00	LED BiD mode enable and duty select 00: LED BiD mode disable 01: LED 1/8 duty (4COM x 4SEG) 10: LED 1/9 duty (4COM x 5SEG) 11: LED 1/10 duty (4COM x 6SEG)
B1h	LEDCON	5~4	LEDPSC	R/W	00	LED clock prescaler select 00: LED clock is FRC divided by 64 01: LED clock is FRC divided by 32 10: LED clock is FRC divided by 16 11: LED clock is FRC divided by 8
		3	LEDHOLD	R/W	0	LED clock hold 0: LED scan 1: LED clock hold
		2~0	LEDBRIT	R/W	111	BiD mode: LED number 0~31, 40~47 brightness control 000: Level 0 (Darkest) 111: Level 7 (Brightest)
B2h		7	LEDBRITM	R/W	0	Brightness smooth control 0: Uniform brightness mode 1: Brightness enhancement mode
	LEDCON2	6~4	LEDBRIT2	R/W	111	BiD mode: LED number 33, 35, 37, 39 brightness control DMX mode: LED number 0~63 brightness control 000: Level 0 (Darkest) 111: Level 7 (Brightest)
		2~0	LEDBRIT1	R/W	111	BiD mode: LED number 32, 34, 36, 38 brightness control 000: Level 0 (Darkest) 111: Level 7 (Brightest)
		7	LEDMTEN	R/W	0	LED DMX mode enable 0: disable 1: enable
		6	LED8EN	R/W	0	LED DMX mode pin enable control 0: LED8 disable 1: LED8 enable
		5	LED7EN	R/W	0	LED DMX mode pin enable control 0: LED7 disable 1: LED7 enable
B3h	LEDCON3	4	LED6EN	R/W	0	LED DMX mode pin enable control 0: LED6 disable 1: LED6 enable LED DMX mode pin enable control
		3	LED5EN	R/W	0	0: LED5 disable 1: LED5 enable LED DMX mode pin enable control
		2	LED4EN	R/W	0	0: LED4 disable 1: LED4 enable LED DMX mode pin enable control
		1	LED3EN	R/W	0	0: LED3 disable 1: LED3 enable LED DMX mode pin enable control
		0	LED2EN	R/W	0	0: LED2 disable 1: LED2 enable
B4h	TKTMRL	7~0	TKTMRL	R/W	FFh	Touch Key Scan length bit 7~0 adjustment. 00: shortest, FF: longest

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Internal Touch Key clock frequency auto adjust option
		7	TKFJMP	R/W	0	0: Disable
						1: Enable
		6~5	JMPVAL	R/W	0	Touch Key Clock frequency fine tune, only available in TKFJMP=0
B5h	TKCON2					00=frequency slowest, 11=frequency fastest
		4	SPREAD	R/W	0	Touch Key spread spectrum 0: Disable
		4	SFREAD	IX/ VV	U	1: Enable
						Touch Key Scan length 11~8 adjustment.
		3~0	TKTMRH	R/W	0	0000: shortest, 1111: longest
		5	PT2	R/W	0	Timer2 Interrupt Priority Low bit
		4	PS	R/W	0	Serial Port (UART1) Interrupt Priority Low bit
B8h		3	PT1	R/W	0	Timer1 Interrupt Priority Low bit
B8h	IP	2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit
	ІРН	5	PT2H	R/W	0	Timer2 Interrupt Priority High bit
		4	PSH	R/W	0	Serial Port (UART1) Interrupt Priority High bit
B9h		3	PT1H	R/W	0	Timer1 Interrupt Priority High bit
D/II		2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit
		1	PT0H	R/W	0	Timer() Interrupt Priority High bit
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit
		7	PPWM	R/W	0	PWM Interrupt Priority Low bit
		6	PI2C	R/W	0	I2C Interrupt Priority Low bit
		5	PS2	R/W	0	Serial Port (UART2) interrupt priority low bit
BAh	IP1	4	PSPI	R/W	0	SPI interrupt priority low bit
		3	PADTKI	R/W	0	ADC/Touch Key Interrupt Priority Low bit
		2	PX2_9LVD	R/W	0	External INT2~INT9 Pin Interrupt Priority Low bit
		1	PP1	R/W	0	Port1 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit
		7	PPWMH	R/W	0	PWM Interrupt Priority High bit
		5	PI2CH	R/W	0	I2C Interrupt Priority High bit
		4	PS2H PSPIH	R/W R/W	0	Serial Port (UART2) interrupt priority high bit SPI interrupt priority high bit
BBh	BBh IP1H	3	PADTKIH	R/W	0	ADC/Touch Key Interrupt Priority High bit
			PX2_9LVDH	R/W	0	External INT2~INT9 Pin Interrupt Priority High bit
		1	PP1H	R/W	0	Port1 Interrupt Priority High bit
		0	PT3H	R/W	0	Timer3 Interrupt Priority High bit
		U	1 1 311	1X/ VV	U	Timers interrupt Friority ringii oit

