

TM52F5024 DATA SHEET Rev 0.94

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
		Modify EEPROM characteristic
V0.90	Apr, 2024	Modify Power On description
		Modify Pin Assignment/Ordering information
		Add QFN20/QFN24 Pin Assignment/Ordering information
V0.91	May, 2024	Modify SOP16 Pin Assignment/Ordering information
		Modify EEPROM description /Characteristic
V0.92	Jun, 2024	Modify QFN24 Package Dimension
		Modify EEPROM write example Code
V0.93	Jun, 2024	Modify VBG 1.2V to 1.18V and VBG 1.18V description for use
		Modify ADC VBG reference voltage to 1.18V/2.5V
V0.94	Jul, 2024	Modify ADC Block Diagram

CONTENTS

AMENDMENT HISTORY	2
GENERAL DESCRIPTION	6
BLOCK DIAGRAM	6
FEATURES	7
PIN ASSIGNMENT	10
PIN DESCRIPTION	
PIN SUMMERY	
FUNCTIONAL DESCRIPTION	14
1. CPU Core	14
1.1 Accumulator (ACC)	14
1.2 B Register (B)	
1.3 Stack Pointer (SP)	15
1.4 Dual Data Pointer (DPTRs)	15
1.5 Program Status Word (PSW)	16
2. Memory	17
2.1 Program Memory	
2.1.1 Program Memory Functional Partition	18
2.1.2 Flash ICP Mode	19
2.1.3 Flash IAP Mode	19
2.1.4 IAP Mode Access Routines	19
2.1.5 Flash ISP Mode	21
2.2 Information Memory	
2.3 EEPROM Memory	24
2.4 Data Memory	
2.4.1 IRAM	
2.4.2 XRAM	
2.4.3 SFRs	
3. LVR and LVD setting	
4. Reset	
4.1 Power on Reset	
4.2 External Pin Reset	
4.3 Software Command Reset	
4.4 Watchdog Timer Reset	
4.5 Low Voltage Reset	

5.	Clock Circuitry & Operation Mode	36
	5.1 System Clock	36
	5.2 Operation Modes	38
6.	Interrupt & Wake-up	40
	6.1 Interrupt Enable and Priority Control	41
	6.2 Suggestions on interrupting subroutines	41
	6.3 Pin Interrupt and LVD interrupt	44
	6.4 Idle mode Wake up and Interrupt	48
	6.5 Halt/Stop mode Wake up and Interrupt	48
7.	I/O Ports	50
	7.1 Port0~Port 3	50
8.	Timers	57
	8.1 Timer0 / Timer1	57
	8.2 Timer2	60
	8.3 Timer3	62
9.	UARTs	63
10	. PWMs	66
11	ADC	79
	11.1 ADC Channels	80
	11.2 ADC Conversion Time	80
12	. S/W Controller LCD Driver	84
13	. Cyclic Redundancy Check (CRC)	86
14	. Multiplier and divider	87
15	. Master I C Interface	89
16	. In Circuit Emulation (ICE) Mode	93
SFR	& CFGW MAP	94
SFR	& CFGW DESCRICPTION	97
INST	TRUCTION SET 1	10
ELE	CTRICAL CHARACTERISTICS1	.13
1.	Absolute Maximum Ratings1	13
2.	DC Characteristics	13
3.	Clock Timing	16
4.	Reset Timing Characteristics	16
5.	ADC Electrical Characteristics	16
6.	EEPROM Characteristics	16

7. 0	Characteristic Graphs 1	17
Packag	ge and Dice Information1	.20

GENERAL DESCRIPTION

TM52_{series} F5024 are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the TM52 executes instructions six times faster than the standard 8051 architecture.

The **TM52-F5024** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 16K Bytes Flash program memory, 512 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD driver, 2 set 16-bit PWMs, 22 channels 12-bit A/D Convertor, I²C interface and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 16K Bytes (TM52F5024)
- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability
- 100 erase times at least
- 10 years data retention at least

3. 256 Bytes EEPROM Memory

- 30K erase times at least
- 10 years data retention at least

4. Total 512 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 256 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

5. Two System Clock type selections

- Fast clock from Internal RC (FRC, 18.432 MHz)
- Slow clock from Internal RC (SRC,75 KHz)
- System Clock can be divided by 1/2/4/16 option

6. 8051 Standard Timer – Timer0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1
- 16-bit Timer2, also supports T2O clock output for Buzzer application

7. 15-bit Timer3

- Clock source is Slow clock or FRC/512
- Interrupt period can be clock divided by

262144/131072/65536/32768/16384/8192/4096/2048/1024/512/256/128/64/32/16/8 option

8. UARTs

- UART1, 8051 standard UART
- UART2, the second UART
- With UART pin select option

- 9. Two independent 16 bits PWMs with period-adjustment
 - With PWM0/PWM1 Interrupt
- 10. I²C interface (Master)
- 11. 12-bit ADC with 22 channels External Pin Input and 2 channels Internal Reference Voltage
 - Internal Reference Voltage: V_{BG} 2.5V @V_{CC}=5V~2.5V, 25°C
 - Internal Reference Voltage: 1/4V_{CC}, V_{CC}/201
 - ADC VBG reference voltage = 1.18V/2.5V

12. LCD Driver

- Software controlled COM00~05, COM10~17, COM30~37 (Max. 22 pins)
- 1/2 LCD Bias

13. 14 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 pin Falling-Edge/Low-Level Interrupt
- All Pin Change Wake up Interrupt from Halt/Stop mode
- UART1/UART2 TX/RX Interrupt
- LVD Interrupt
- ADC Interrupt
- I²C Interrupt
- EEP write Finish Interrupt
- PWM0/PWM1 Interrupt

14. Pin Interrupt can Wake up CPU from Halt/Stop mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake up
- Each pin can be defined as Wake up interrupt pin (by pin change)

15. Max. 22 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up / Pull-down can be Enabled or Disabled
- All pin with high sink (70mA@ V_{CC} =5V · V_{OL} =0.1 V_{CC})

16. Independent RC Oscillating Watch Dog Timer

• 220ms/110ms/54ms/27ms selectable WDT timeout options

17. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

18. 16-level Low Voltage Detect

4.12V/3.94V/3.0V/3.63V/3.50V/3.32V/3.18V/3.03V/
2.87V/2.71V/2.56V/2.40V/2.26V/2.11V/1.95V/1.79V

19. 16-level Low Voltage Reset

4.12V/3.94V/3.0V/3.63V/3.50V/3.32V/3.18V/3.03V/
2.87V/2.71V/2.56V/2.40V/2.26V/2.11V/1.95V/1.79V

20. Five Power Operation Modes

• Fast/ Slow/ Idle/ Halt/ Stop mode

21. Integrated 16-bit Cyclic Redundancy Check function

22. Multiplication and division

- 8-bit Multiplier & Divider (standard 8051)
- 16-bit Multiplier & Divider
- 32-bit ÷ 16-bit Divider

23. On-chip Debug/ICE interface

- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin

24. Operating Voltage and Current

- $V_{CC} = 2.4V \sim 5.5V @F_{SYSCLK} = 18.432MHz (-40°C ~ +105°C)$
- $I_{CC} = 0.1 \mu A$ @Stop mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 3\mu A$ @Halt mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 5\mu A$ @Idle mode, PWRSAV=1, $V_{CC}=3V$

25. Operating Temperature Range

• $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$

26. Package Types

- 24-pin SSOP (150 mil), 24-pin QFN (3x3x0.75 mm) (L=0.3 mm)
- 20-pin SOP (300 mil), 20-pin QFN (3x3x0.75 mm) (L=0.25 mm)
- 20-pin TSSOP (173 mil)
- 16-pin SOP (150 mil)

PIN ASSIGNMENT

For low power applications, all digital I/Os (including unbonding or unused) should avoid high-impedance settings.

PIN DESCRIPTION

Name	In/Out	Pin Description
P0.0~P0.5 P1.0~P1.7 P3.0~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up and Pull-down resistors are assignable by software, so it can also be set to LCD 1/2 bias output. These pin's level change can interrupt/wake up CPU from Halt/Stop mode.
INT0, INT1	Ι	External low level or falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data.
TXD2	I/O	UART2 Mode1/3 transmit data.
T0, T1, T2	Ι	Timer0, Timer1, Timer2 event count pin input.
T2EX	Ι	Timer2 external trigger input.
TOO	0	Timer0 overflow divided by 64 output
T2O	0	Timer2 overflow divided by 2 output
СКО	0	System Clock divided by 2 output
VBGO	0	Bandgap voltage output
PWM0P~PWM0N PWM1P~PWM1N PWM2~PWM5	0	16 bit PWM output
SC00~SC05 SC10~SC17 SC30~SC37		The pull-up resistor and pull-down resistor are turned on at the same time as LCD COM 1/2 bias output
AD00~AD22	Ι	ADC input
SCL	I/O	I ² C SCL
SDA	I/O	I ² C SDA
PSCL	I/O	I ² C SCL for program
PSDA	I/O	I ² C SDA for program
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable.
VCC, VSS	Р	Power input pin and ground

PIN SUMMERY

I	Pin 1	num	ber	•					Inp	out		Outp	out	P	Alte	rnat	e	other
SSOP-24/QFN24	QFN20	SOP20/TSSOP-20	SSOP-20	SOP-16	Pin Name	Type	Initial State	Pull_up	Pull_down	Wakeup	Ext. Interrupt	CMOS	Open-Drain	LCD	UART	PWM	IIC	
3	2	2	14	12	SCL/PSCL/RXD(TXD)/SC30/AD17/P3.0	I/O	Hi-Z	•	•	•	•	٠	•	•	•		•	
4	3	3	15	13	SDA/PSDA/TXD(RXD)/SC31/AD18/P3.1	I/O	Hi-Z	•	•	٠	•	٠	•	•	٠		•	
7	4	6	18	14	INTO/RXD(TXD)/PWM0N/SC32/AD22/P3.2	I/O	Hi-Z	•	•	۲	•	•	•	•	٠	•		VBGO
8	6	8	19	15	INT1/TXD(RXD)/PWM0P/SC33/AD21/P3.3	I/O	Hi-Z	•	•	٠	•	٠	•	•	٠	•		
11	8	10	2	11	SCL/PSCL /RXD2(TXD2)/PWM0N/SC00/AD00/P0.0	I/O	Hi-Z	•	•	•	•	•	•	•	٠	•	•	
12	9	11	3	10	SDA/PSDA /TXD2(RXD2)/PWM0P/SC01/AD01/P0.1	I/O	Hi-Z	•	•	•	•	٠	•	•	٠	٠	•	
13	10	12	-	2	RXD2(TXD2)/PWM2/SC02/AD02/P0.2	I/O	Hi-Z	•	•	٠	•	•	•	•	٠	•		
14	11	_	-	_	TXD2(RXD2)/PWM3/SC03/AD03/P0.3	I/O	Hi-Z	•	•	•	•	٠	•	•	•	•		
15		_	_	_	PWM4/SC04/AD04/P0.4	I/O	Hi-Z	•	•	•	•	•	•	•		•		
16		_	-	—	PWM5/SC05/AD05/P0.5	I/O	Hi-Z	•	٠	•	•	•	•	٠		٠		
17	12	13	4	3	RST/PWM1P/SC37/AD06/P3.7	I/O	Hi-Z	•	•	•	٠	•	•	•		٠		Reset
18	13	14	5	4	TXD2(RXD2)/PWM0P/SC36/AD07/P3.6	I/O	Hi-Z	•	•	•	•	•	•	٠	•	٠		
19	14	15	6	5	RXD2(TXD2)/PWM0N/SC35/AD08/P3.5	I/O	Hi-Z	•	•	•	•	•	•	•	•	•		
20	15	16	7	6	T0/PWM1N/SC34/AD09/P3.4	I/O	Hi-Z	•	•	•	•	•	•	•		٠		T0O
21	16	17	8	7	T2O/T2/PWM2/SC10/AD10/P1.0	I/O	Hi-Z	•	•	•	٠	•	•	•		٠		T2O
22	17	18	9	8	T2EX/PWM3/SC11/AD11/P1.1	I/O	Hi-Z	•	•	•	•	•	٠	٠		٠		
23	18	19	10	9	PWM4/SC12/AD13/P1.2	I/O	Hi-Z	•	•	•	•	•	•	•		•		
24	19	20	11	—	PWM5/SC13/AD14/P1.3	I/O	Hi-Z	•	•	•	•	•	•	٠		٠		
1	20	—	12	—	CKO/PWM1N/SC14/AD15/P1.4	I/O	Hi-Z	•	•	•	•	•	•	•		٠		СКО
2	1	1	13	_	PWM0N/SC15/AD16/P1.5	I/O	Hi-Z	•	•	•	•	•	•	•		•		
5		4	16	-	PWM0P/SC16/AD19/P1.6	I/O	Hi-Z	•	•	•	•	•	•	•		٠		
6		5	17	_	PWM1N/SC17/AD20/P1.7	I/O	Hi-Z	•	٠	•	•	•	•	•		•		
9	5	7	1	1	VSS	Р												
10	7	9	20	16	VCC	Р												

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 ACC: Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
SP		SP													
R/W		R/W													
Reset	0	0	0	0	0	1	1	1							

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
DPL		DPL												
R/W		R/W												
Reset	0	0	0	0	0	0	0	0						

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
DPH	DPH													
R/W		R/W												
Reset	0	0	0	0	0	0	0	0						

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag		Inst
instruction	С	OV	AC	11150
ADD	Х	Х	Х	CLR C
ADDC	Х	Х	Х	CPL C
SUBB	Х	Х	Х	ANL C
MUL	0	X		ANL C
DIV	0	Х		ORL C
DA	Х			ORL C
RRC	Х			MOV C
RLC	Х			CJNE
SETB C	1			

Instruction		Flag	
Instruction	С	OV	AC
CLR C	0		
CPL C	Х		
ANL C, bit	Х		
ANL C, /bit	Х		
ORL C, bit	Х		
ORL C, /bit	Х		
MOV C, bit	Х		
CJNE	Х		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

D0h.6 **AC:** ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

- D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:
 - 00: Bank 0 (00h~07h)
 - 01: Bank 1 (08h~0Fh)
 - 10: Bank 2 (10h~17h)
 - 11: Bank 3 (18h~1Fh)
- D0h.2 **OV:** ALU overflow flag
- D0h.1 **F1:** General purpose user-definable flag
- D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

									-								
													W	PS			
									1	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
]	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
										Р	F1	OV	RS0	RS1	FO	AC	CY
_												$\overline{\ }$					
1174			ık 3	Baı	gister	Reg											
IFN	R7	R6	R5	R4	R3	R2	R1	R0	18h	.]			D		-		
171			1k 2	Bar	gister	Reg					RS0 Bank			81			
1/h	R7	R6	R5	R4	R3	R2	R1	R0	10h		3		1	1			
		1	ık 1	Bar	gister	Reg				-	2)	(1			
0Fh	R7	R6	R5	R4	R3	R2	R1	R0	08h		1		1	0			
			ık O	· Bar	gister	Reg				\square	0)	(0			
07h	R7	R6	R5	R4	R3	R2	R1	R0									
J		1	1				<u> </u>		00h								

2. Memory

As the standard 8051, the Chip has Internal and External Data Memory space. The Internal Data Memory space consists of 256 bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 256 bytes XRAM, 256 bytes EEPROM, 64 bytes INFO memory and 16K bytes Program memory, which can be only accessed by MOVX instruction, Program memory also can be accessed by MOVC instruction.

2.1 Program Memory

The Chip has a 16K Bytes Flash program memory which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 100 cycles. The program memory address continuous space (0000h~3FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 16 bytes (3FF0h~3FFFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~007Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. For **TM52F5024**, the address space 3000h~3FEFh is defined as the IAP area. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 2D00h~2FFFh for ICE System communication.

The **CFGW area** has 4 data bytes (CFGWH, CFGWL, CFGBG1 and CFGBG2), which is located at the last 16 addresses of Flash memory. CFGWL is copied to the SFR F6h, CFGBG1 is copied to the SFR F5h and CFGBG2 is copied to the SFR E4h after power on reset, software then take over CFGWL's,

CFGBG1's and CFGBG2's control capability by modifying the SFR F6h, F5h and E4h. For example, after power-on reset, VBG initially uses 2.5V Trimming value. To use VBG1.18V, the F/W needs to read the SFR E4h (VBG 1.18V trimming value) and copy it to SFR F5h.

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1

2.1.3 Flash IAP Mode

The **TM52F5024** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **TM52F5024** does not need to erase one Flash page before write.

Both write 47h and 74h to IAPWE_SFR (C9h.7~0) can let IAPWE=1, the difference is when user write 47h to IAPWE_SFR, user can write one byte at once, when user write 74h to IAPWE_SFR, user can write two byte at once to save write time.

To use IAP function, user need to meet the following condition:

- 1. Only User Code area can be written by IAP
- 2. Set IAPALL=1 and IAPWE=1

The **TM52F5024** has a true EEPROM memory. It has the wider writing voltage range and the better write endurance than Flash memory. It is recommended to use EEPROM memory to store application data first.

The **CFGW area** has 3 data bytes (CFGWH, CFGWL and CFGBG), which is located at the last 16 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGBG can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F6h and CFGBG is copied to the SFR F5h after power on reset, software then take over CFGWL's and CFGBG's control capability by modifying the SFR F6h and F5h.

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0000h~3FFEh), and the ACC contains the data being written. The **TM52F5024** accepts IAP write command only when IAPWE=1. Flash IAP writing one byte requires approximately 1 ms @V_{CC}=5V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. The **TM52F5024** has a build-in IAP Time-out function IAPTE (F7h.2~1) for escaping write fail state. Flash IAP writing needs higher V_{CC} voltage, V_{CC}>4.0V and WDT disabled to avoid false writing.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0000h~3FFEh area. A Flash IAP read does not require extra CPU wait time.

; IAP exar	nple code (ASM)	
; need 4.0	$V < V_{CC} < 5.5V$	
ANL	AUX2, #3Fh	; WDT function disable
ORL	AUX2, #04h	; IAP Time-Out function enable
MOV	DPTR, #3F00h	; DPTR=3F00h=target IAP address
CLR	EA	; Disable Interrupt
ORL	LVRCON,#10h	; Disable LVR
MOV	SWCMD, #65h	; IAPALL flag =1
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	IAPWE_SFR, #47h	; IAP write enable
MOVX	@DPTR, A	; Flash[3F00h] =5Ah, after IAP write
		; 0.5ms~1ms H/W writing time, CPU wait
MOV	IAPWE_SFR, #00h	; IAP write disable, immediately after IAP write
CLR	А	; A=0
MOVC	A, @A+DPTR	; A=5Ah
; IAP exar	nple code (C)	

; need $4.0V < V_{CC} < 5.5V$ unsigned char xdata *pMOVX; unsigned char code *pMOVC; // Disable Interrupt EA = 0;AUX2 = 0x04;// WDT function disable & IAP Time-Out function enable IAPALL = 0x65; IAPWE_SFR = 0x47; pMOVX = 0x2002;// write data into ROM (0x2002) *pMOVX = wData; IAPWE_SFR = 0x00; IAPALL = 0x00; pMOVC = 0x2105;rData = *pMOVC; // read data from ROM (2105)

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SWCMD										
SWCMD		WDTO	IAPALL							
R/W			R	R						
Reset			0	0						
97h.7~0	97h 7~0 JAPALL (W): Write 65h to set JAPALL control flag. Write other value to clear JAPALL flag. It is									

97h.7~0 **IAPALL (W):** Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.

97h.0 IAPALL (R): Flag indicates Flash memory sectors can be accessed by IAP or not.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
IAPWE_SFR		IAPWE_SFR											
	IAPWE	IAPTO	EEPWE	INFOWE	EEPTO								
R/W	R	R	R	R	R		W						
Reset	0	0	0	0	0								

C9h.7~0 **IAPWE (W):** Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE. It's recommended to clear it immediately after IAP write.

Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It's recommended to clear it immediately after IAP write

Write E2h to set EEPWE flag; Write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write.

C9h.7 IAPWE (R): Flag indicates Flash memory can be written by IAP or not, 1=IAP Write enable.

C9h.6 **IAPTO (R):** IAP Time-Out flag, Set by H/W when IAP Time-out occurs. Cleared by H/W when IAPWE=0

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	ЭΤE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 6.9 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 27 ms trigger watchdog time-out flag, and escape the write fail state

11: wait 55 ms trigger watchdog time-out flag, and escape the write fail state

2.1.5 Flash ISP Mode

The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

2.2 Information Memory

The Chip has a 64 words Information memory. The Information memory address continuous space (E500h~E53Fh) is partitioned to several sector for device operation. Chip Info area is tenx reserved defined as production information, such as ID, Special Regulations, Code Num, checksum. User can store new checksum code in this area after Flash IAP. CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

Info Rom IAP Write is simply achieved by a "MOVX @DTPR, A" instruction while the DPTR contains the target Info ROM (E500h~E53Fh) address, and the ACC contains the data being written. Info ROM writing requires approximately 0.6 ms $@V_{CC}=4V\sim5.5V$, VCC capacitance greater than 200uF. During the period of IAP, the CPU stays in waiting state, but all peripheral modules (Timers and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. The chip has a build-in write Time-out function selected by IAPTE (E7h.2~1) to escape write fail state. Besides, S/W must disable WDT before IAP write.

Info Rom IAP Read only can be performed by the "MOVX" instruction as long as the target address points to E500h~E53Fh area. A Info TOM IAP read does not require extra CPU wait time.

; Info ROI	M IAP example code	
; need 4.0	$V < V_{CC} < 5.5V$	
ANL	AUX2, #3Fh	; WDT function disable
ORL	AUX2, #04h	; IAP Time-Out function enable
MOV	DPTR, #E530h	; DPTR=E530h=target IAP Info ROM address
CLR	EA	; Disable Interrupt
ORL	LVRCON,#10h	; Disable LVR
MOV	SWCMD, #65h	; IAPALL flag =1
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	IAPWE_SFR, #A1h	; Info ROM IAP write enable
MOVX	@DPTR, A	; Flash[E530h] =5Ah, after IAP write
		; 0.5ms~1ms H/W writing time, CPU wait
MOV	IAPWE_SFR, #00h	; IAP write disable, immediately after IAP write
CLR	А	; A=0
MOVC	A, @A+DPTR	; A=5Ah

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IAPWE_SFR									
IAPWE_SFR	IAPWE	IAPTO	EEPWE	INFOWE	EPTO		_		
R/W	R	R	R	R	R		W		
Reset	0	0	0	0	0		_		

C9h.7~0 **IAPWE (W):** Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE. It's recommended to clear it immediately after IAP write.

Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It's recommended to clear it immediately after IAP write

Write E2h to set EEPWE flag; Write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write

C9h.6 **IAPTO (R):** IAP Time-Out flag, Set by H/W when IAP Time-out occurs. Cleared by H/W when INFOWE=0.

C9h.4 **INFOWE(R):** Flag indicates Info ROM can be written by IAP or not, 1=Write INFO enable.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 WDTE: Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 6.9 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 27 ms trigger watchdog time-out flag, and escape the write fail state

11: wait 55 ms trigger watchdog time-out flag, and escape the write fail state

2.3 EEPROM Memory

The **TM52F5024** contains 256 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written.

	EEPROM Memory
EE00h	EEPROM[0]
EE01h	EEPROM[1]
EE02h	
EEFEh	EEPROM[254]
EEFFh	EEPROM[255]

2.3.1 The Precaution of EEPROM Programming

2.3.1.1 The Programming Characteristics of EEPROM

- (1) The EEPROM programming time is not fixed. Programming different data requires different times.
- (2) The programming time is affected by voltage, temperature, and whether the data is inverted. The programming time is longer for higher temperatures, lower VCC and larger number of data inversion during EEPROM programming after the completion of EEPROM programming.
- (3) This chip has a built-in EEPROM write time-out function to ensure that the system can execute the program normally when write time-out occurred.

2.3.1.2 EEPROM Write Endurance

The number of times of EEPROM programming is related to voltage and temperature. The write endurance is at least 30,000 times(2.5V < VCC < 5.5V, $-20^{\circ}C \sim 85^{\circ}C$). Please refer to the table of "EEPROM Characteristics" in the chapter of "ELECTRICAL CHARACTERISTICS

2.3.1.3 EEPROM Write Validation

Depending on the specific application, it is generally required to read back the data written into EEPROM for verification

2.3.1.4 Protection against Miswriting

When a write operation is initiated, the following operations can prevent miswriting:

- (1) Low voltage detection: when writing EEPROM, VCC must be >2.5V, you can use the LVD function to monitor the voltage. (LVD monitoring voltage is recommended to be 3.5V to prevent power outage and allow sufficient time for writing EEPROM)
- (2) Clear the watchdog (WDT) every time a byte is written to prevent the watchdog from being reset when multiple bytes are written sequentially.
- (3) When writing data, temporarily turn off all of the interrupt and resume them after the completion of writing.
- (4) Software failure: add EEPROM read-back mechanism to the program to ensure that data is written correctly.
- (5) Timeout protection: enable the write timeout function (EEPTE) in the program to protect the system from getting stuck when write time-out occurred.
- (6) To reduce power supply glitches: connect capacitors between VCC and GND to stabilize the system power supply.
- (7) Must confirm that EEPBUSY changes from 1 to 0 before writing the next byte.

The EEPROM Write usage is similar to Flash IAP mode. It is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target EEPROM address (EE00h~EEFEh), and the ACC contains the data being written. EEPROM writing requires approximately 6 ms @V_{CC}=2.7V, 1.2 ms @V_{CC}=5V. Meanwhile, the CPU and all peripheral modules (Timers and others) continue running during the writing time.

There is also a writing method that can write 1~4 bytes of data to a specified address at a time. S/W Write the data to be written to EEPROM into EEPWD0~EEPWD3 (SFR 9Ah~9Dh) in advance, and write the starting address to be written into EEPROM into EEPWADR (SFR 9Eh), then add the number of data to be written and H/W Write the control signal to start writing to EEPWCON[2:0](SFR AEh) H/W to write data into EEPROM. The CPU and all peripheral modules (timers, etc.) can continue to run during the write.

TM52F5024 has a built-in EEPROM watchdog timer (shared with the IAP watchdog timer) to exit the stuck state when writing fails. After the writing is completed or the writing time is too long (the EEPROM watchdog timer needs to be turned on), the interrupt flag EEPIF will be generated. The software can use this interrupt or poll EEPBUSY to know whether the EEPROM writing is completed. EEPIF is automatically cleared when the program executes the interrupt service routine. The interrupt service routine needs to check EEPTO to determine whether the writing is completed (EEPTO=0) or failed (EEPTO=1). Writing EEPROM data requires VCC > 3.0V and WDT is turned off to avoid accidental writing.

The EEPROM Read can be performed by the "MOVX A, @DPTR" instruction as long as the target address points to the EE00h~EEFEh area. The EEPROM read does require approximately 300ns.

, EEF KOW CAMPIC COUC	; EEPROM	example	code
-----------------------	----------	---------	------

nplete

; EEPRON	M H/W 写入 1~4 byte exa	mple code
; 需要 3.0	$V < V_{CC} < 5.5V$	-
ANL	AUX2, #3Fh	; WDT function disable
ORL	AUX2, #04h	; EEPROM Time-Out function enable
MOV	EEPWD0, #12h	; 1 st byte data
MOV	EEPWD1, #34h	; 2 nd byte data
MOV	EEPWD2, #56h	; 3 rd byte data
MOV	EEPWD3, #78h	; 4 th byte data
MOV	EEPWADR, #A0h	; H/W write EEPROM start address
MOV	EEPWCON, #03h	; set EEPWCON[2]=1, H/W start write data to EEPROM
		; set EEPWCON[1:0] write to EEPROM byte number
		; 1ms~6ms H/W writing time, CPU does not need wait

Note: IAP write/read Flash/Info ROM or write/read EEPROM can only be used outside or inside the interrupt. If the IAP write/read Flash/Info ROM or write/read EEPROM are used both inside and outside the interrupt, it may cause errors.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IADWE SED	IAPWE_SFR										
IAF WE_SFK	IAPWE	IAPTO	EEPWE	INFOWE	EPTO	_					
R/W	R	R	R	R	R	W					
Reset	0	0	0	0	0	—					
C9h.7~0 IAPWE (W): Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE. It's recommended to clear it immediately after IAP write.											
Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It's recommended to clear											

it immediately after IAP write

Write E2h to set EEPWE flag; Write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write

C9h.5 **EEPWE(R):** Flag indicates EEPROM can be written by IAP or not, 1=Write EEPROM enable.