DS-TM52eF1375A_75D_E 121 Rev 0.93, 2024/5/xx

SPEN R/W 0 0 0 0 0 0 0 0 0	Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
SPSTA SPST							
BCh SPCON			7	SPEN	R/W	0	0: SPI disable
BCh SPCON							1: SPI enable
SPCON SPCO							Master mode enable
SPCON SPCON SPC			6	MSTR	R/W	0	0: Slave mode
SPCON SPCN SPCN Section Se							1: Master mode
BCh SPCON 4 CPHA R/W 0 0: Data sample on first edge of SCK period 1: Data sample on second edge of SCK period 2: Data sample on second edge of SCK period 3: SS pin disable 0: Enable SS pin 1: Disable SS pin 2: LSB first 1: Fsysclus/4 1: Fsysclus/4 1: Fsysclus/4 1: Fsysclus/4 1: Fsysclus/6 SPI interrupt flag 1: Fary Clare first 1: Fsysclus/6 SPI interrupt flag 1: Fary Clare first 2: Fary Clare fir							
BCh SPCON 4 CPHA R/W 0 SPI clock phase 0 Data sample on first edge of SCK period 1: Data sample on second edge of SCK period 1: Data sample on second edge of SCK period SS pin disable 0 Enable SS pin 1: Disable SS pin 1: Disable SS pin 1: LSB first 2 LSBF R/W 0 OS MSB first 1: LSB first 1: LSB first 1: LSB first 1: ESYSCLK/2 10: FSYSCLK/2 10: FSYSCLK/4 10: FSYSCLK/4 10: FSYSCLK/8 11: FSYSCLK/6 SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt flag Write collision interrupt flag Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Modef dault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit or read SPDAT register will clear this flag. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			5	CPOL	R/W	0	
BCh SPCON 4 CPHA R/W 0 0. Data sample on first edge of SCK period 1: Data sample on second edge of SCK period SS pin disable 0: Enable SS pin 1: Disable S							
BCh SPCON SPCON SSPIS SSDIS R/W O O Denable SS pin disable C Denable SS pin Denabl							
BDh SPSTA SSDIS R/W 0 SS pin disable 0. Enable SS pin 1: Disable SS pin 1: Disable SS pin 2: Disable SS pin 2: Disable SS pin 1: Disable SS pin 2: Disable SS pin 1: SB first 1: LSB first 1: LSB first 2: LSB first 3: LSB first 4: Disable SP pin 2: Disable SP pin 3: Disab			4	CPHA	R/W	0	
SSDIS R/W 0 0: Enable SS pin 1: Disable SS pin 1: Disa	BCh	SPCON					
BDh SPSTA Company Com						_	
LSBF R/W 0 LSB first 0: MSB first 1: LSB first 0: F\$\sys\$CLK/2 0: F\$\sys\$CLK/2 0: F\$\sys\$CLK/8 1: F\$\sys\$CLK/2 1:			3	SSDIS	R/W	0	
BDh SPSTA 2 LSBF R/W 0 0: MSB first 1: LSB first 0: LSB first 1: LSPSCLK/2 1: SYSCLK/2 1: SYSCLK/4 10: FsySCLK/4 10: FsySCLK/8 11: FsySCLK/16 SPI interrupt flag 1: FsySCLK/16 SPI interrupt flag 1: Fair 1: FsySCLK/16 SPI interrupt flag 1: Fair 1: FsySCLK/16 SPI interrupt flag 1: Fair 1: Fa							
BDh SPSTA 1-0 SPCR R/W 00 1: LSB first SPI clock rate 00: F _{SYSCLK} /2 10: F _{SYSCLK} /4 10: F _{SYSCLK} /16 SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/when an interrupt is vectored into. Writing 0 to this bit will clear this flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Receive duffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi				LCDE	D ///	0	
BDh SPSTA SPIF R/W 00 SPCR R/W 00 SPI clock rate 00: F _{SYSCLK} /2 01: F _{SYSCLK} /4 10: F _{SYSCLK} /16 SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			2	LSBF	R/W		
BDh SPSTA SPIF R/W 00 00: F _{SYSCLK} /2 01: F _{SYSCLK} /8 11: F _{SYSCLK} /8 11: F _{SYSCLK} /16 SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							
BDh SPSTA SPIF R/W 00 01: F _{SYSCLK} /4 10: F _{SYSCLK} /4 10: F _{SYSCLK} /4 11: F _{SYSCLK} /16 SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or respectively for the spit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the spit of the spi				SPCR			
BDh SPSTA 5 PIF R/W 0 SPIF R/W 0 SPI interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. RCVBF R/W 0 SPBSY R 0 SPI busy flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			1~0		R/W	00	
BDh SPSTA SPIF R/W R/W SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/When an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							
BDh SPSTA SPIF R/W O SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will cleat this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							
BDh SPSTA SPIF R/W 0 This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							
BDh SPSTA SPIF R/W 0 when an interrupt is vectored into. Writing 0 to this bit will clear the flag. Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will cleat this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			7	SPIF	R/W	0	
BDh SPSTA 6 WCOL R/W 0 WCOL R/W 0 Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will cleat this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPDAT register will clear this flag. SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							
BDh SPSTA 5 MODF R/W 0 Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							~
BDh SPSTA 6 WCOL R/W 0 Set by H/W if write data to SPDAT when SPBSY is set. Write 0 this bit or rewrite data to SPDAT when SPBSY is cleared will cleated this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi				6 WCOL F	R/W		
BDh SPSTA 5 MODF R/W 0 this bit or rewrite data to SPDAT when SPBSY is cleared will cleated this flag. Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or respectively buffer will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or respectively buffer will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the spin of th						0	
BDh SPSTA 5 MODF R/W 0 Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag 3 RCVBF R/W 0 Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of the set			6				this bit or rewrite data to SPDAT when SPBSY is cleared will clear
BDh SPSTA 5 MODF R/W 0 Set by H/W when SSDIS is cleared and SS pin is pulled low Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. 4 RCVOVF R/W 0 Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag 3 RCVBF R/W 0 Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of t							this flag.
BDh SPSTA 5 MODF R/W 0 Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. 4 RCVOVF R/W 0 Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. 8 Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of the set							Mode fault interrupt flag
Master mode. Write 0 to this bit will clear this flag. When this bit set, the SPEN and MSTR in SPCON will be cleared by H/W. Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the SPDAT register is used to transmit and receive data.			_	MODE	R/W	0	Set by H/W when SSDIS is cleared and SS pin is pulled low in
4 RCVOVF R/W 0 Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of the set	BDh	SPSTA	3	MODE			Master mode. Write 0 to this bit will clear this flag. When this bit is
4 RCVOVF R/W 0 Set by H/W at the end of a data transfer and RCVBF is set. Write 0 this bit or read SPDAT register will clear this flag. 3 RCVBF R/W 0 Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of the							set, the SPEN and MSTR in SPCON will be cleared by H/W.
this bit or read SPDAT register will clear this flag. Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the spin of							Received buffer overrun flag
Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing			4	RCVOVF	R/W	0	Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to
3 RCVBF R/W 0 Set by H/W at the end of a data transfer. Write 0 to this bit or re SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing the set of the set							this bit or read SPDAT register will clear this flag.
SPDAT register will clear this flag. 2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							Receive buffer full flag
2 SPBSY R 0 SPI busy flag Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			3	RCVBF	R/W	0	Set by H/W at the end of a data transfer. Write 0 to this bit or read
Set by H/W when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi							SPDAT register will clear this flag.
Set by H/w when a SPI transfer is in progress. SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writi			2	SPRSV	P	0	
The SPDAT register is used to transmit and receive data. Writi				ו מם זמ	1/	J	
		SPDAT					
				SPDAT	R/W		
	BEh		7~0			0	data to SPDAT place the data into shift register and start a transfer
							when in master mode. Reading SPDAT returns the contents of the
receive buffer.							receive buffer.