C9h.3 **EEPTO (R):** EEPROM write Time-Out flag, Set by H/W when EEPROM write Time-out occurs. Cleared by H/W when EEPWE=0.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 WDTE: Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 6.9 ms trigger watchdog time-out flag, and escape the write fail state

10: wait 27 ms trigger watchdog time-out flag, and escape the write fail state

11: wait 55 ms trigger watchdog time-out flag, and escape the write fail state

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EEPWD0		EEPWD0								
R/W		W								
Reset							_			

9Ah.7~0 **EEPWD0:** The first byte data to EEPROM

SFR 9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EEPWD1		EEPWD1								
R/W		W								
Reset	-	—	—	-	-	—	—	—		
001 7 0	DEDIVD 1	701 11	. 1							

9Bh.7~0 **EEPWD1:** The second byte data to EEPROM

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EEPWD2		EEPWD2								
R/W		W								
Reset	_	_	_	_	_	_	_	_		

9Ch.7~0 **EEPWD2:** The third byte data to EEPROM

SFR 9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EEPWD3		EEPWD3							
R/W		W							
Reset	—	—	—	—	—	—	—	-	

9Dh.7~0 **EEPWD3:** The fourth byte data to EEPROM

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
EEPWADR		EEPWADR									
R/W		W									
Reset	_	_	_	_	_	_	_	_			
051 7 0	EEDWADD	T 1 1 ·	• 11	6 · · · ·							

9Eh.7~0 **EEPWADR:** The beginning address of write to EEPROM

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEPWCON	_	_	_			HWSTART	HWI	LEN
R/W	_				_	W	W	W
Reset	_		_		_	0	0	0

HWSTART: H/W start write to EEPROM control signal AEh.2

0: disable H/W write EEPROM

1: enable H/W write EEPROM, H/W clear it after write finish

HWLEN: the byte length write to EEPROM when HWSTART set to 1 AEh.1~0

00: 1 byte

01: 2 bytes 10: 3 bytes 11: 4 bytes

2.4 Data Memory

As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 256 Bytes XRAM, 256 Bytes EEPROM and IAP Flash, which can be only accessed by MOVX instruction.

2.4.1 IRAM

IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.4.2 XRAM

XRAM is located in the 8051 external data memory space (address from FF00h to FFFFh). The 256 Bytes XRAM can be only accessed by "MOVX" instruction.

2.4.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/LCD, which are unique to the Chip.

-	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN	TESTMODE	CFGBG1	CFGWL	AUX2
E8h						PCL	PCH	AUX3
E0h	ACC	MICON	MIDAT	LVRCON	CFGBG2	EFTCON	EXA	EXB
D8h	CLKCON	PWM0PRDH	PWM0PRDL	PWM1PRDH	PWM1PRDL	PWM3DH	PWM3DL	RDCTL
D0h	PSW	PWM0DH	PWM0DL	PWM1DH	PWM1DL	PWM2DH	PWM2DL	
C8h	T2CON	IAPWE_SF R	RCP2L	RCP2H	TL2	TH2	EXA2	EXA3
C0h		PWM4DH	PWM4DL	PWM5DH	PWM5DL			
B8h	IP	IPH	IP1	IP1H				LVDSEL
B0h	P3						ADCHS	
A8h	IE	INTE	ADCDL	ADCDH			EEPWCON	PWMCON3
A0h	P2	PWMCON	PINMOD10	PINMOD32	PINMOD54	PINMOD76	PINMOD	PWMCON2
98h	SCON	SBUF	EEPWD0	EEPWD1	EEPWD2	EEPWD3	EEPWADR	UART2CON
90h	P1	PORTIDX		UARTCON	OPTION	INTFLG	INTPIN	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SCON2	SBUF2
80h	P0	SP	DPL	DPH	INTE2	INTPORT	INTPWM	PCON

3. LVR and LVD setting

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 16-level LVD can be selected by CFGWH and 16-level LVR can be selected by SFR LVRSEL. The SFR PWRSAV/LVRPD bits also affect LVR function as tables below. After the program STARTUP, the first instruction in main requires a new LVR setting.

Operation	SI	FR	CFGWH	LVD	Function	Note
Mode	LVRPD	PWRSAV	LVRE	LVK	Function	Note
	0	Х	0000	ON	LV Reset 1.79V	
	0	Х	0001	ON	LV Reset 1.95V	
	0	Х	0010	ON	LV Reset 2.11V	
	0	Х	0011	ON	LV Reset 2.26V	
	0	Х	0100	ON	LV Reset 2.40V	
	0	Х	0101	ON	LV Reset 2.56V	
	0	Х	0110	ON	LV Reset 2.72V	
Fast	0	Х	0111	ON	LV Reset 2.87V	
Slow	0	Х	1000	ON	LV Reset 3.03V	
	0	Х	1001	ON	LV Reset 3.18V	
	0	Х	1010	ON	LV Reset 3.32V	
	0	Х	1011	ON	LV Reset 3.50V	
	0	Х	1100	ON	LV Reset 3.63V	
	0	Х	1101	ON	LV Reset 3.80V	
	0	Х	1110	ON	LV Reset 3.94V	
	0	Х	1111	ON	LV Reset 4.12V	
	0	0	0000	ON	LV Reset 1.79V	
	0	0	0001	ON	LV Reset 1.95V	
	0	0	0010	ON	LV Reset 2.11V	
	0	0	0011	ON	LV Reset 2.26V	
	0	0	0100	ON	LV Reset 2.40V	
	0	0	0101	ON	LV Reset 2.56V	
T 11	0	0	0110	ON	LV Reset 2.72V	
Idle	0	0	0111	ON	LV Reset 2.87V	Current consumption
Halt	0	0	1000	ON	LV Reset 3.03V	about 70uA
	0	0	1001	ON	LV Reset 3.18V	
	0	0	1010	ON	LV Reset 3.32V	
	0	0	1011	ON	LV Reset 3.50V	
	0	0	1100	ON	LV Reset 3.63V	
	0	0	1101	ON	LV Reset 3.80V	
	0	0	1110	ON	LV Reset 3.94V	
	0	0	1111	ON	LV Reset 4.12V	
Idle	0	1	XXXX	ON	Disable LVR Enable POR 1.6V	Current consumption about 16uA
Stop Halt	0	1	XXXX	OFF	Disable	*Minimum Current consumption 0.1uA
Fast Slow Idle	1	Х	XXXX	ON	Disable LVR Enable POR 1.6V	Current consumption about 16uA
Stop Halt	1	X	XXXX	OFF	Disable	*Minimum Current consumption 0.1uA

Note: The current consumption of Halt mode is more than Stop mode about 5.5~23uA, because SRC is enabled.

F7h.5

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

PWRSAV: chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDM	LVDO	_	LVDPD		LVD	SEL	
R/W	R/W	R		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	CFGWH[4:1]			

BFh.7 LVDM:

0: Vcc < VLVD (LVDIF=1 while LVDO=1) 1: Vcc > VLVD (LVDIF=1 while LVDO=0)

BFh.6 LVDO: Low Voltage Detect output

BFh.4 **LVDPD:** Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode) 0: enable

1: disable

BFh.4 LVDSEL: Low voltage detect (LVD) select

0000: set LVD at 1.79V 0001: set LVD at 1.95V 0010: set LVD at 2.11V 0011: set LVD at 2.26V 0100: set LVD at 2.40V 0101: set LVD at 2.56V 0110: set LVD at 2.71V 0111: set LVD at 2.87V 1000: set LVD at 3.03V 1001: set LVD at 3.18V 1010: set LVD at 3.32V 1011: set LVD at 3.50V 1100: set LVD at 3.63V 1101: set LVD at 3.80V 1110: set LVD at 3.94V 1111: set LVD at 4.12V

SFR E3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVRCON		PORPD_SAV	PORPD	LVRPD		L	VRSEL	
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	1	0	0	0	0	0	0
E3h.6	PORPD_S	SAV: POR di	sable at Sto	op mode				
	0: POR en	able, 1: POR	disable					
E3h.5	PORPD:	POR Power	Down					
	0: POR er	nable, 1: POR	disable					
E3h.4	LVRPD:	LVR Power I	Down					
	0: LVR en	able, 1: LVR	disable					
E3h.3~0	LVRSEL:	Low voltage	Reset sleec	t				
	0000: se	et LVR at 1.7	9V					
	0001: se	et LVR at 1.9	5V					
	0010: se	et LVR at 2.1	1V					
	0011: se	et LVR at 2.2	6V					
	0100: se	et LVR at 2.4	0V					
	0101: se	et LVR at 2.5	6V					
	0110: se	et LVR at 2.7	1V					
	0111: se	et LVR at 2.8	7V					
	1000: se	et LVR at 3.0	3V					
	1001: se	et LVR at 3.1	8V					
	1010: se	et LVR at 3.3	2V					
	1011: se	et LVR at 3.5	0V					
	1100: se	et LVR at 3.6	3V					
	1101: se	et LVR at 3.8	0V					
	1110: se	et LVR at 3.9	4V					
	1111: se	et LVR at 4.1	2					

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from ROM's last eight bytes. The Power on Reset needs VCC pin's voltage first discharge to near V_{SS} level, then rise beyond 2.2V. Power-on reset can be enabled/disabled (non-Halt/Stop mode) by PORPD (SFR E3h.5). Under the condition of CFGWH [5] =0, when the chip enters Halt/Stop mode, power-on reset can also be enable/disable by setting PORPD_SAV (SFR E3h.6).

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Halt/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 16-level LVR can be selected by LVRCON (E3h.3~0) and 16-level LVD can be selected by SFR LVDS. When PWRSAV (SFR F7h.5) = 1, LVR will be disabled when enter IDLE/HALT/STOP mode. The first instruction is to set LVR level after STARTUP in main program.

SFR E3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVRCON	—	PORPD_SAV	PORPD	LVRPD		L/	/RSEL	
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	—	1	0	0	0	0	0	0
E3h.6	PORPD_S	SAV: POR di	sable at Sto	op mode				
	0: POR en	able, 1: POR	disable					
E3h.5	PORPD:	POR Power	Down					
	0: POR er	nable, 1: POR	disable					
E3h.4	LVRPD:	LVR Power I	Down					
	0: LVR en	able, 1: LVR	disable					
E3h.3~0	LVRSEL:	Low voltage	Reset sleec	t				
	0000: se	et LVR at 1.7	9V					
	0001: se	et LVR at 1.9	5V					
	0010: se	et LVR at 2.1	1V					
	0011: se	et LVR at 2.2	6V					
	0100: se	et LVR at 2.4	0V					
	0101: se	et LVR at 2.5	6V					
	0110: se	et LVR at 2.7	1V					
	0111: se	et LVR at 2.8	7V					
	1000: se	et LVR at 3.0	3V					
	1001: se	et LVR at 3.1	8V					
	1010: se	et LVR at 3.3	2V					
	1011: se	et LVR at 3.5	0V					
	1100: se	et LVR at 3.6	3V					
	1101: se	et LVR at 3.8	0V					
	1110: se	et LVR at 3.9	4V					
	1111: se	et LVR at 4.1	2					

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4		Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDT	WDTPSC		CKS		—
R/W	_	R/W	R/	W	R/	W		—
Reset		0	0	0	0	0		_

94h.5~4 WDTPSC: Watchdog Timer pre-scalar time select

00: 220 ms WDT overflow rate

01: 110 ms WDT overflow rate

10: 55 ms WDT overflow rate

11: 27 ms WDT overflow rate

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	EEPIF	EEPBUSY	ADIF	—		PCIF	TF3
R/W	R/W	R/W	R	R/W	—		R/W	R/W
Reset	0	0	0	0	_	_	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD				IAPEN/	SWRST			
R/W			V	V			R/W	R/W
Reset			-	_			-	0

97h.7~0 SWRST: Write 56h to generate S/W Reset

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.5 **PWRSAV:** chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	CLRPWM0	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	1	0	0	0

F8h.7 **CLRWDT:** Set to clear WDT, H/W auto clear it at next clock cycle

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock is FRC (Fast Internal RC, 18.432 MHz). The Slow clock is SRC (Slow Internal RC, 75 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 75 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, an 18 MHz System clock rate requires V_{CC} 2.4V.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by PINMODE SFR (*see section 7*).

Clock Structure

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock. Also refer to AP-TM52XXXXX_01S and AP-TM52XXXXX_02S about System Clock Application Note.

	CLKCO	N (D8h)
SYSCLK	bit3	bit2
	STPFCK	SELFCK
Fast FRC	0	1
Slow SRC	0/1	0
Stop FRC	$0 \rightarrow 1$	0
Switch to FRC	0	$0 \rightarrow 1$
Switch to SRC	0	$1 \rightarrow 0$

Flash 3FFDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_				FRCTRIM			

CFGWL FRCTRIM: FRC frequency adjustment.

FRC is trimmed to 18.432 MHz in chip manufacturing. FRCF records the adjustment data. After Power on, CFGWL will be uploaded to SFR F6h

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
FRCF	_				FRCF				
R/W	—		R/W						
Reset		—	—	-	-	-	—	-	

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	-	-	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	-	-	R/W	R/W	R/W	R/W	R/W	
Reset	-	-	1	0	0	0	1	1

D8h.5 STPSCK: Set 1 to stop Slow clock in PDOWN mode

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0. 0: Slow clock

1: Fast clock

D8h.1~0 CLKPSC: System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

D8h.4 **STPPCK:** Set 1 to stop UARTs/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

5.2 Operation Modes

There are five operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR and STPSCK is set. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up.

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt. In this mode, Timer3 clock source can only choose Slow clock, not FRC/512.