DS-TM52eF1375A_75D_E 122 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	LVDIE	R/W	0	Low Voltage Detect interrupt enable 0: Disable 1: Enable (note: EXLVDIE must be 1 at the same time to generate LVD interrupt)
		6	LVDO	R	-	Low Voltage Detect output
BFh	LVDS	3~0	LVDS	R/W	0	Low Voltage Detect select (Auto disable in Idle/Halt/Stop mode) 0000: Set LVD at 2.5V 0001: Set LVD at 2.6V 0010: Set LVD at 2.7V 0011: Set LVD at 3.0V 0100: Set LVD at 3.1V 0110: Set LVD at 3.1V 0110: Set LVD at 3.3V 1000: Set LVD at 3.4V 1001: Set LVD at 3.6V 1010: Set LVD at 3.7V 1011: Set LVD at 3.8V 1100: Set LVD at 3.9V 1101: Set LVD at 3.9V 1101: Set LVD at 4.0V 1110: Set LVD at 4.2V 1111: Set LVD at 4.3V
C1h	TKPINSEL0	7~0	TKPINSEL0	R/W	00	Touch Key TK7~TK0 Channel Select 0: Normal IO 1: Touch Key
C2h	TKPINSEL1	7~0	TKPINSEL1	R/W	00	Touch Key TK15~TK8 Channel Select 0: Normal IO 1: Touch Key
C3h	TKPINSEL2	7~0	TKPINSEL2	R/W	00	Touch Key TK23~TK16 Channel Select 0: Normal IO 1: Touch Key
C5h	ATKCH0	7~0	ATKCH0	R/W	00	Auto Touch Key TK7~TK0 Channel Select 0: Disable auto scan 1: Enable auto scan
C6h	ATKCH1	7~0	ATKCH1	R/W	00	Auto Touch Key TK15~TK8 Channel Select 0: Disable auto scan 1: Enable auto scan
C7h	ATKCH2	7~0	ATKCH2	R/W	00	Auto Touch Key TK23~TK16 Channel Select 0: Disable auto scan 1: Enable auto scan

DS-TM52eF1375A_75D_E 123 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
			TEC	D /337		Timer2 overflow flag
		7	TF2	R/W	0	Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or
						TCLK=1. This bit must be cleared by S/W. T2EX interrupt pin falling edge flag
		6	EXF2	R/W	0	Set when a capture or a reload is caused by a negative transition on
					,	T2EX pin if EXEN2=1. This bit must be cleared by S/W.
						UART receive clock control bit
		5	RCLK	R/W	0	0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3
						1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3 UART transmit clock control bit
		4	TCLK	R/W	0	0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3
		-				1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3
						T2EX pin enable
G01	TAGON.	3	EXEN2	R/W	0	0: T2EX pin disable
C8h	T2CON					1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0
						Timer2 run control
		2	TR2	R/W	0	0:timer stops
						1:timer runs
			om			Timer2 Counter/Timer select bit
		1	CT2N	R/W	0	0: Timer mode, Timer2 data increases at 2 System clock cycle rate
						1: Counter mode, Timer2 data increases at T2 pin's negative edge Timer2 Capture/Reload control bit
						0: Reload mode, auto-reload on Timer2 overflows or negative
			CPRL2N			transitions on T2EX pin if EXEN2=1.
		0		R/W	0	1: Capture mode, capture on negative transitions on T2EX pin if
						EXEN2=1.
						If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.
						Write 4Ah to enable one byte IAP write to ROM[7A00~7BFF]
						Write 4Ch to enable one byte IAP write to ROM[7C00~7DFF]
		7~0	IAPWE	W	_	Write BAh to enable ERASE 512 byte of ROM[7A00~7BFF]
C9h	IAPWE					Write BCh to enable ERASE 512 byte of ROM[7C00~7DFF]
2,11						Write other value to disable IAP write Flag indicates Flash memory can be written by IAP or not
		7	IAPWE	R	0	0: IAP Write/Erase disable
		'		``		1: IAP Write/Erase enable
						IAP (or EEPROM write) Time-Out flag
C9h	IAPWE	6	IAPTO	R	0	Set by H/W when IAP (or EEPROM write) Time-out occurs.
						Cleared by H/W when IAPWE=0 (or EEPWE=0).
CAh	RCP2L	7~0	RCP2L	R/W		Timer2 reload/capture data low byte
CBh CCh	RCP2H TL2	7~0 7~0	RCP2H TL2	R/W R/W	00h 00h	Timer2 reload/capture data high byte Timer2 data low byte
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data low byte Timer2 data high byte
CEh	EXA2	7~0	EXA2	R/W	00h	Expansion accumulator 2
CFh	EXA3	7~0	EXA3	R/W	00h	Expansion accumulator 3
		7	CY	R/W	0	ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
		5	F0	R/W	0	General purpose user-definable flag
D0h	PSW	4	RS1	R/W	0	Register Bank Select bit 1
DOn	PSW	3	RS0	R/W	0	Register Bank Select bit 0
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
		0	P	R/W	0	Parity flag
D1h	руумапи	75:0	DWWUDH	R/W	80h	PWM0 duty high byte write sequence: PWM0DL then PWM0DH
וווע	PWM0DH	7~0	PWM0DH	R/W	80h	read sequence: PWM0DL then PWM0DL
						PWM0 duty low byte
D2h	PWM0DL	7~0	PWM0DL	R/W	00h	write sequence: PWM0DL then PWM0DH
						read sequence: PWM0DH then PWM0DL

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						PWM1 duty high byte
D3h	PWM1DH	7~0	PWM1DH	R/W	80h	write sequence: PWM1DL then PWM1DH
						read sequence: PWM1DH then PWM1DL
D4h	PWM1DL	7~0	PWM1DL	R/W	00h	PWM1 duty low byte write sequence: PWM1DL then PWM1DH
D411	FWMIDL	/~0	I WWIIDL	10/ 11	OOII	read sequence: PWM1DH then PWM1DL
						PWM2 duty high byte
D5h	PWM2DH	7~0	PWM2DH	R/W	80h	write sequence: PWM2DL then PWM2DH
			1 ,,1,121511		0011	read sequence: PWM2DH then PWM2DL
						PWM2 duty low byte
D6h	PWM2DL	7~0	PWM2DL	R/W	00h	write sequence: PWM2DL then PWM2DH
						read sequence: PWM2DH then PWM2DL
						Slow clock Type. This bit can be changed only in Fast mode
		7	SCKTYPE	R/W	0	(SELFCK=1)
						0: SRC
						1: SXT, P2.0 and P2.1 are crystal pins Fast clock type. This bit can be changed only in Slow mode
						(SELFCK=0).
		6	FCKTYPE	R/W	0	0: FRC
		Ü	TCKTTL	10 11	O	1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for
						FXT
		5	STPSCK	R/W	1	Set 1 to stop SRC clock in PDOWN mode
D8h	CLKCON	4	STPPCK	R/W	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current reducing.
		3	STPFCK	R/W	0	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit
		3	SIPPER	K/ W	U	can be changed only in Slow mode.
		2	SELFCK	R/W		System clock select. This bit can be changed only when STPFCK=0.
					0	0: Slow clock
						1: Fast clock
						System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16
		1~0	CLKPSC	R/W	11	01: System clock is Fast/Slow clock divided by 4
		10	CLKI 5C	10/ 11	11	10: System clock is Fast/Slow clock divided by 2
						11: System clock is Fast/Slow clock divided by 1
						PWM0 period high byte
D9h	PWM0PRDH	7~0	PWM0PRDH	R/W	FFh	write sequence: PWM0PRDL then PWM0PRDH
						read sequence: PWM0PRDH then PWM0PRDL
				.		PWM0 period low byte
DAh	PWM0PRDL	/~0	PWM0PRDL	R/W	FFh	write sequence: PWM0PRDL then PWM0PRDH
						read sequence: PWM0PRDH then PWM0PRDL
DRh	PWM1PRDH	7~.0	DWM1DDDU	R/W	EEP	PWM1 period high byte write sequence: PWM1PRDL then PWM1PRDH
וועע	1 WINIII KDII	,0	1 11 11 ILDII	17/ 44	1111	read sequence: PWM1PRDH then PWM1PRDL
						PWM1 period low byte
DCh	PWM1PRDL	7~0	PWM1PRDL	R/W	FFh	write sequence: PWM1PRDL then PWM1PRDH
	1 *************************************					read sequence: PWM1PRDH then PWM1PRDL
						PWM2 period high byte
DDh	PWM2PRDH	7~0	PWM2PRDH	R/W	FFh	write sequence: PWM2PRDL then PWM2PRDH
						read sequence: PWM2PRDH then PWM2PRDL
DE	DIII (ADDD)	7.0	DUA ASDDDI	D /337	PP	PWM2 period low byte
DEh	PWM2PRDL	/~0	PWM2PRDL	R/W	FFh	write sequence: PWM2PRDL then PWM2PRDL
EOF	ACC	7~0	ACC	D /XI	00h	read sequence: PWM2PRDH then PWM2PRDL Accumulator
E0h	ACC	7~0	ACC	R/W	UUII	Accumulat0l