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, n=0~1) *Note:* FW must turn off Bandgap to obtain Tiny Current (VBGOUT=0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	—	—	GF1	GF0	PD	IDL
R/W	R/W	—	—	—	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.1	PD: Power down	control bit, set 1 to	o enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CLKCON	-	-	STPSCK	STPPCK	STPFCK	SELFCK	CLK	CLKPSC			
R/W	-	-	R/W	R/W	R/W	R/W	R/	W			
Reset	-	-	1	0	0	0	1	1			
D8h.5	STPSCK: Se	et 1 to stop S	low clock in	PDOWN mo	ode						
D8h.4	STPPCK: S	STPPCK: Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing.									
	If set, only T	If set, only Timer3 and pin interrupts are alive in Idle Mode.									
D8h.3	STPFCK: S	STPFCK: Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only									
	in Slow mod	e.		-	-						
D8h.2	SELFCK: S	ystem clock	source select	ion. This bit	can be chang	ed only wher	n STPFCK=0).			
	0: Slow clo	ck									
	1: Fast cloc	k									
D8h.1~0	CLKPSC: S	ystem clock	prescaler. Eff	fective after 16	clock cycles	(Max.) delay.					
	00: System	clock is Fast	/Slow clock	divided by 10	5						
	01: System	clock is Fast	/Slow clock	divided by 4							
	10: System	clock is Fast	/Slow clock	divided by 2							
	11: System	clock is Fast	/Slow clock	divided by 1							

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		—	_
R/W	_	R/W	R/	R/W		R/W		—
Reset	_	0	0	0	0	0	—	_

94h.6 TM3CKS: Timer3 Clock Source select

0: Slow clock (SRC)

1: FRC/512 (36KHz)

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.4 **VBGOUT:** Bandgap voltage output to P3.2

0: Disable

1: Enable

6. Interrupt & Wake-up

This Chip has a 14-source four-level priority interrupt structure. Only the Pin Interrupts can wake up CPU from Halt/Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

INT Vector	NT Num C51	Flag	Description
0003	0	IE0	INT0 external pin Interrupt (can wake up Halt/Stop mode)
000B	1	TF0	Timer0 Interrupt
0013	2	IE1	INT1 external pin Interrupt (can wake up Halt/Stop mode)
001B	3	TF1	Timer1 Interrupt
0023	4	RI+TI	Serial Port (UART1) Interrupt
002B	5	TF2+EXF2	Timer2 Interrupt
0033	6	_	Reserved for ICE mode use
003B	7	TF3	Timer3 Interrupt
0043	8	PCIF	Port0~Port3 external pin change Interrupt (can wake up Halt/Stop mode)
004B	9	LVDIF	LVD interrupt
0053	10	ADIF	ADC Interrupt
005B	11	EEPIF	EEP Write Finish Interrupt
0063	12	RI2+TI2	Serial Port (UART2) Interrupt
006B	13	MIIF	Master I ² C interrupt
0073	14	PWM0IF + PWM1IF	PWM0~ PWM1 Interrupt

Interrupt Vector & Flag

INT Vector	INT Num C51	Flag	INT Enable	Sub INT enable	INT Flag
0003	0	IE0	IE A8.0		TCON 88.1
000B	1	TF0	IE A8.1		TCON 88.5
0013	2	IE1	IE A8.2		TCON 88.3
001B	3	TF1	IE A8.3		TCON 88.7
0023	4	RI+TI	IE A8.4		SCON 98.1~0
002B	5	TF2+EXF2	IE A8.5		T2CON C8.7~6
0033	6	_			
003B	7	TF3	INTE1 A9.0		INTFLG 95.0
0043	8	PCIF	INTE1 A9.1		INTFLG 95.1
004B	9	LVDIF	INTE1 A9.2		INTFLG 95.7
0053	10	ADIF	INTE1 A9.3		INTFLG 95.4
005B	11	EEPIF	INTE1 A9.4		INTFLG 95.6
0063	12	RI2+TI2	INTE1 A9.5		SCON 8E.1~0
006B	13	MIIF	INTE1 A9.6		MICON E1.5
0073	14	PWM0IF+ PWM1IF	INTE1 A9.7	INTE2 84.0 INTE2 84.1	INTPWM 86.0 INTPWM 86.1

Interrupt related SFR

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

6.2 Suggestions on interrupting subroutines

When entering the interrupt program, in addition to the traditionally known SFR A or PSW that should be PUSH, POP, some SFRs used for indexing should also be added to the ranks of PUSH POP, such as PORTIDX. To avoid writing and reading these SFRs before and after the interruption may cause inconsistencies. In addition, PWMDH, PWMDL, PWMPRDH or PWMPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
INTE2			_		—		PWM1IE	PWM0IE			
R/W	_	_	_	_	—		R/W	R/W			
Reset	_	_	_	_	_		0	0			
84h.1	PWM1IE: F	WM1 Interr	upt Enable								
	0: disable										
	1: enable (n	ote: PWMIE	E must be 1 at	t the same ti	me to generat	e PWM inter	rupt)				
84h.0	PWM0IE: F	WM0 Interr	upt Enable								
	1: enable (n	ote: PWMIE	must he 1 at	the same ti	me to generat	e PWM inter	runt)				
	T. Chable (I						Tupt)				
SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0			
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0 - 0 0 0 0 0 0										
A8h.7	7 EA: Global interrupt enable control.										
	0: Disable all Interrupts.										
	1: Each inte	errupt is enab	oled or disable	ed by its ind	ividual interr	upt control b	it				
A8h.5	ET2: Timer2	2 interrupt en	able								
	0: Disable	Fimer2 interr	rupt								
	1: Enable T	imer2 interru	upt								
A8h.4	ES: Serial Po	ort (UART1)	interrupt ena	ıble							
	0: Disable S	Serial Port (U	JART1) inter	rupt							
	1: Enable S	erial Port (U	ART1) interr	rupt							
A8h.3	ET1: Timer1	l interrupt en	able								
	0: Disable	Timer1 interr	rupt								
	1: Enable T	imer1 interru	upt								
A8h.2	EX1: Extern	al INT1 pin I	Interrupt enal	ole and Halt	/Stop mode w	ake up enabl	e				
	0: Disable l	INT1 pin Inte	errupt and Ha	lt/Stop mod	e wake up						
	1: Enable 1	INT1 pin Int	errupt and H	Ialt/Stop mo	ode wake up,	it can wake	e up CPU fro	om Halt/Stop			
	mode no m	atter EA is 0	or 1.								
A8h.1	ET0: Timer() interrupt en	able								
	0: Disable	Timer0 interr	rupt								
	1: Enable T	imer0 interru	ıpt								

A8h.0 **EX0:** External INTO pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INT0 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	EEPIE	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
A9h.7	PWMIE: PV	WM0~PWM2	2 interrupt en	able				
	0: Disable l	PWM0~PWN	M2 interrupt					
	1: Enable P	WM0~PWN	12 interrupt					
A9h.6	I2CE: I^2C (r	naster/slave)	interrupt ena	ble				
	0: Disable 1	I ² C interrupt						
	1: Enable I	² C interrupt						
A9h.5	ES2: Serial I	Port (UART2	2) interrupt er	nable				
	0: Disable S	Serial Port (U	JART2) inter	rupt				
	1: Enable S	erial Port (U	ART2) interr	rupt				
A9h.4	EEPIE: EEF	P write finish	interrupt ena	ıble				
	0: Disable l	EEP write fir	ish interrupt					
	1: Enable E	EEP write fini	ish interrupt					
A9h.3	ADIE: ADC	interrupt ena	able					
	0: Disable A	ADC interrup	ot					
	1: Enable A	ADC interrup	t					
A9h.2	LVDIE: LV	D interrupt e	nable					
	0: Disable l	LVD interrup	ot					
	1: Enable L	.VD interrup	t.					
A9h.1	PCIE: Port)~Port3 pin	change interr	upt enable.	This bit does	s not affect	Halt/Stop mo	ode wake up
	capability.							
	0: Disable l	Port0~Port3	pin change in	terrupt				
	1: Enable P	ort0~Port3 p	in change int	errupt				
A9h.0	TM3IE: Tin	ner3 interrup	t enable					
	0: Disable	Timer3 interr	upt					
	1: Enable T	Timer3 interru	ıpt					

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	—	—	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	—	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	—	—	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2:** Timer2 Interrupt Priority control. (PT2H, PT2) =

- 11: Level 3 (highest priority)
- 10: Level 2
- 01: Level 1
- 00: Level 0 (lowest priority)
- B9h.4, B8h.4 **PSH, PS:** Serial Port (UART1) Interrupt Priority control. Definition as above.
- B9h.3, B8h.3 **PT1H, PT1:** Timer1 Interrupt Priority control. Definition as above.
- B9h.2, B8h.2 **PX1H, PX1:** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1	PT0H, PT0: Timer0 Interrupt Priority control. Definition as above.
B9h.0, B8h.0	PX0H, PX0: External INT0 pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IP1H	PPWMH	PI2CH	PS2H	PEEPH	PADIH	PLVDH	PPCH	РТ3Н			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IP1	PPWM	PI2C	PS2	PEEP	PADI	PLVD	PPC	PT3			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
BBh.7, BAh.7 PPWMH, PPWM: PWM0~PWM2 Interrupt Priority control. Definition as above.											
BBh.6, BAh.6 PI2CH, PI2C: I ² C (Master/Slave) Interrupt Priority control. Definition as above.											

BBh.5, BAh.5 **PS2H, PS2:** Serial Port (UART2) Interrupt Priority control. Definition as above.

BBh.4, BAh.4 **PEEPH, PEEP:** EEP write finish Interrupt Priority control. Definition as above.

BBh.3, BAh.3 PADIH, PADI: ADC Interrupt Priority control. Definition as above.

BBh.2, BAh.2 PLVDH, PLVD: LVD Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PPCH, PPC:** Port0~ Port 3 Pin Change Interrupt Priority control. Definition as above.

BBh.0, BAh.0 **PT3H, PT3:** Timer3 Interrupt Priority control. Definition as above.

6.3 Pin Interrupt and LVD interrupt

Pin Interrupts include INT0~INT1 and Port0~Port3 pin change interrupt. INT0~INT1 and Port0~Port3 pin change also have the Halt/Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. Port0~Port3 Pin Change Interrupt is triggered by IO state change. Pin change enable are setting by PINMOD10/PINMOD32/PINMOD54/PINMOD76. For details, see Chapter 7. PINMODE and pin change enable settings. LVD interrupt can be used to detect the V_{CC} voltage level and generate an interrupt.

Pin interrupt/Wake up & LVD interrupt

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim1$)

SFR 85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTPORT	—				P3IF	-	P1IF	POIF		
R/W	—				R/W	-	R/W	R/W		
Reset					0	-	0	0		
96h.3	P3IF: P3.7~P3.0 pin change interrupt flag, Write 0 to clear P3.7~P3.0 pin change interrupt flag									
96h.1	P1IF: P1.7~P1.0 pin change interrupt flag, Write 0 to clear P1.7~P1.0 pin change interrupt flag									

96h.0 **POIF:** P0.7~P0.0 pin change interrupt flag, Write 0 to clear P0.7~P0.0 pin change interrupt flag

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTIDX	_	_	—	_	_	—	POR	ΓIDX
R/W	_	_	—	_	_	—	R/	W
Reset			—			_	0	0

91h.1~0 PORTIDX: Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	EEPIF	EEPBUSY	ADIF	_	—	PCIF	TF3
R/W	R	R/W	R	R/W	—	_	R/W	R/W
Reset	_	0	0	0	_	_	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

95h.1 **PCIF:** Port0~Port3 Pin change interrupt flag

Set by H/W when Port0~Port3 pin state change is detected and its interrupt enable bit is set. S/W can write 0 to clear all pin change interrupt flags (Port0~Port3), it will also clear PIN0IF~PIN7IF and POIF~P3IF.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

-								
SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPIN	PIN7IF	PIN6IF	PIN5IF	PIN4IF	PIN3IF	PIN2IF	PIN1IF	PIN0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
96h.7	PIN7IF: Px.	7 pin change	interrupt flag	g, Write 0 to	clear Px.7 pi	n change int	errupt flag	
	port number	(x) define by	y PORTIDX					
96h.6	PIN6IF: Px.	6 pin change	interrupt flag	g, Write 0 to	clear Px.6 pi	n change inte	errupt flag	
	port number	(x) define b	y PORTIDX	_	_	-		
96h.5	PIN5IF: Px.	5 pin change	interrupt flag	g, Write 0 to	clear Px.5 pi	n change inte	errupt flag	
	port number	(x) define by	y PORTIDX		±	Ū.	1 0	
96h.4	PIN4IF: Px.	4 pin change	interrupt fla	g, Write 0 to	clear Px.4 pi	n change inte	errupt flag	
	port number	(x) define by	y PORTIDX		1	C	1 0	
96h.3	PIN3IF: Px.	3 pin change	interrupt fla	g, Write 0 to	clear Px.3 pi	n change inte	errupt flag	
	port number	(x) define b	y PORTIDX		1	U	1 0	
96h.2	PIN2IF: Px.	2 pin change	interrupt flag	g, Write 0 to	clear Px.2 pi	n change inte	errupt flag	
	port number	(x) define b	y PORTIDX		1	U	1 0	
96h.1	PIN1IF: Px.	1 pin change	interrupt flag	g. Write 0 to	clear Px.1 pi	n change inte	errupt flag	
	port number	(x) define b	v PORTIDX	5,	I I I	0	1 0	
96h ()	PINOIF: Px	0 pin change	interrupt fla	write 0 to	clear Px 1 ni	n change inte	errunt flag	
2011.0	port number	(x) define b	v PORTIDX	5,	cicui i All pi	ii enunge inte	and pe mug	
	r - r - namoer	,	, - 0					

-											
SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
88h.3	IE1: Externa	l Interrupt 1	(INT1 pin) e	dge flag.							
	Set by H/W	when an IN	T1 pin fallin	g edge is dete	ected, no mat	ter the EX1 is	s 0 or 1.				
	It is cleared	automatical	ly when the p	program perfe	orms the inte	rrupt service	routine.				
88h.2	IT1: Externa	l Interrupt 1	control bit								
	0: Low leve	el active (lev	el triggered)	for INT1 pin							
	1: Falling e	dge active (e	dge triggered	d) for INT1 p	in						
88h.1	IE0: Externa	l Interrupt 0	(INT0 pin) e	dge flag							
	Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1.										
	It is cleared automatically when the program performs the interrupt service routine.										
88h.0	IT0: Externa	l Interrupt 0	control bit								
	0: Low leve	el active (lev	el triggered)	for INT0 pin							
	1: Falling edge active (edge triggered) for INTO pin										
SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IE	EA		ET2	ES	ET1	EX1	ET0	EX0			
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	—	0	0	0	0	0	0			
A8h.7	EA: Global i	interrupt ena	ble control.								
	0: Disable a	all Interrupts									
	1: Each inte	errupt is enab	oled or disabl	led by its indi	vidual interr	upt control bi	t				
A8h.2	EX1: Extern	al INT1 pin	Interrupt ena	ble and Halt/	Stop mode w	ake up enable	e				
	0: Disable l	INT1 pin Inte	errupt and Ha	alt/Stop mode	e wake up						
	1: Enable 1	INT1 pin In	terrupt and H	Halt/Stop mo	de wake up,	it can wake	up CPU fro	om Halt/Stop			
	mode no m	atter EA 18 0	or I.								
A8h.0	EX0: Extern	al INTO pin	Interrupt ena	ble and Halt/	Stop mode w	ake up enable	e				
	0: Disable I	INTO pin Into	errupt and Ha	alt/Stop mode	e wake up		CDI I				
	I: Enable I	INTO pin Int	terrupt and H	Halt/Stop mo	de wake up,	it can wake	up CPU fro	om Halt/Stop			
	mode no m	atter EA 18 0	or 1.								
CED AOL	B:+ 7	Rit 6	D:+ 5	Dit 1	D:+ 2	Bit 2	D ;+ 1	Dit O			
JEL AM		DIL U LOCE	DIUJ ESO	DIL 4				DIL U TM2IE			
	P /W/	R/W	ESZ R/W	EEFIE R/W	R/W			R/W			
IX/ VV	IN/ VV	1%/ VV	IN/ VV	IV/ VV	IN/ VV	IX/ VV	IX/ VV	IN/ VV			

Reset A9h.2 **LVDIE:** LVD interrupt enable

0

0: Disable LVD interrupt

1: Enable LVD interrupt.