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
	<u> </u>					Master I ² C enable
		7	MIEN	R/W	0	0: disable
						1: enable
			MIACIZO	D/XX		When Master I ² C receive data, send acknowledge to I ² C Bus
		6	MIACKO	R/W	0	0: ACK to slave device
						1: NACK to slave device Master I ² C Interrupt flag
		5	MIIF	R/W	0	0: write 0 to clear it
		3	141111	10, 11	U	1: Master I ² C transfer one byte complete
						When Master I ² C transfer, acknowledgement form I ² C bus (read only)
E1h	MICON	4	MIACKI	R	_	0: ACK received
						1: NACK received
		3	MISTART	R/W	0	Master I ² C Start bit
		3	WIIS 17 IK I	10/ 11	Ü	1: start I ² C bus transfer
		2	MISTOP	R/W	1	Master I ² C Stop bit
						1: send STOP signal to stop I ² C bus
						Master I ² C (SCL) clock frequency selection 00: Fsys/4 (ex. If Fsys=16MHz, I ² C clock is 4M Hz)
		1~0	MICR	R/W	00	01: Fsys/16 (ex. If Fsys=16MHz, 1°C clock is 4M Hz)
		1~0	WICK	IX/ VV	00	10: Fsys/64 (ex. If Fsys=16MHz, 1 ² C clock is 1M Hz)
						11: Fsys/256 (ex. If Fsys=16MHz, I ² C clock is 62.5K Hz)
) MIDAT	R/W	00	Master I ² C data shift register
						(W): After Start and before Stop condition, write this register will
E2h	MIDAT	7~0				resume transmission to I ² C bus
						(R): After Start and before Stop condition, read this register will
						resume receiving from I ² C bus
						EFT2 Detector enable
		7	EFT2CS	R/W	0	0: Disable
						1: Enable
		6	EFT1CS	R/W		EFT1 Detector enable
					0	0: Disable
		5~4	EFT1S	R/W	0	1: Enable EFT1 Detector sensitivity adjustment
		3~4	EFIIS	K/W	U	Force System clock to Slow clock while EFT detected
		3	EFTSLOW	R/W	0	0: Disable
E5h	ETTCON		21 1020 11	K/W		1: Enable
						CPU enter Wait state while EFT detected
		2	EFTWCPU	R/W	0	0: Disable
						1: Enable
						EFTWAIT output to pin
		1	EFTWOUT	R/W	0	0: P00 = normal I/O
						1: P00 = EFTWAIT
		0	CKHLDE	D /W/	00	Clock hold enable
		0		R/W	00	0: Disable 0: Enable
E6h	EXA	7~0	EXA	R/W	00h	Expansion accumulator
E7h	EXB	7~0	EXB	R/W	00h	Expansion B register
15/II	EAD	7~1	SA	R/W	64h	Slave I'C address assigned
		7.01	БA	IX/ VV	0411	Slave I'C enable
E9h	SIADR	0 O	SIEN	R/W	0	0: disable
			SIEN	K/W	,	
		U	SIEN	K/W	U	1: enable

DS-TM52eF1375A_75D_E 126 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						I ² C Master interrupt enable
		7	MIIE	R/W	0	0: disable
						1: enable
			TVDIE	D/W	0	Slave I*C transmission completed interrupt enable 0: disable
		6	TXDIE	R/W	U	1: enable
						Slave I C DATA2(SITXRCD2) reception completed interrupt enable
		5	RCD2IE	R/W	0	0: disable
						1: enable
	SICON					Slave I℃ DATA1(SIRCD1) reception completed interrupt enable
EAh		4	RCD1IE	R/W	0	0: disable
	510011					1: enable
		2	TVDE	R/W	1	Slave I C transmission completed interrupt flag 0: write 0 to clear it
		2	TXDF	K/W	1	1: Set by H/W when Slave I*C transmission complete
						Slave I ² C DATA2(SITXRCD2) reception completed interrupt flag
		1	D.CDAE	D/W	0	0: write 0 to clear it
		1	RCD2F	R/W	0	1: Set by H/W when Slave I C DATA2(SITXRCD2) reception
						complete enable
			RCD1F	R/W	0	Slave I C DATA1(SIRCD1) reception completed interrupt flag
		0				0: write 0 to clear it
EBh	SIRCD1	7~0	SIRCD1	R		1: Set by H/W when Slave I C DATA1(SIRCD1) reception complete Slave I C data receive register1 (DATA1)
LDII	SIRCDI	7.40	SIRCDI	K		Slave I'C transmit and receive data register
ECh SITXR	SITXRCD2	7~0	SITXRCD2	R/W	_	Read: Slave I ² C data receive register2 (DATA2)
	~					Write: Slave I C data transmission register (TXD)
						Auto turn-on V _{PULL} when Slow modeto Fast mode
		4	AVPULL	R/W	0	0: disable
						1: enable
		2	WARMTIME	D/W	0	Warm up time after Halt/Slow mode 0: 64 Clock
		3	WAKNITINE	IX/ VV		1: 128 Clock
			ENVPULL	R/W	0	Power control, force V _{PULL} enable
EFh	PWRCON	2				0: disable
						1: enable
						Power control, V _{PULL} control at Idle mode
		1	PWRIDLE	R/W	0	0: VDD = LDO @ Idle mode
						1: VDD = V _{PULL} @ Idle mode Power control, V _{PULL} control at Slow mode
		0	PWRSLOW	R/W	0	0: VDD = LDO @ Slow modle
						1: VDD = V _{PULL} @ Slow mode
F0h	В	7~0	В	R/W	00h	B register
Flh	CRCDL	7~0	CRCDL	R/W	FFh	16-bit CRC data bit 7~0
F2h	CRCDH	7~0	CRCDH	R/W	FFh	16-bit CRC data bit 15~8
F3h	CRCIN	7~0	CRCIN	W	-	CRC input data
						Power-on reset control
F4h	PORPD	7~0	PORPD	W	_	00h: POR enable
			TOMB			01h: POR disable Writing other values than 00h or 01h is prohibited.
F5h	CFGBG	3~0	BGTRIM	R/W	_	V _{BG} trimming value (Chip Reserved)
1 311	CFGDG	5.50	DOTKIN	IX/ VV	_	FRC frequency adjustment
F6h	CFGWL	6~0	FRCF	R/W	_	00h: lowest frequency
	02 3 11 2			''		7Fh: highest frequency
						/rn: nignest frequency