A9h.1 PCIE: Port0~3 pin change interrupt enable. This bit does not affect Halt/Stop mode wake up capability.

0

0

0

0

0

0: Disable Port0~3 pin change interrupt

0

0

1: Enable Port0~3 pin change interrupt

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDPD	LVDO	_	LVDPD		LVD	DSEL	
R/W	R/W	R	—	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

BFh.3~0 LVDSEL: Low Voltage Detect select

0000: Set LVD at 1.79V 0001: Set LVD at 1.95V 0010: Set LVD at 2.11V 0011: Set LVD at 2.26V 0100: Set LVD at 2.40V 0101: Set LVD at 2.56V 0110: Set LVD at 2.71V 0111: Set LVD at 2.87V 1000: Set LVD at 3.03V 1001: Set LVD at 3.18V 1010: Set LVD at 3.32V 1011: Set LVD at 3.50V 1100: Set LVD at 3.63V 1101: Set LVD at 3.80V 1110: Set LVD at 3.94V 1111: Set LVD at 4.12V

6.4 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts change (INT0~INT1, Timers, PWM, ADC, and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	_	—	GF1	GF0	PD	IDL
R/W	R/W	—	_	—	R/W	R/W	R/W	R/W
Reset	0	_		_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

6.5 Halt/Stop mode Wake up and Interrupt

Halt/Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1 can enable INT0/INT1 pins' Halt/Stop mode wake up capability. Set PINMOD10/PINMOD32/PINMOD54/PINMOD76 can enable Port0~Port3 Halt/Stop mode wake up capability. Upon Halt/Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Halt/Stop mode wake up.

Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.

INST. CODE	MOV PCON, #02h	NX1 INST. (> 2 Cycles) HOLD	RUN	INTERRUPT SUB-ROUTINE	RETI	NX2 INST.
INST. CODE	MOV PCON, #02h	NX1 INST. (2 Cycles) HOLD	NX2 INST.	INTERRUPT SUB-ROUTINE	RETI	NX3 INST.
SYSCLK	ทากก		Π.Γ			
PD_						
P3.2		/				
WARM		/				

EA=EX0=1, Halt/Stop mode wake-up but not Interrupt. P3.2 (INT0) pulse too narrow

EX0= 1, EA=0, P3.2 (INT0) Halt/Stop mode wake-up but not Interrupt

7. I/O Ports

The Chip has total 22 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

When entering the interrupt program, in addition to the traditionally known SFR A or PSW that should be PUSH, POP, some SFRs used for indexing should also be added to the ranks of PUSH POP, such as PORTIDX. To avoid writing and reading these SFRs before and after the interruption may cause inconsistencies.

7.1 Port0~Port 3

PINI PINI PINI PINI	MOD MOD MOD MOD	076 054 032 010			Pin State	Interrupt	Wake-up
MODE0	0	0	0	0	Open Drain with pull-up (for INT0/INT1)	Y	Y
MODE1	0	0	0	1	Open Drain (Default) (for INT0/INT1)	Y	Y
MODE2	0	0	1	0	CMOS Output	-	-
MODE3	0	0	1	1	ADC channel	-	-
MODE4	0	1	0	0	Open Drain with pull-down	Y	Y
MODE5	0	1	0	1	Open Drain	Y	Y
MODE6	0	1	1	0	CMOS Output	-	-
MODE7	0	1	1	1	-	-	-
MODE8	1	0	0	0	Open Drain with pull-up (for pin change from Halt/Stop)	Y	Y
MODE9	1	0	0	1	Open Drain (for pin change from Halt/Stop)	Y	Y
MODE10	1	0	1	0	CMOS Output	-	-
MODE11	1	0	1	1	PWMO	-	-
MODE12	1	1	0	0	Open Drain with pull-down (for pin change from Halt/Stop)	Y	Y
MODE13	1	1	0	1	Open Drain (for pin change from Halt/Stop)	Y	Y
MODE14	1	1	1	0	CMOS Output	-	-
MODE15	1	1	1	1	LCD 1/2 Vcc bias	-	-

These pins can operate in four different modes as below.

Table 7.1 Port0~Port3 I/O Pin Function Table

PINMOD76/ PINMOD54/PINMOD32/PINMOD10 need PORTIDX to index the corresponding IO port.

The chip does not support Port 2, PORTIDX cannot be set to 2

For example:

If PORTIDX=0, PINMOD10 is set to P0.1 and P0.0, high 4 bits are set to P0.1, low 4 bits are set to P0.0 If PORTIDX=1, PINMOD10 is set to P1.1 and P1.0, high 4 bits are set to P1.1, low 4 bits are set to P1.0 If PORTIDX=3, PINMOD10 is set to P3.1 and P3.0, high 4 bits are set to P3.1, low 4 bits are set to P3.0 If PORTIDX=0, PINMOD32 is set to P0.3 and P0.2, high 4 bits are set to P0.3, low 4 bits are set to P0.2

If PORTIDX=3, PINMOD76 is set to P3.7 and P3.6, high 4 bits are set to P3.7, low 4 bits are set to P3.6

Mode	Port0~Port3 pin function	Px.n SFR data	Pin State	Resistor Pull-up	Resistor Pull-down	Digital Input
MODE0	Open Drein with pull up	0	Drive Low	Ν	Ν	Ν
MODE8	Open Drain with pun-up	1	Pull-up	Y	Ν	Y
MODE4	Open Drain with pull down	0	Drive Low	Ν	Ν	Ν
MODE12	Open Drain with pun-down	1	Pull-down	Ν	Y	Y
MODE1		0	Drive Low	Ν	Ν	Ν
MODE5 MODE9 MODE13	Open Drain	1	Hi-Z	N	N	Y
MODE2		0	Drive Low	Ν	N	Ν
MODE6 MODE10 MODE14	CMOS Output	1	Drive High	Ν	N	Ν
MODE3	ADC channel	X (don't care)	_	Ν	N	Ν
MODE7	-	-	_	Ν	Ν	Ν
MODE11	РѠМО	X (don't care)	_	Ν	Ν	Ν
MODE15	LCD 1/2 Vcc bias output	X (don't care)	_	Y	Y	Ν

I/O Pin Function Table

If a Port0~Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to MODE0, MODE1, MODE4, MODE5, MODE8, MODE9, MODE12 or MODE13 (Open Drain, Open Drain with pull-up or Open Drain with pull-down), and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port0~Port3 has one or more alternative functions, such as ADC and LCD. Most of the functions are activated by setting the individual pin mode control SFR to MODE3, MODE7, MODE11 or MODE15. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/INT1, T0/T1/T2, or RXD/TXD. These pin functions need to set the pin mode SFR to MODE0, MODE1, MODE5, MODE8, MODE9 or MODE13 (Open Drain or Open Drain with pull-up), and keep the P1.n/P3.n SFR at 1.

Pin Name	Wake-up Interrupt	СКО	ADC	LCD	PWM	UART	I ² C	others
P0.5	Y		AD05	Y	PWM5			
P0.4	Y		AD04	Y	PWM4			
P0.3	Y		AD03	Y	PWM3	TXD2 (RXD2)		
P0.2	Y		AD02	Y	PWM2	RXD2 (TXD2)		
P0.1	Y		AD01	Y	PWM0P	TXD2 (RXD2)	SDA	PSDA
P0.0	Y		AD00	Y	PWM0N	RXD2 (TXD2)	SCL	PSCL

Port0 multi-function Table

Pin Name	Wake-up Interrupt	СКО	ADC	LCD	PWM	UART	I ² C	others
P1.7	Y		AD20	Y	PWM1P			
P1.6	Y		AD19	Y	PWM0P			
P1.5	Y		AD16	Y	PWM0N			
P1.4	Y	СКО	AD15	Y	PWM1N			
P1.3	Y		AD14	Y	PWM5			
P1.2	Y		AD13	Y	PWM4			
P1.1	Y		AD11	Y	PWM3			T2EX
P1.0	Y	T2O	AD10	Y	PWM2			T2

Port1 multi-function Table

Pin Name	Wake-up Interrupt	СКО	ADC	LCD	PWM	UART	I ² C	others
P3.7	Y		AD06	Y	PWM1P			RSTn
P3.6	Y		AD07	Y	PWM0P	TXD2 (RXD2)		
P3.5	Y		AD08	Y	PWM0N	RXD2 (TXD2)		T1
P3.4	Y	T0O	AD09	Y	PWM1N			T0
P3.3	Y		AD21	Y	PWM0P	TXD (RXD)		INT1
P3.2	Y		AD22	Y	PWM0N	RXD (TXD)		INT0 VBGO
P3.1	Y		AD18	Y		TXD (RXD)	SDA	PSDA
P3.0	Y		AD17	Y		RXD (TXD)	SCL	PSCL

Port3 multi-function Table

Alternative Function	PINMODxx	Px.n SFR data	Pin State	Other necessary SFR setting
INTO INT1	0000	1	Input with Pull-up	
INTO, INTT	0001	1	Input	
T0 $T1$ $T2$ $T2EV$	x000	1	Input with Pull-up	
10, 11, 12, 12EX	xx01	1	Input	
RXD	x000	1	UART RX (Input with Pull-up)	
RXD2	xx01	1	UART RX (Input)	UARTCON
TXD	x000	1	UART TX output (Open Drain Output, Pull-up)	UARICON
TXD2	xx01	1	UART TX output (Open Drain Output)	
VBGO	0011	Х	Bandgap Voltage output	VBGOUT
AD00~ AD22	0011	Х	ADC Channel	ADCHS
LCD	1111	Х	LCD 1/2 Vcc bias Output	
Т00 СКО Т20	1011	Х	Clock Output (CMOS Push-Pull)	T0OE TCOE T2OE
PWM0P~PWM0N PWM1P~PWM1P PWM2~PWM5	1011	Х	PWM Output (CMOS Push-Pull)	
I ² C Master SCI	I ² C Master SCI 0000 X I ² C Clock Output (Open Drain Output, Pull-up)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		I ² C Clock Output (CMOS Push-Pull)	I2CPS	
I ² C Master SDA	0000	1 I2C DATA (Pull-up)		

The necessary SFR setting for Port0~Port3 pin's alternative function is list below.

Mode Setting for Port0 ~ Port3 Alternative Function

For tables above, a "**CMOS Output**" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current ($<20 \mu$ A). It can be used as input or output function and typically needs an external pull up resistor.

The chip also supports I/O High-sink function. It is an option. For efficient control, we divide the High-sink pins into three groups (Group 0: P0.0~P0.5; Group 1: P1.0~P1.7; Group 2: P3.0~P3.3). It is enabled by setting SFR HSNK0EN, HSNK1EN and HSNK2EN.

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PO	-	-	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	1	1	1	1	1	1

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

80h.7~0 **P0:** Port0 data

90h.7~0 **P1:** Port1 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port3 data

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTIDX	_	—	—	—	—	—	POR	ΓIDX
R/W	_	—	—	—	—	—	R/	W
Reset		_	_	_	_	_	0	0

91h.1~0 **PORTIDX:** Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76 00: Port 0

01: Port 1

10: Reserved

11: Port 3

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTCON		UAR	T2PS		-	UARTPS		
R/W		R/W				R/W		
Reset	0	0	0	1	-	0	0	1

93h.7~4 UART2PS: UART2 Pin select

0000: RXD2/TXD2 = P0.0/P0.1 0001: RXD2/TXD2 = P3.5/P3.6 0010: RXD2/TXD2 = P0.1/P0.0 0011: RXD2/TXD2 = P3.6/P3.5 0100: RXD2/TXD2 = P0.1/P0.1, 1-wire mode 0101: RXD2/TXD2 = P3.6/P3.6, 1-wire mode 0110: RXD2/TXD2 = P0.0/P0.0, 1-wire mode 0111: RXD2/TXD2 = P3.5/P3.5, 1-wire mode

1000: RXD2/TXD2 = P0.2/P0.3 1010: RXD2/TXD2 = P0.3/P0.2 1100: RXD2/TXD2 = P0.3/P0.3, 1-wire mode 1110: RXD2/TXD2 = P0.2/P0.2, 1-wire mode

93h.2~0 **UARTPS:** UART Pin select 0000: RXD/TXD = P3.0/P3.1

0000: RXD/TXD = P3.0/P3.1 0001: RXD/TXD = P3.2/P3.3 0010: RXD/TXD = P3.1/P3.0 0011: RXD/TXD = P3.3/P3.2 0100: RXD/TXD = P3.1/P3.1, 1-wire mode 0101: RXD/TXD = P3.3/P3.3, 1-wire mode 0110: RXD/TXD = P3.0/P3.0, 1-wire mode 0111: RXD/TXD = P3.2/P3.2, 1-wire mode

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PINMOD10		PINMOD1				PINMOD0				
R/W		R/	W		R/W					
Reset	0	0	0	1	0	0	0	1		

A2h.7~4 **PINMOD1:** Px.1 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A2h.3~0 **PINMOD0:** Px.0 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PINMOD32		PINMOD3				PINMOD2				
R/W		R/	W		R/W					
Reset	0	0	0	1	0	0	0	1		

A3h.7~4 **PINMOD3:** Px.3 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A3h.3~0 **PINMOD2:** Px.2 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PINMOD54		PINMOD5 PINMOD4							
R/W		R/	W		R/W				
Reset	0	0	0	1	0	0	0	1	

A4h.7~4 **PINMOD5:** Px.5 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A4h.3~0 **PINMOD4:** Px.4 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD76		PINMOD7 PINMOD6						
R/W		R/	W			R/	W	
Reset	0	0	0	1	0	0	0	1