DS-TM52eF1375A_75D_E 127 Rev 0.93, 2024/5/xx

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7~6	WDTE	R/W	1	Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 11: WDT always enable
		5	PWRSAV	R/W	-	Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode.
		4	VBGOUT	R/W	0	Bandgap voltage output control 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin
F7h	AUX2	3	DIV32	R/W	0	only active when MULDVI16 =1 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation
		2~1	IAPTE	R/W	00	IAP watchdog timer enable 00: Disable 01: wait 0.8 ms trigger watchdog time-out flag 10: wait 3.2 ms trigger watchdog time-out flag 11: wait 6.4 ms trigger watchdog time-out flag
		0	MULDIV16	R/W	0	0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation
		7	CLRWDT	R/W	0	Set 1 to clear WDT, H/W auto clear it at next clock cycle
		6	CLRTM3	R/W	0	Set 1 to clear Timer3, HW auto clear it at next clock cycle.
		5	TKSOC	R/W	0	Touch Key Start of Conversion Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
		4	ADSOC	R/W	0	ADC Start of Conversion Set 1 to start ADC conversion. Cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
F8h	AUX1	3	LVRPD	R/W	0	Low Voltage Reset function select 0: enable LVR 1: disable LVR
		2	T2SEL	R/W	0	Timer2 counter mode (CT2N=1) input select 0: P1.0 (T2) pin (8051standard) 1:Slow clock divide by 16 (SLOWCLK/16)
		1	T1SEL	R/W	0	Timer1 counter mode (CT1N=1) input select 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)
		0	DPSEL	R/W	0	Active DPTR Select

Adr	Flash	Bit#	Bit Name	Description						
		7	PROTN	Flash Code Protect, 0=Protect						
		6	XRSTEN	External Pin Reset enable, 0=enable.						
				Low Voltage Reset function select						
				000: Set LVR at 2.5V						
			LVRE	001: Set LVR at 2.7V						
		5~3		010: Set LVR at 3.0V						
				011: Set LVR at 3.2V						
7FFFh	CFGWH			100: Set LVR at 3.4V						
				101: Set LVR at 3.7V						
				110: Set LVR at 3.9V						
				111: Set LVR at 4.2V						
		1	MVCLOCKN	If 0, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.						
				FRC frequency select						
		0	FRCPSC	0: 9.216 MHz						
				1: 18.432 MHz						

DS-TM52eF1375A_75D_E 128 Rev 0.93, 2024/5/xx

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes $1\sim8$ System clock cycles to execute as listed in the 'cycle' column below.

ARITHMETIC							
Mnemonic	Description	byte	cycle	opcode			
ADD A,Rn	Add register to A	1	2	28-2F			
ADD A,dir	Add direct byte to A	2	2	25			
ADD A,@Ri	Add indirect memory to A	1	2	26-27			
ADD A,#data	Add immediate to A	2	2	24			
ADDC A,Rn	Add register to A with carry	1	2	38-3F			
ADDC A,dir	Add direct byte to A with carry	2	2	35			
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37			
ADDC A,#data	Add immediate to A with carry	2	2	34			
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F			
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95			
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97			
SUBB A,#data	Subtract immediate from A with borrow	2	2	94			
INC A	Increment A	1	2	04			
INC Rn	Increment register	1	2	08-0F			
INC dir	Increment direct byte	2	2	05			
INC @Ri	Increment indirect memory	1	2	06-07			
DEC A	Decrement A	1	2	14			
DEC Rn	Decrement register	1	2	18-1F			
DEC dir	Decrement direct byte	2	2	15			
DEC @Ri	Decrement indirect memory	1	2	16-17			
INC DPTR	Increment data pointer	1	4	A3			
MUL AB	Multiply A by B	1	8 / 16	A4			
DIV AB	Divide A by B	1	8/16/32	84			
DA A	Decimal Adjust A	1	2	D4			

LOGICAL							
Mnemonic	Description	byte	cycle	opcode			
ANL A,Rn	AND register to A	1	2	58-5F			
ANL A,dir	AND direct byte to A	2	2	55			
ANL A,@Ri	AND indirect memory to A	1	2	56-57			
ANL A,#data	AND immediate to A	2	2	54			
ANL dir,A	AND A to direct byte	2	2	52			
ANL dir,#data	AND immediate to direct byte	3	4	53			
ORL A,Rn	OR register to A	1	2	48-4F			
ORL A,dir	OR direct byte to A	2	2	45			
ORL A,@Ri	OR indirect memory to A	1	2	46-47			
ORL A,#data	OR immediate to A	2	2	44			
ORL dir,A	OR A to direct byte	2	2	42			
ORL dir,#data	OR immediate to direct byte	3	4	43			
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F			
XRL A,dir	Exclusive-OR direct byte to A	2	2	65			
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67			
XRL A,#data	Exclusive-OR immediate to A	2	2	64			
XRL dir,A	Exclusive-OR A to direct byte	2	2	62			
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63			
CLR A	Clear A	1	2	E4			
CPL A	Complement A	1	2	F4			
SWAP A	Swap Nibbles of A	1	2	C4			

DS-TM52eF1375A_75D_E 129 Rev 0.93, 2024/5/xx

LOGICAL							
Mnemonic	byte	cycle	opcode				
RL A	Rotate A left	1	2	23			
RLC A	Rotate A left through carry	1	2	33			
RR A	Rotate A right	1	2	03			
RRC A	Rotate A right through carry	1	2	13			

	DATA TRANSFER							
Mnemonic	Description	byte	cycle	opcode				
MOV A,Rn	Move register to A	1	2	E8-EF				
MOV A,dir	Move direct byte to A	2	2	E5				
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7				
MOV A,#data	Move immediate to A	2	2	74				
MOV Rn,A	Move A to register	1	2	F8-FF				
MOV Rn,dir	Move direct byte to register	2	4	A8-AF				
MOV Rn,#data	Move immediate to register	2	2	78-7F				
MOV dir,A	Move A to direct byte	2	2	F5				
MOV dir,Rn	Move register to direct byte	2	4	88-8F				
MOV dir,dir	Move direct byte to direct byte	3	4	85				
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87				
MOV dir,#data	Move immediate to direct byte	3	4	75				
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7				
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7				
MOV @Ri,#data	Move immediate to indirect memory	2	2	76-77				
MOV DPTR,#data	Move immediate to data pointer	3	4	90				
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93				
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83				
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3				
MOVX A,@DPTR	Move external data(A16) to A	1	4	E0				
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3				
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0				
PUSH dir	Push direct byte onto stack	2	4	C0				
POP dir	Pop direct byte from stack	2	4	D0				
XCH A,Rn	Exchange A and register	1	2	C8-CF				
XCH A,dir	Exchange A and direct byte	2	2	C5				
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7				
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7				

BOOLEAN							
Mnemonic	Mnemonic Description						
CLR C	Clear carry	1	2	C3			
CLR bit	Clear direct bit	2	2	C2			
SETB C	Set carry	1	2	D3			
SETB bit	Set direct bit	2	2	D2			
CPL C	Complement carry	1	2	В3			
CPL bit	Complement direct bit	2	2	B2			
ANL C,bit	AND direct bit to carry	2	4	82			
ANL C,/bit	AND direct bit inverse to carry	2	4	В0			
ORL C,bit	OR direct bit to carry	2	4	72			
ORL C,/bit	OR direct bit inverse to carry	2	4	A0			
MOV C,bit	Move direct bit to carry	2	2	A2			
MOV bit,C	Move carry to direct bit	2	4	92			

DS-TM52eF1375A_75D_E 130 Rev 0.93, 2024/5/xx

BRANCHING							
Mnemonic	Description	byte	cycle	opcode			
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1			
LCALL addr 16	Long jump to subroutine	3	4	12			
RET	Return from subroutine	1	4	22			
RETI	Return from interrupt	1	4	32			
AJMP addr 11	Absolute jump unconditional	2	4	01-E1			
LJMP addr 16	Long jump unconditional	3	4	02			
SJMP rel	Short jump (relative address)	2	4	80			
JC rel	Jump on carry = 1	2	4	40			
JNC rel	Jump on carry $= 0$	2	4	50			
JB bit,rel	Jump on direct bit = 1	3	4	20			
JNB bit,rel	Jump on direct bit $= 0$	3	4	30			
JBC bit,rel	Jump on direct bit = 1 and clear	3	4	10			
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73			
JZ rel	Jump on accumulator = 0	2	4	60			
JNZ rel	Jump on accumulator $\neq 0$	2	4	70			
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4	B5			
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4	B4			
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF			
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7			
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF			
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5			

MISCELLANEOUS						
Mnemonic	Description	byte	cycle	opcode		
NOP	No operation	1	2	00		

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

DS-TM52eF1375A_75D_E 131 Rev 0.93, 2024/5/xx

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	V_{SS} $-0.3 \sim V_{SS}$ $+5.5$	
Input voltage	V_{SS} $-0.3 \sim V_{CC} + 0.3$	V
Output voltage	V_{SS} -0.3 ~ V_{CC} +0.3	
All pins output current high	-80	A
All pins output current low	+150	mA
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +105	°C
Storage temperature	−65 ~ +150	

DS-TM52eF1375A_75D_E 132 Rev 0.93, 2024/5/xx

2. DC Characteristics ($T_A=25$ °C, $V_{CC}=2.5V \sim 5.5V$)

Parameter	Symbol	Co	onditions	Min	Тур	Max	Unit				
Operating Voltage	V_{CC}	F _{SYSCLK}	x=18.432 MHz	2.5	_	5.5	V				
Input High	3.7	A 11 T	V _{CC} =5V	0.6V _{CC}	_	_	V				
Voltage	V_{IH}	All Input	V _{CC} =3V	0.6V _{CC}	_	_	V				
Y . Y . Y . 1.	***	A 11 T	V _{CC} =5V	_	_	$0.2V_{CC}$	V				
Input Low Voltage	$ m V_{IL}$	All Input	V _{CC} =3V	_	_	0.2V _{CC}	V				
I/O Port Source	I_{OH}	All Output	V_{CC} =5V, V_{OH} =0.9V _{CC}	5.5	11	-	mA				
Current	*OH	7 III Output	V_{CC} =3V, V_{OH} =0.9V $_{CC}$	2.5	5	_	III I				
		All Output,	V_{CC} =5V, V_{OL} =0.1V $_{CC}$	60	80	_					
I/O Port Sink	T	HSNKxEN=1	$V_{CC}=3V$, $V_{OL}=0.1V_{CC}$	15	30	_					
Current	I_{OL}	All Output,	$V_{CC}=5V$, $V_{OL}=0.1V_{CC}$	20	40	_	mA				
		HSNKxEN=0	$V_{CC}=3V$, $V_{OL}=0.1V_{CC}$	10	20	_					
		Fast mode V _{CC} =5V	FRC=18.432 MHz	_	3.2	_	A				
		Fast mode V _{CC} =3V	FRC=18.432 MHz	_	3	_	mA				
						V _{CC} =5V	_	190	_		
			Slow mode	V _{CC} =3V	_	160	_				
		Idle mode	SRC, V _{CC} =5V	_	150	_					
		PWRSAV=0	SRC, V _{CC} =3V	_	135	_					
		Idle mode	SRC, V _{CC} =5V	_	132	_					
		PWRSAV=1 PWRIDLE=0	SRC, V _{CC} =3V	_	125	-					
		Idle mode	SRC, V _{CC} =5V	_	27	_					
Supply Current	I_{DD}	PWRSAV=1 PWRIDLE=1	SRC, V _{CC} =3V	_	12	_					
		Halt mode	V _{CC} =5V	_	60	-	μΑ				
		PWRSAV=0 *PORPD=1	V _{CC} =3V	_	50	_					
		Halt mode	V _{CC} =5V	_	11	_					
		PWRSAV=1 *PORPD=1	V _{CC} =3V	_	4	_					
		Stop mode	V _{CC} =5V	_	56	_					
		PWRSAV=0 *PORPD=1	V _{CC} =3V	_	47	_					
		Stop mode	V _{CC} =5V	_	7.7	_					
						PWRSAV=1 *PORPD=1	V _{CC} =3V	_	1.5	_	
		*Enable POR will increase power consumption by about 14~15 μA.									
System Clock Frequency	F _{SYSCLK}	V _{CC} >LVR _{TH}	V _{CC} =2.5V	_	_	18.432	MHz				