A5h.7~4 **PINMOD7:** Px.7 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A5h.3~0 **PINMOD6:** Px.6 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	-	TCOE	T2OE	TOOE
R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
Reset	0	0	0	0	-	0	0	0
A6h.7	HSNK2EN:	Pin High-sir	ık enable (Gr	oup 2: P06, I	P07, P22~P25	5, P30~P33)		
	0: Group 2	High-sink di	sable					
	1: Group 2	High-sink en	able					
A6h.6	HSNK1EN:	Pin High-sir	ık enable (Gr	oup 1: P04, I	P05, P10~P17	7)		
	0: Group 1	High-sink di	sable	-				
	1: Group 1	High-sink en	able					
A6h.5	HSNK0EN:	Pin High-sir	ık enable (Gr	oup 0: P00~I	P03, P20, P2	1, P34~P37)		
	0: Group 0	High-sink di	sable	-				
	1: Group 0	High-sink en	able					
A6h.4	I2CPS: I2C	Pin select						
	0: SCL/SDA	= P0.0/P0.1						
	1: SCL/SDA	= P3.0/P3.1						
A6h.2	TCOE: Syst	em clock div	ided by 2 and	d output to P	1.4 enable			
	0: disable Sy	stem clock d	ivided by 2 a	nd output to	P1.4			
	1: enable Sys	stem clock di	vided by 2 a	nd output to I	21.4			
A6h.1	T2OE: Time	er2 overflow	divided by 2	(T2O) and ou	tput to P1.0	enable		
	0: disable Ti	mer2 overflo	w divided by	2 and output	t to P1.0			
	1: enable Tir	ner2 overflow	w divided by	2 and output	to P1.0			
A6h.0	TOOE: Time	er0 overflow	divided by 64	4(T0O) and o	output to P3.4	enable		
	0: disable Ti	mer0 overflo	w divided by	64 and output	ut to P3.4			
	1: enable Tir	ner0 overflov	w divided by	64 and outpu	tt to P3.4			
-								

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	DTE	PWRSAV	VBGOUT	DIV32	IAF	PΤΕ	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.4 VBGOUT: Bandgap voltage output control 0: Disable

1: Bandgap voltage output to P3.2 pin

8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function.

The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. The CKO pin can output the system clock divided by 2 signal. By setting T0OE (A6h.0), T2OE (A6h.1) and TCOE (A6h.2) T0O, T2O and CKO can output to P3.4, P1.0 and P1.4 respectively.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
		~ ~						

88h.7	TF1: Timer1 overflow flag
	Set by H/W when Timer/Counter 1 overflows
	Cleared by H/W when CPU vectors into the interrupt service routine.
88h.6	TR1: Timer1 run control
	0: Timer1 stops
	1: Timer1 runs
88h.5	TF0: Timer0 overflow flag
	Set by H/W when Timer/Counter 0 overflows
	Cleared by H/W when CPU vectors into the interrupt service routine.
88h.4	TR0: Timer0 run control
	0: Timer0 stops
	1: Timer0 runs

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TMOD	GATE1	CT1N	TM	OD1	GATE0	CTON	TM	DD0		
R/W	R/W	R/W	R/	W	R/W	R/W	R/	W		
Reset	0	0	0	0	0	0	0	0		
89h.7	GATE1: Tir	ner1 gating c	control bit							
	0: Timer1 e	enable when	TR1 bit is set	-						
	1: Timer1 e	enable only w	hile the INT	1 pin is high	and TR1 bit	is set				
89h.6	CT1N: Time	er1 Counter/7	Fimer select l	oit						
	0: Timer m	ode, Timer1	data increase	s at 2 System	n clock cycle	rate				
	1: Counter	mode, Timer	1 data increa	ses at T1 pin	's negative e	dge				
89h.5~4	TMOD1: Ti	mer1 mode s	elect							
	00: 8-bit tir	00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)								
	01: 16-bit timer/counter									
	10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow.									
	11: Timer1	stops								
89h.3	GATE0: Tir	ner0 gating c	control bit							
	0: Timer0 e	enable when	TR0 bit is set							
	1: Timer0 e	enable only w	while the INT	0 pin is high	and TR0 bit	is set				
89h.2	CTON: Time	er0 Counter/7	Timer select b	oit						
	0: Timer m	ode, Timer0	data increase	s at 2 System	n clock cycle	rate				
	1: Counter	mode, Timer	0 data increa	ses at T0 pin	's negative e	dge				
89h.1~0	TMOD0: Ti	mer0 mode s	elect							
	00: 8-bit tir	ner/counter (TH0) and 5-1	oit prescaler	(TL0)					
	01: 16-bit t	imer/counter								
	10: 8-bit au	to-reload tin	ner/counter (7	FL0). Reload	ed from TH0	at overflow.				
	11: TL0 is a	an 8-bit time	r/counter. TH	I0 is an 8-bit	timer/counte	r using Time	r1's TR1 and	l TF1 bits.		
CED OAL	D:+ 7	D:+ 6	D:+ 5	D:+ 4	D:+ 2	D:+ 2	D:+ 1	D:+ 0		

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TL0				TI	_0			
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL1				TI	21				
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	
001 7 0		. 1 . 1 1							

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH0				TI	HO				
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	
9Ch 7 0	THO. There	O data histo h							

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH1				TI	H1				
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

58

8Dh.7~0 **TH1:** Timer1 data high byte

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	-	TCOE	T2OE	TOOE				
R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W				
Reset	0 0 0 0 - 0 0 0											
A6h.2 A6h.0	 1.2 TCOE: system clock divided by 2 and output to P1.4 enable 0: disable system clock divided by 2 and output to P1.4 1: enable system clock divided by 2 and output to P1.4 1: enable system clock divided by 2 and output to P1.4 1: enable system clock divided by 2 and output to P3.4 0: disable"Timer0 overflow flow divided by 64"output to P3.4 1: enable "Timer0 overflow flow divided by 64"output to P3.4 											
SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
AUX1	CLRWDT	CLRTM3	CLRPWM0-	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

F8h.1 **T1SEL:** Timer1 counter mode (CT1N=1) input select

0: P3.5 (T1) pin (8051 standard)

1: Slow clock divide by 16 (SLOWCLK/16)

Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority. *Note*: See also Chapter 7 for details on TOO pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
C8h.7	TF2: Timer2	overflow fla	ıg									
	Set by H/W by S/W.	when Time	r/Counter 2 c	overflows unl	ess RCLK=1	or TCLK=1	. This bit mu	st be cleared				
C8h.6	EXF2: T2EX	K interrupt pi	n falling edg	e flag								
	Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.											
C8h.5	RCLK: UA	CLK: UART receive clock control bit										
	0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3											
	1: Use Tim	1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3										
C8h.4	TCLK: UAI	RT transmit o	lock control	bit								
	0: Use Tim	er1 overflow	as transmit c	clock for seria	al port in mo	de 1 or 3						
	1: Use Tim	er2 overflow	as transmit c	clock for seria	al port in mo	de 1 or 3						
C8h.3	EXEN2: T2	EX pin enabl	e									
	0: T2EX pi	n disable			-1		TOEV .					
	if RCLK=T	TCLK=0	ause a captu	re or reload v	vnen a negat	ive transition	I ON IZEX p	in is detected				
C8h.2	TR2: Timer2	2 run control										
	0: Timer2 s	tops										
	1: Timer2 r	uns										
C8h.1	CT2N: Time	er2 Counter/7	Timer select b	oit								
	0: Timer m	ode, Timer2	data increase	s at 2 System	n clock cycle	rate						
	1: Counter	mode, Timer	2 data increa	ses at T2 pin	's negative e	dge						
C8h.0	CPRL2N: Timer2 Capture/Reload control bit											
	0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1.											
	1: Capture	1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1.										
	If RCLK=1	or TCLK=1	, CPRL2N is	1gnored and	timer is force	ed to auto-rel	load on Time	r2 overflow.				

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
RCP2L		RCP2L									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									
CA1 7 0											

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
RCP2H		RCP2H									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL2		TL2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

CDh.7~0 **TH2:** Timer2 data high byte

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	-	TCOE	T2OE	TOOE
R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
Reset	0	0	0	0	-	0	0	0

A6h.1 **T2OE:** Timer2 output signal(T2O) to P1.0 enable 0: disable Timer2 overflow divided by 2 output to P1.0 1: enable Timer2 overflow divided by 2 output to P1.0

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	CLRPWM0	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.2 **T2SEL:** Timer2 counter mode (CT2N=1) input select

0: P1.0 (T2) pin (8051standard)

1:Slow clock divide by 16 (SLOWCLK/16)

Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority. *Note:* See also Chapter 7 for details on T2O pin output settings.

8.3 Timer3

Timer3 works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 262144, 131072, 65536, ..., 8 depending on the TM3PSC SFR. The Timer3 clock source is Slow clock SRC or FRC/512.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION		TM3CKS	WD7	ГРSC	AD	CKS	PWM1NMSK	PWM1PMSK
R/W		R/W	R/	R/W		R/W		R/W
Reset		0	0	0	0	0	—	_

94h.6 **TM3CKS:** Timer3 Clock Source select 0: Slow clock (SRC) 1: FRC/512 (36KHz)

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	EEPIF	EEPBUSY	ADIF	—	—	PCIF	TF3
R/W	R	R/W	R	R/W	—	_	R/W	R/W
Reset	0	0	0	0	_	_	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.

Note:	S/W can	write 0 to	o clear a fla	g in the	e INTFLG, bu	t writing 1	has no effect.
-------	---------	------------	---------------	----------	--------------	-------------	----------------

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3	Warmtime		TM3	BPSC	-	FJMPE	FJMPS	
R/W	R/W		R/	W		-	R/W	R/W
Reset	0	0	0	-	0	0	0	0

EFh.5~3 **TM3PSC:** Timer3 Interrupt rate

0000: Timer3 Interrupt rate is 262144 Timer3 clock cycle 0001: Timer3 Interrupt rate is 131072 Timer3 clock cycle 0010: Timer3 Interrupt rate is 65536 Timer3 clock cycle 0011: Timer3 Interrupt rate is 32768 Timer3 clock cycle 0100: Timer3 Interrupt rate is 16384 Timer3 clock cycle 0101: Timer3 Interrupt rate is 8192 Timer3 clock cycle 0110: Timer3 Interrupt rate is 4096 Timer3 clock cycle 1111: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1000: Timer3 Interrupt rate is 1024 Timer3 clock cycle 1001: Timer3 Interrupt rate is 512 Timer3 clock cycle 1010: Timer3 Interrupt rate is 256 Timer3 clock cycle 1011: Timer3 Interrupt rate is 128 Timer3 clock cycle 1100: Timer3 Interrupt rate is 64 Timer3 clock cycle 1101: Timer3 Interrupt rate is 32 Timer3 clock cycle 1110: Timer3 Interrupt rate is 16 Timer3 clock cycle 1111: Timer3 Interrupt rate is 8 Timer3 clock cycle

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	—	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.6 **CLRTM3:** Set 1 to clear Timer3, H/W auto clear it at next clock cycle.

Note: also refer to Section 6 for more information about Timer3 Interrupt enable and priority.

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The **UART1** uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent.

The **UART2** uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2, it also does not support Timer2 mode. On other hand, the option of SMOD is not use for UART2. UART2 double baud rate is always enabled.

Both UART1 and UART2 provide two different TXD and RXD options. TXD and RXD can also be exchanged. In this way, there is more flexibility in application.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	—	GF1	GF0	PD	IDL
R/W	R/W	_	_	—	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.7 **SMOD:** UART1 double baud rate control bit

0: Disable UART1 double baud rate

1: Enable UART1 double baud rate

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
98h.7~6	SM0,SM1: UART1 serial port mode select bit 0,1										
	00: Mode0: 8 bit shift register, Baud Rate= $F_{SYSCLK}/2$										
	01: Mode1:	: 8 bit UART	1, Baud Rate	e is variable							
	10: Mode2:	: 9 bit UART	1, Baud Rate	=F _{SYSCLK} /32	or/64						
	11: Mode3:	: 9 bit UART	1, Baud Rate	e is variable							
98h.5	SM2: Serial	port mode se	elect bit 2								
	SM2 enabl	les multiproc	essor comm	unication ov	er a single s	serial line an	d modifies t	he above as			
	follows. In	Modes 2 &	2 3, if SM2	is set then the	he received	interrupt wil	l not be gen	erated if the			
	received ni	nth data bit	is 0. In Mod	e 1, the rece	ived interrup	ot will not be	generated u	nless a valid			
	stop bit is r	eceived. In N	Aode 0, SM2	should be 0.							
98h.4	REN: UART	Γ1 reception	enable								
	0: Disable 1	reception									
	1: Enable re	eception									
98h.3	TB8: Transn	nit Bit 8, the	ninth bit to b	e transmitted	in Mode 2 a	nd 3					
98h.2	RB8: Receiv	ve Bit 8, cont	ains the ninth	n bit that was	received in l	Mode 2 and 3	3 or the stop l	bit is Mode 1			
	if SM2=0										
98h.1	TI: Transmit	t interrupt fla	g								
	Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other mode										
	Must be cle	eared by S/W	•								
98h.0	RI: Receive	interrupt flag	5								
	Set by H/W	V at the end	of the eighth	bit in Mode	0, or at the	sampling poi	nt of the stop	bit in other			
	modes. Must be cleared by S/W.										