DS-TM52eF1375A_75D_E 133 Rev 0.93, 2024/5/xx

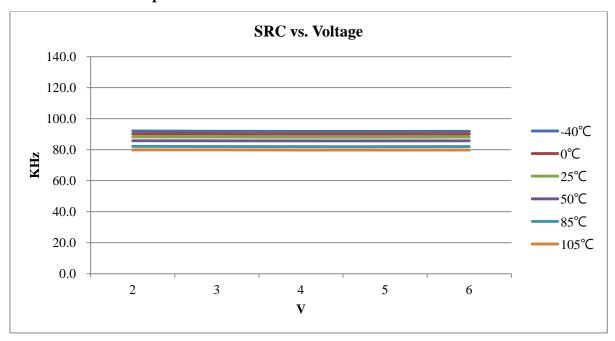
Parameter	Symbol	C	onditions	Min	Тур	Max	Unit
				_	4.2	_	
				_	3.9	_	
				_	3.7	_	
LVR Reference	N/		2500	_	3.4	_	177
Voltage	V_{LVR}		$\Gamma_{\rm A}$ =25°C	_	3.2	_	V
				_	3.0	_	
				_	2.7	_	
				_	2.5	_	
LVR Hysteresis Voltage	V _{HYST}	7	F _A =25°C	_	±0.1	_	V
				_	4.3	_	
				_	4.2	_	
		$ m V_{LVD}$ $ m T_A=25^{\circ}C$	_	4.0	_	V	
			_	3.9	_		
			_	3.8	_		
			_	3.7	_		
	$V_{ m LVD}$		_	3.6	_		
LVD Reference			_	3.4	_		
Voltage			_	3.3	_		
			_	3.2	_		
			_	3.1	_		
				_	3.0	_	
				_	2.8	_	1
				_	2.7	_	
				_	2.6	-	
				_	2.5	_	
Low Voltage Detection time	t _{LVR}	T _A =25°C		100	_	_	μs
Power on Reset Voltage	V _{POR}	T _A =25°C		2.2	2.4	2.6	V
	D	V -0V	V _{CC} =5V		35		KO
Pull-Up Resistor	R_{P}	$V_{IN}=0V$	V _{CC} =3V	_	55	_	ΚΩ

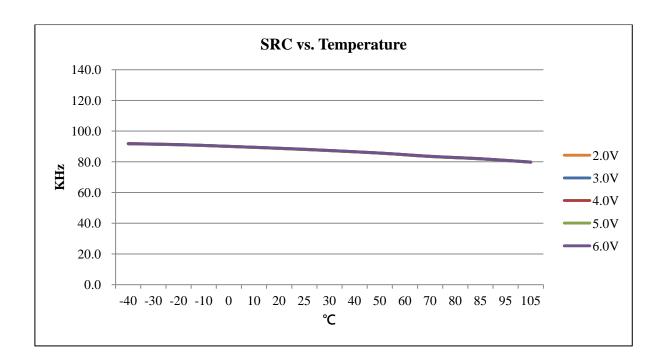
3. Clock Timing $(T_A = -40^{\circ}\text{C} \sim +105^{\circ}\text{C})$

Parameter	Condition	Min	Тур	Max	Unit
FRC Frequency	25°C, V _{CC} =5.0V	-1%	18.432	+1%	
	-40 °C ~ 105 °C, $V_{CC} = 5.0$ V	-2%	18.432	+1.5%	MHz
	$25^{\circ}\text{C}, V_{\text{CC}}=2.5\text{V} \sim 5.0\text{V}$	-2%	18.432	+1%	MHz
	-40°C ~ 105°C, V _{CC} =2.5 ~ 5.0V	-5%	18.432	+2%	

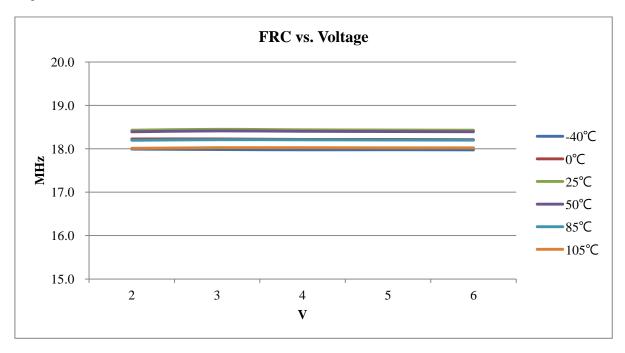
4. Reset Timing Characteristics $(T_A = -40$ °C ~ +105°C)

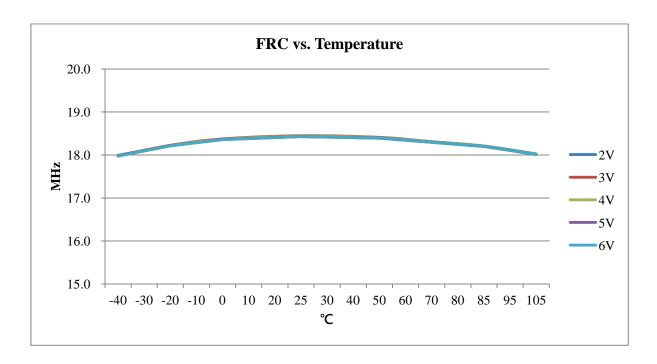
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input V_{CC} =5V \pm 10 %	30	-	-	μs
WDT wakeup time	V _{CC} =5V, WDTPSC=11	_	55	-	
	V _{CC} =3V, WDTPSC=11	_	57	-	ms


5. ADC Electrical Characteristics ($T_A=25^{\circ}C$, $V_{CC}=3.0V\sim5.5V$, $V_{SS}=0V$)

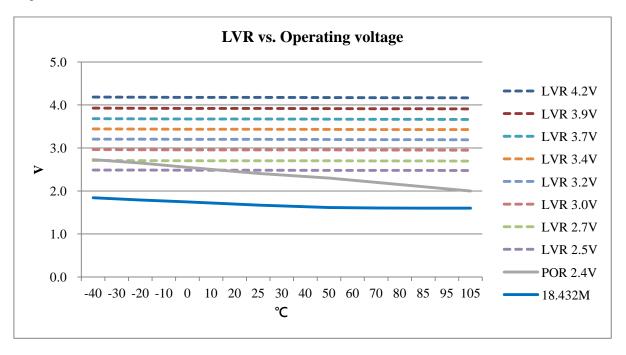

Parameter	Co	Min	Тур	Max	Unit	
Total Accuracy	V -5	_	±2.5	±4	LSB	
Integral Non-Linearity	$V_{CC}=5$.	_	±3.2	±5		
	Source impeda	_	_	2	MHz	
May Input Clask (f	Source impedance (Rs < 20K omh)		_	_		1
Max Input Clock (f _{ADC})	Source impeda	_	_	0.5		
	Source is V _B	_	_	0.5		
Conversion Time	F_{AD}	_	50	_	μs	
Bandgap Reference Voltage (V_{BG})	-	V _{CC} =3V~5.5V -40°C ~105°C	-1.5%	1.22	+1.5%	
ADC Reference Voltage (V_{ADC})	ADCVREFS=1	V _{CC} =3V~5.5V 40°C ~105°C	-1.5%	2.5	+1.5%	
V _{CC} /4 Reference Voltage		V _{CC} =5V, 25°C	-0.8%	1.26	+0.8%	V
$(V_{1/4})$	$V_{\rm CC}=3.6{\rm V}, 25^{\circ}$		-0.8%	0.907	+0.8%	
Input Voltage		V_{SS}	_	V_{CC}		