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SBUF	SBUF											
R/W		R/W										
Reset	—	_	_	_	-	_	—	_				
99h.7~0	SBUF: UART1 transmit and receive data. Transmit data is written to this location and receive data i											
	read from thi	is location, b	ut the paths a	re independe	nt.							
SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SCON2	SM		—	REN2	TB82	RB82	TI2	RI2				
R/W	R/W		_	R/W	R/W	R/W	R/W	R/W				
Reset	0	_	—	0	0	0	0	0				
8Eh.7	SM: UART2	2 Serial port 1	node select b	it								
	0: Mode1:	8 bit UART2	, Baud Rate i	s variable								
	1: Mode3:	9 bit UART2	, Baud Rate i	s variable								
	(UART2 d	oes not supp	ort Mode0/N	Mode2)								
8Eh.4	REN2: UAR	T2 reception	enable									
	0: Disable 1	reception										
	1: Enable re	eception										
8Eh.3	TB82: Trans	mit Bit 8. the	e ninth bit to	be transmitte	d in Mode 3							
8Eh 2	RB82: Recei	ive Bit 8 con	tains the nint	h bit that wa	s received in	Mode3						
8Eh 1	TI2. Transm	it interrupt fl		in one that wa	s received in	Modes						
0111.1	Set by H/W	at the begin	ag ning of the st	on hit in Mo	de 1 & 3 Mu	ist he cleared	by S/W					
051.0			ining of the st	op on in Mo		ist de cicaleu	Uy 3/ W.					
sen.u	RI2: Receive interrupt flag											

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SBUF2	SBUF2									
R/W	R/W									
Reset	_	_	_	_	_	_	_	_		

8Fh.7~0 SBUF2: UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
UART2CON	-		UART2BRP								
R/W	-		R/W								
Reset		0	0	0	0	0	0	0			
AFT 7 A TIADTADDD 1 C TIADTAD 1 A											

UART2BRP: define UART2 Baud rate. 9Fh.7~0 UART2 baud rate = Fsys/32/UART2BRP

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTCON		UAR	T2PS		-	UARTPS		
R/W		R/	W		-	R/W		
Reset	0	0	0	1	-	0	0	1

UART2PS: UART2 pin select 93h.7~4 0000: RXD2/TXD2 = P0.0/P0.1 0001: RXD2/TXD2 = P3.5/P3.6 0010: RXD2/TXD2 = P0.1/P0.0 0011: RXD2/TXD2 = P3.6/P3.5 0100: RXD2/TXD2 = P0.1/P0.1, 1-wire mode 0101: RXD2/TXD2 = P3.6/P3.6, 1-wire mode 0110: RXD2/TXD2 = P0.0/P0.0, 1-wire mode 0111: RXD2/TXD2 = P3.5/P3.5, 1-wire mode

1000: RXD2/TXD2 = P0.2/P0.3 1010: RXD2/TXD2 = P0.3/P0.2 1100: RXD2/TXD2 = P0.3/P0.3, 1-wire mode 1110: RXD2/TXD2 = P0.2/P0.2, 1-wire mode 93h.2~0 **UARTPS:** UART pin select 0000: RXD/TXD = P3.0/P3.1 0001: RXD/TXD = P3.2/P3.3 0010: RXD/TXD = P3.1/P3.0 0011: RXD/TXD = P3.3/P3.2 0100: RXD/TXD = P3.1/P3.1, 1-wire mode 0101: RXD/TXD = P3.3/P3.3, 1-wire mode 0110: RXD/TXD = P3.0/P3.0, 1-wire mode 0111: RXD/TXD = P3.2/P3.2, 1-wire mode

F_{SYSCLK} denotes System clock frequency

UART1 baud rate is calculated as below

- Mode 0: Baud Rate=F_{SYSCLK}/2
- Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD + 1) x F_{SYSCLK} / (32 x 2 x (256 – TH1))
- Mode 1, 3: if using Timer2 Baud Rate=Timer2 overflow rate/16 = F_{SYSCLK} / (32 x (65536 – (RCP2H, RCP2L))))
- Mode 2: Baud Rate= (SMOD + 1) x F_{SYSCLK}/64

UART1 baud rate is calculated as below

- Mode 0: Invalid
- Mode 1, 3: Baud Rate= F_{SYSCLK} / 32/UART2BRP

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. *Note:* also refer to Section 8 for more information about how Timer2 controls UART clock.

Fsys (Hz)	Expect Baud rate(bps)	UART2BRP	Generated Baud rate	Frequency offset (%)
18432000	19200	30	19200	0
18432000	28800	20	28800	0
18432000	38400	15	38400	0
18432000	57600	10	57600	0
18432000	115200	5	115200	0

10. PWMs

The Chip has three independent 16-bit PWM modules PWM0 and PWM1 with independent 16-bit period. The following takes PWM0 as an example for description. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRC x 2), FRC, FRC/256 or F_{SYSCLK} as its clock source. PWM period must greater than duty.

PWM will be automatically enabled at power on. Set SFR PINMODx to control PWM output. If PINMODx is set to 1011b (relative), for example, PORTIDX = 1, PIMOD76 = BBh, then PWM0P and PWM1P will be output to P16 and P17. (*see section 7*)

The 16-bit period (PWM0PRD, PWM1PRD) and duty (PWM0D~PWM5D) registers all have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking, write low byte first and then high byte; read high byte first and then low byte*.

PWM Interrupt structure

10.1 PWM0 (PWM0P/PWM0N)

When PWM0CLR bit is set, the PWM0 will be cleared and held, otherwise the PWM0 is running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWM0PRDH and PWM0PRDL registers. After writing the PWM0D or PWM0PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM0 is cleared. PWM0 has a corresponding interrupt flag, and an interrupt flag is generated at the end of the period.

PWMDH, PWMDL, PWM0PRDH or PWM0PRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors. PWM0 structure is shown as follow.

PWM0 Structure

The PWM0 has two operation modes, normal mode and half-bridge mode. PWM0 output signal can be output via PWM0P and PWM0N with four different modes. These two outputs are non-overlapped with time interval Tnov. Non-overlapping time interval is also named as dead zone or dead band. Tnov is determined by setting PWM0DZ bits. The value 0~15 of PWM0DZ map onto 0~15, 16 PWM0CLK cycles respectively. If PWM0DZ=0, PWM0 outputs is directly passed to PWM0P and PWM0N so that waveforms of them have the same duty cycle. Note that, if high pulse width or low pulse width of PWM0 output is shorter than Tnov, the real waveforms of these two outputs will different from the expected waveforms. If the PWM0MSKE bit is set, the outputs can be masked to force output fix signal while S/W set the CLRPWM0 bit is set by H/W.

Normal Mode

The normal mode PWM0 is a simple structure, which switches its output high and low at uniform repeatable intervals. The PWM0D is the output duty cycle, and the output period is PWM0PRD+1. The output waveform of PWM0 is shown below.

PWM0 normal mode output waveform (PWM0OM=0, PWM0DZ=0)

Half-Bridge Mode

The half-bridge mode PWM is similar to the normal mode but Dead zone is prohibited in half-bridge mode (SFR PWM0DZ must be 0). It has two frames in a period, PWM0P only output in the first frame, PWM0N only output in the second frame. The width of these two frames must be same, so their width is the integer part of PWM0PRD/2. Because each output channel only output in one frame, the maximum duty cycle is same as the width of a frame. If the PWM0D is larger than PWM0PRD/2, H/W will force set the duty cycle to PWM0PRD/2. Following figure shows the output waveform and the output modes.

PWM0 half-bridge mode output waveform (PWM0OM=0, PWM0DZ=0)

10.2 PWM1 (PWM1P/PWM1N)

谏

PWM1 and PWM0 have similar architectures, and both have complementary PWM outputs PWM1P/PWM1N. When CLRPWM1 is set to 1, PWM1 is cleared and held, otherwise PWM1 remains running. The structure of PWM1 is shown below. The PWM1 duty cycle can be changed by writing to SFRs PWM1DH and PWM1DL. Whenever the 16-bit radix counter matches the 16-bit PWM1 duty cycle register {PWM1DH, PWM1DL}, the PWM1 output signal is reset to low level. The period of PWM1 can be set by writing to SFRs PWM1PRDH and PWM1PRDL. As soon as a PWM duty cycle or period register is written, the new value is saved to its own buffer. H/W will update these values at the

end of the current cycle or when PWM1 is cleared. PWM1 has a corresponding interrupt flag, which is generated at the end of the cycle.

PWM1DH, PWM1DL, PWM1PRDH or PWM1PRDL are 16-bit operations, and the program should avoid interrupts when writing and reading the high byte and low byte. If an interrupt occurs during reading and writing these 16-bit registers and these registers are read and written within the interrupt, It is easy to cause reading and writing errors. For reading and writing of 16-bit PWM period and duty cycle, it is recommended to update data only in the main program or only in interrupts to avoid possible errors. The structure of PWM1 is as follows.

The PWM1 has two operation modes, normal mode and half-bridge mode. PWM1 output signal can be output via PWM1P and PWM1N with four different modes. These two outputs are non-overlapped with time interval Tnov. Non-overlapping time interval is also named as dead zone or dead band. Tnov is determined by setting PWM1DZ bits. The value 0~15 of PWM1DZ map onto 0~15, 16 PWM1CLK cycles respectively. If PWM1DZ=0, PWM1 outputs is directly passed to PWM1P and PWM1N so that waveforms of them have the same duty cycle. Note that, if high pulse width or low pulse width of PWM1 output is shorter than Tnov, the real waveforms of these two outputs will different from the expected waveforms. If the PWM1MSKE bit is set, the outputs can be masked to force output fix signal while S/W set the CLRPWM1 bit is set by H/W.

Normal Mode

The normal mode PWM1 is a simple structure, which switches its output high and low at uniform repeatable intervals. The PWM1D is the output duty cycle, and the output period is PWM1PRD+1. The output waveform of PWM1 is shown below.

PWM1 normal mode output waveform (PWM1OM=0, PWM1DZ=0)

Half-Bridge Mode

The half-bridge mode PWM1 is similar to the normal mode but Dead zone is prohibited in half-bridge mode (SFR PWM1DZ must be 0). It has two frames in a period, PWM1P only output in the first frame, PWM1N only output in the second frame. The width of these two frames must be same, so their width is the integer part of PWM1PRD/2. Because each output channel only output in one frame, the maximum duty cycle is same as the width of a frame. If the PWM1D is larger than PWM1PRD/2, H/W will force set the duty cycle to PWM1PRD/2. Following figure shows the output waveform and the output modes.

PWM1 normal mode output waveform (PWM1OM=0, PWM1DZ=0)

10.3 PWM2~PWM5

涑

PWM2~5 has an architecture similar to PWM1, sharing PWM1 interrupts, clock sources and cycles, but has independently used duty cycles and no dead zone settings. The following uses PWM2 as an example for explanation. PWM2 can generate a changing frequency waveform with a duty cycle resolution of 65536 based on the PWM1 clock. The PWM1 clock can select dual frequency (FRC x 2), FRC, FRC/256 or FSYSCLK as its clock source. The PWM2 structure is as follows

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	EEPIE	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

PWMIE: PWM0~1 Interrupt Enable A9h.7 0: disable PWM0 \sim 1 Interrupt

1: enable PWM0 \sim 1 Interrupt

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE2	_	—	—	—	_	_	PWM1IE	PWM0IE
R/W	_	—	—	—			R/W	R/W
Reset		—	—	—			0	0