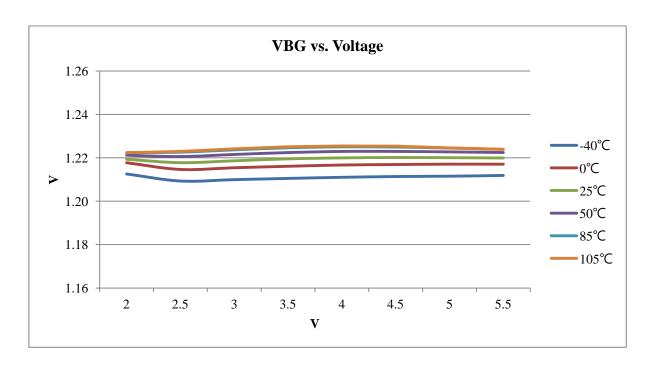
DS-TM52eF1375A_75D_E 135 Rev 0.93, 2024/5/xx


6. Characteristic Graphs



DS-TM52eF1375A_75D_E 136 Rev 0.93, 2024/5/xx





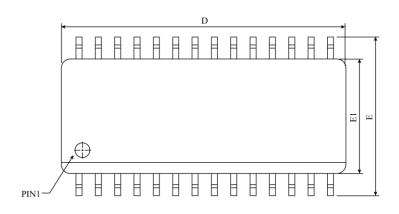
DS-TM52eF1375A_75D_E 137 Rev 0.93, 2024/5/xx

DS-TM52eF1375A_75D_E 138 Rev 0.93, 2024/5/xx

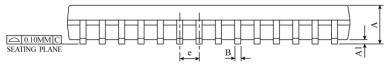
Package and Dice Information

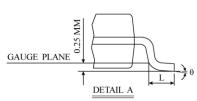
Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

Ordering information

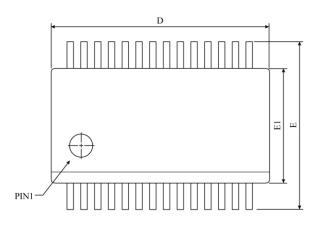

Ordering number	Package		
TM52eF1375A-MTP	Wafer/Dice blank chip		
TM52eF1375A-COD	Wafer/Dice with code		
TM52eF1375A-MTP-23	SOP 28-pin (300 mil)		
TM52eF1375A-MTP-21	SOP 20-pin (300 mil)		
TM52eF1375A-MTP-16	SOP 16-pin (150 mil)		
TM52eF1375A-MTP-29	SSOP 28-pin (150 mil)		
TM52eF1375DMTP	Wafer/Dice blank chip		
TM52eF1375D-COD	Wafer/Dice with code		
TM52eF1375D-MTP-23	SOP 28-pin (300 mil)		
TM52eF1375D-MTP-21	SOP 20-pin (300 mil)		
TM52eF1375D-MTP-16	SOP 16-pin (150 mil)		
TM52eF1375D-MTP-29	SSOP 28-pin (150 mil)		

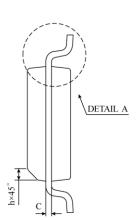
DS-TM52eF1375A_75D_E 139 Rev 0.93, 2024/5/xx

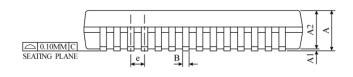


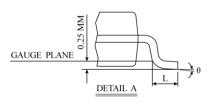

Package Information

SOP-28 (300mil) Package Dimension

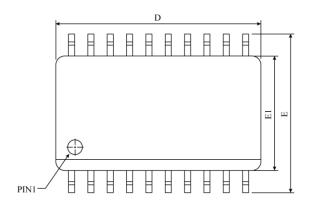


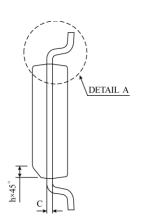

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	17.70	17.90	18.10	0.6969	0.7047	0.7125
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e	1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AE)					

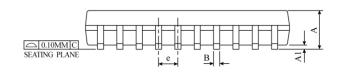

DS-TM52eF1375A_75D_E 140 Rev 0.93, 2024/5/xx

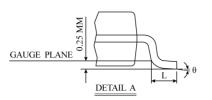


SSOP-28 (150mil) Package Dimension

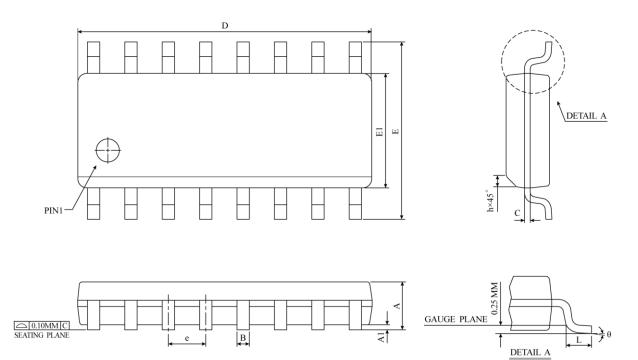

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
SIMBUL	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.50	1.65	1.80	0.06	0.06	0.07	
A1	0.102	0.176	0.249	0.004	0.007	0.010	
A2	1.40	1.475	1.55	0.06	0.06	0.06	
В	0.20	0.25	0.30	0.01	0.01	0.01	
С	0.2TYP			0.008TYP			
e	0.635TYP			0.025TYP			
D	9.804	9.881	9.957	0.386	0.389	0.392	
Е	5.842	6.020	6.198	0.230	0.237	0.244	
E1	3.86	3.929	3.998	0.152	0.155	0.157	
L	0.406	0.648	0.889	0.016	0.026	0.035	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137(AF)						


⚠*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS. MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.


DS-TM52eF1375A_75D_E 141 Rev 0.93, 2024/5/xx



SOP-20 (300mil) Package Dimension


SYMBOL	DIMENSION IN MM			DIN	DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						

riangle * Notes : Dimension " d" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.15 MM (0.006 Inch) Per Side.

DS-TM52eF1375A_75D_E 142 Rev 0.93, 2024/5/xx

SOP-16 (150mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e	1.27 BSC			0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AC)						

riangle * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM52eF1375A_75D_E 143 Rev 0.93, 2024/5/xx