84h.6 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable

84h.5 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable

SED 86h	Rit 7	Rit 6	Bit 5	Rit /	Rit 3	Rit 7	Rit 1	Bit 0			
INTDWM	Dit /	DIU	DIUJ	DIL 4	DIUJ	DIL Z					
	_				_	-					
K/W Deset					—	-	<u> </u>				
	DWM1IE, D						0	0			
86h.1	O S/W writ	w with internet	ipt nag								
	1: Set by H	W at the end	l of PWM1	period							
86h ()	PWM0IF P	WM0 interru	int flag	penou							
8011.0	0: S/W writ	e 0 to clear it	t fri mug								
	1: Set by H	/W at the end	l of PWM0	period,							
	2			1							
SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWMCON	PWM1	ICKS	PWM1EN	PWM0EN	PWM0	OCKS	PWM0NMSK	PWM0PMSK			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
A1h.7~6	PWM1CKS	: PWM1 cloo	ck source	•							
	00: F _{SYSCLK}										
	01: FRC/25	6									
	10: FRC										
	11: FRC x 2	$2 (V_{CC} > 3.0)$	V)								
A1h.5	PWM1EN:	PWM1~5 ena	able								
	0: PWM1~:	5 disable									
A16 /	1: PWM1~3	Denable	0								
A111.4	0. PWM0 disable										
	1: PWM0 enable										
$\Delta 1h 3 \sim 2$	PWM0CKS: PWM0 clock source										
A111.5~2	00. Ferrer k										
	o o t = STSCER										
	01: FRC/25	6									
	01: FRC/25 10: FRC	6									
	01: FRC/25 10: FRC 11: FRC x 2	56 2 (V _{CC} > 3.0V	V)								
A1h.1	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS	56 2 (V _{CC} > 3.0 5 K : PWM0N	V) (mask data	a。 If CLRP	WM0=1 and	PMW0MS	KE=1, PWM01	N will output			
A1h.1	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat	56 2 (V _{CC} > 3.0 S K : PWM0N ta 。	V) [mask data	a。 If CLRPV	WM0=1 and	PMW0MS	KE=1, PWM01	N will output			
A1h.1 A1h.0	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS	56 2 (V _{CC} > 3.0 5 K : PWM0N ta 。 K : PWM0F	V) [mask data ? mask dat	a。 If CLRP a。 If CLRP	WM0=1 and WM0=1 and	PMW0MS PMW0MS	KE=1, PWM01 KE=1, PWM01	N will output N will output			
A1h.1 A1h.0	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat	56 2 (V _{CC} > 3.0 5 K : PWM0N ta 。 K : PWM0F ta。	V) [mask data ? mask dat	a。 If CLRP a。 If CLRP	WM0=1 and WM0=1 and	PMW0MS PMW0MS	KE=1, PWM01 KE=1, PWM01	N will output N will output			
A1h.1 A1h.0	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat	$\frac{1}{6}$ $\frac{2 (V_{CC} > 3.0)}{8K: PWM0N}$ $\frac{1}{6} = 0$ $K: PWM0F$ $\frac{1}{6} = 0$ $K: PWM0F$	V) mask data P mask dat	a。 If CLRPV a。 If CLRPV	WM0=1 and WM0=1 and	PMW0MS PMW0MS	KE=1, PWM01 KE=1, PWM01	N will output N will output			
A1h.1 A1h.0 SFR A7h	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7	$\frac{1}{6}$ $2 (V_{CC} > 3.0^{\circ})$ $K: PWM0N$ $K: PWM0F$ a_{\circ} $Bit 6$	V) mask data mask dat Bit 5	a. If CLRP a. If CLRP Bit 4	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2	KE=1, PWM01 KE=1, PWM01 Bit 1	N will output N will output Bit 0			
A1h.1 A1h.0 SFR A7h PWMCON2	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0M0E	$ \frac{1}{6} $ $ \frac{2 (V_{CC} > 3.0^{V})}{K: PWM0N} $ $ \frac{1}{6} \circ K: PWM0F $ $ \frac{1}{6} \circ Bit 6 $ $ \frac{1}{6} OWM0MSK $	V) mask data mask dat Bit 5 (E P)	a。 If CLRPV a。 If CLRPV Bit 4 WM0OM	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ	N will output N will output Bit 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOD R/W	$\frac{1}{6}$ $\frac{2 (V_{CC} > 3.0V_{CC} > 3.0V$	V) f mask data P mask dat Bit 5 CE P	a。 If CLRPV a。 If CLRPV Bit 4 WM0OM R/W	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W	N will output N will output Bit 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOD R/W 0	$ \begin{array}{c} \text{6} \\ \text{2} (V_{CC} > 3.0^{\circ} \\ \text{K}: PWM0N \\ \text{K}: PWM0F \\ \text{K}: PWM0F \\ \text{A} \\ \text{K}: PWM0F \\ \text{C} \\ \text{C}$	V) mask data mask dat Bit 5 E P 0 0	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOD R/W 0 PWM0MOI 0: pormal p	$i 6$ $2 (V_{CC} > 3.0^{V} K: PWM0N$ $i a \circ$ $K: PWM0F$ $i a \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 modelse$	V) mask data mask dat Bit 5 E P 0 ode select	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOI 0: normal n 1: half brid	$i6$ $2 (V_{CC} > 3.0^{\circ}$ $K: PWM0N$ $ia \circ$ $K: PWM0F$ $ia \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monode$ $ga mode$	V) mask data mask dat Bit 5 E P 0 0 ode select	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P' 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK	$i6$ $2 (V_{CC} > 3.0^{\circ}$ $K: PWM0N$ $a \circ$ $K: PWM0F$ $a \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monode$ $ge mode$ $K: mask out$	V) mask data mask dat Bit 5 E PV 0 ode select	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P' 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable	$i 6$ $2 (V_{CC} > 3.0^{\circ})$ $K: PWM0N$ $i a \circ$ $K: PWM0F$ $i a \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monode$ $ge mode$ $K: mask out$	V) mask data mask dat Bit 5 E PV 0 ode select put enable	a。 If CLRPV a。 If CLRPV Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOD R/W 0 PWM0MOD 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F	$i6$ $2 (V_{CC} > 3.0)$ $K: PWM0N$ $ia \circ$ $K: PWM0F$ $ia \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monometain of the second secon$	V) mask data mask dat Bit 5 E P 0 ode select put enable MON outpu	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/P	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOD R/W 0 PWM0MOD 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM:	$i 6$ $2 (V_{CC} > 3.0^{\circ}$ $K: PWM0N$ ia . K: PWM0F ia . K: PWM0F ia . Bit 6 $PWM0MSK$ R/W 0 D: PWM0 monode ge mode ge mode K: mask out $PWM0P/PWN$ $PWM0 outp$	V) mask data mask dat Bit 5 E P 0 ode select put enable MON outpu ut mode se	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0	$i 6$ $2 (V_{CC} > 3.0)$ $K: PWM0N$ $a \circ$ $K: PWM0F$ $a \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monode$ $ge mode$ $E: mask out$ $PWM0P/PWN$ $PWM0 outp$	V) mask data mask data Bit 5 E P 0 ode select put enable MON outpunde select	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.6	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal m 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0 01: Mode1	 i6 2 (V_{CC} > 3.0V ia • K: PWM0N ia • Bit 6 PWM0MSK R/W 0 PWM0 monode ge mode K: mask out PWM0P/PWN PWM0 outp 	V) mask data mask data Bit 5 E PV 0 ode select put enable MON outpu ut mode se	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/P	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.6	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0 01: Mode1 10: Mode2	$i 6$ $2 (V_{CC} > 3.0^{\circ}$ $K: PWM0N$ $i a \circ$ $K: PWM0F$ $i a \circ$ $Bit 6$ $PWM0MSK$ R/W 0 $D: PWM0 monode$ $ge mode$ $K: mask out$ $PWM0P/PWM$ $PWM0 outp$	V) mask data mask dat Bit 5 E PV 0 ode select put enable MON outpu ut mode se	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.6	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0 01: Mode1 10: Mode2 11: Mode3	$i 6$ $2 (V_{CC} > 3.0^{\circ} K: PWM0N$ $i a \circ$ $K: PWM0F$ $i a \circ$ $R: PWM0MSK$ R/W 0 $D: PWM0 MSK$ R/W 0 $D: PWM0 monode$ $ge mode$ $SE: mask outher PWM0P/PWN$ $PWM0 outp$	V) mask data mask data Bit 5 E P 0 ode select put enable MON outpu ut mode se	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/P	PMW0MS PMW0MS Bit 2 P 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.5~4 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0 01: Mode1 10: Mode2 11: Mode3 PWM0DZ: 1	$\frac{1}{2} (V_{CC} > 3.0^{\circ})$ $\frac{1}{2} (V_{CC$	V) (mask data) mask data) mask data) mask data) mask data) mask data)) mask data)) mask data)) mask data)) mask data)	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.6 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OM: 00: Mode0 01: Mode1 10: Mode2 11: Mode3 PWM0DZ: 1 0000: 0 x T	$\frac{1}{2} (V_{CC} > 3.0)$ $\frac{1}{2} (V_{CC} > 3.0)$ $\frac{1}{3} (V_{CC} > 3.0)$	V) (mask data (mask data () () () () () () () ()	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0 K while CLRPW	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.5~4 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal n 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OMSK 0: disable 1: enable, F PWM0OMSK 0: Mode0 01: Mode1 10: Mode2 11: Mode3 PWM0DZ: 1 0000: 0 x T 00001: 1 x T	 i6 2 (V_{CC} > 3.0^V ia • K: PWM0N ia • Bit 6 PWM0MSK R/W 0 D: PWM0 monode ge mode GE: mask out PWM0P/PWN PWM0 outp PWM0 dead PWMCLK (disable PWMCLK (disable PWMCLK (disable 	V) (mask data P mask data P mask data Bit 5 E P 0 0 ode select put enable MON output out mode se zone (Dead	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 M0PMSK/PV	PMW0MS PMW0MS Bit 2 P 0 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			
A1h.1 A1h.0 SFR A7h PWMCON2 R/W Reset A7h.7 A7h.6 A7h.6 A7h.5~4	01: FRC/25 10: FRC 11: FRC x 2 PWM0NMS this mask dat PWM0PMS this mask dat Bit 7 PWM0MOE R/W 0 PWM0MOE 0: normal m 1: half-brid PWM0MSK 0: disable 1: enable, F PWM0OMSK 0: disable 1: enable, F PWM0OMSK 0: Mode0 01: Mode1 10: Mode2 11: Mode3 PWM0DZ: 1 0000: 0 x T 00001: 1 x T	 i6 2 (V_{CC} > 3.0V ia . K: PWM0N ia . Bit 6 PWM0MSK R/W 0 PWM0 monode ge mode is mask out PWM0P/PWN PWM0 outp PWM0 dead PWMCLK (disable PWMCLK (disable PWMCLK 	V) (mask data mask data (mask data) (mask data (mask data) (mask data	a。 If CLRP a。 If CLRP Bit 4 WM0OM R/W 0 t data by PW lect	WM0=1 and WM0=1 and Bit 3 0 MOPMSK/PV	PMW0MS PMW0MS Bit 2 P 0 0	KE=1, PWM01 KE=1, PWM01 Bit 1 WM0DZ R/W 0	N will output N will output Bit 0 0 VM0=1			

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWMCON3	PWM1MOD	PWM1MSKE	PWM	10M		PWN	IIDZ					
R/W	R/W	R/W	R/	W		R/	W					
Reset	0	0	0 0 0 0 0				0	0				
AFh.7	PWM1MOD	: PWM1mode	select									
	0: normal m	ode										
	1: half-bridge mode											
AFh.6	PWM1MSKE: mask output enable											
	0: disable											
	1: enable, PWM1P/PWM1N output data by PWM1PMSK/PWM1NMSK while CLRPWM1=1											
AFh.5~4	PWM10M:	PWM1 output	mode select									
	00: Mode0											
	01: Mode1											
	10: Mode2											
	11: Mode3											
AFh.3~0	PWM1DZ: F	WM1 dead zo	one (Dead zo	ne is prohibi	ted in half-b	ridge mode)						
	0000: 0 x T ₁	PWMCLK (disable	e)									
	0001: 1 x T ₁	PWMCLK										
		5										
	1111: 15 x T _{PWMCLK}											

SFR C1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM4DH		PWM4DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

C1h.7~0 **PWM4DH:** PWM4 duty high byte write sequence: PW4xDL then PWM4DH read sequence: PWM4DH then PWM4DL

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM4DL		PWM4DL								
R/W				R/	W					
Reset	0	0	0	0	0	0	0	0		

C2h.7~0 **PWM4DL:** PWM4 duty low byte write sequence: PWM4DL then PWM4DH read sequence: PWM4DH then PWM4DL

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM5DH		PWM5DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

C3h.7~0 **PWM5DH:** PWM5 duty high byte write sequence: PWM5DL then PWM5DH read sequence: PWM5DH then PWM5DL

SFR C4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM5DL		PWM5DL								
R/W				R/	W					
Reset	0	0	0	0	0	0	0	0		

C4h.7~0 **PWM5DL:** PWM5 duty low byte

write sequence: PWM5DL then PWM5DH read sequence: PWM5DH then PWM5DL

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH				PWN	10DH					
R/W				R	W					
Reset	1	0	0	0	0	0	0	0		
D1h.7~0	PWM0DH:	PWM0 duty	high byte							
	write sequer	ice: PWM0D	L then PWM	IODH						
	read sequend	ce: PWM0D	H then PWM	UDL						
CED DAP	D:+ 7	D:+ 6	D:+ 5	D;+ 1	D:+ 2	D:+ 0	D;+ 1	D:+ 0		
SFK D2II	DII /	DII 0	DII J	DIL 4		DIL Z	DII I	BIL U		
				F WIN	MUDL (W)					
Reset	0	0	0	0	0	0	0	0		
D2h 7~0	PWM0DL:	PWM0 dutv	low byte	Ŭ	Ŭ	0	Ŷ	Ŭ		
D211.7 0	write sequer	ice: PWM0D	L then PWM	0DH						
	read sequen	ce: PWM0D	H then PWM	0DL						
· · · · · · · · · · · · · · · · · · ·			1		1			1		
SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1DH				PWN	<u>11DH</u>					
R/W	0	0	0	R	W O	0	0	0		
Reset			U high byta	U	U	U	U	U		
D3h.7~0	write sequer	r wwwir duty	Ingil byte	1DH						
	read sequen	ce: PWM1D	H then PWM	1DL						
	1									
SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1DL				PWN	/IDL					
R/W				R	W					
Reset	0	0	0	0	0	0	0	0		
D4h.7~0	PWM1DL:	PWM1 duty	low byte							
	write sequer	nce: PWMID	L then PWM	IDH 1DI						
	read sequence: PWMIDH then PWMIDL									
SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2DH				PWN	12DH					
R/W				R	W					
Reset	0	0	0	0	0	0	0	0		
D5h.7~0	PWM2DH:	PWM2 duty	high byte							
	write sequer	ice: PWM2D	L then PWM	2DH						
	read sequence	ce: PWM2D	H then PWM2	2DL						
SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Rit 1	Bit 0		
PWM2DL	Dit /	Ditt	DitJ	PWN	12DL	DI 2	Diti	Ditt		
R/W				R	W					
Reset	0	0	0	0	0	0	0	0		
D6h.7~0	PWM2DL:	PWM2 duty	low byte							
	write sequer	ice: PWM2D	L then PWM	2DH						
	read sequend	ce: PWM2D	H then PWM	2DL						
CED DOL	D:+ 7	D:+ C	D:+ 5	D:+ 4	D:+ 2	D:+ 0	D:+ 1	D:+ 0		
SEK DYN DWMADDD	DIL/	DILO	DIU			DIL 2	סונו	טוום		
R/W	<u>Рп</u> Р W WUTKDп									
Reset	1	1	1	1	1	1	1	1		
D9h 7~0	PWM0PR	DH: PWM0	period high	bvte	-		-	-		
	write sequence: PWM0PRDL then PWM0PRDH									
	read seque	nce: PWM0	PRDH then F	WM0PRDL						

r	1						T	T				
SFR DAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWM0PRD	Ĺ			PWM	0PRDL							
R/W	_		T	R	/W	1		1				
Reset	1	1	1	1	1	1	1	1				
DAh.7~0	PWM0PR	DL: PWM0 1	period low b	yte								
	write seque	ence: PWM0F	PRDL then P	WM0PRDH								
	read seque	nce: PWM0F	PRDH then P	WM0PRDL								
CED DBL	D:47	Dit C	D:4 5	D:4 4	D:4 2	D:4 2	D:4 1	D:+ 0				
SFK DBN	B1(/	Bit 0	Bit 5	Bit 4		Bit 2	Bit I	Bit 0				
PWMIPKD	H			PWM								
R/W	1	1	1	K	/ W	1	1	1				
Reset					1	1	1	1				
DBh.7~0	PWMIPR	ADH: PWMI	period high									
	road social	ence: P w M11	PRDL liteli P									
	ieau seque		KDII UICII I	W WITT KDL								
SFR DCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWM1PRD	<u>Б</u> ,	Dit 0	DRU	PWM	1PRDI	DR 2	BRT	Dit 0				
R/W		R/W										
Reset	1	1	1	1	1	1	1	1				
DCh 7~0	PWM1PR	DL: PWM1 1	period low b	vte		_						
Den.7 %	write seau	ence: PWM1	PRDL then P	WM1PRDH								
	read seque	nce: PWM1F	RDH then P	WM1PRDL								
	1											
SFR DDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWM3DH				PWM	I3DH	•						
R/W				R/	W							
Reset	1	0	0	0	0	0	0	0				
DDh.7~0	PWM3DH:	PWM3 duty	high byte									
	write sequer	nce: PWM3D	L then PWM	I3DH								
	read sequen	ce: PWM3DH	I then PWM	3DL								
						1		T				
SFR DEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWM3DL				PWM	I3DL							
R/W				R/	W	-	<u> </u>					
Reset	0	0	0	0	0	0	0	0				
DEh.7~0	PWM3DL:	PWM3 duty	low byte									
	write sequer	ice: PWM3D	L then PWM	I3DH								
	read sequen	ce: PWM3DE	I then PWM	3DL								
SED 01h	Rit 7	Bit 6	Bit 5	Rit /	Bit 3	Rit 2	Bit 1	Bit 0				
	DIL /	DIU	DIUJ	DIL 4	כוום	DIL Z						
				_	_		PUK D					
	_		_	_	_	_	K/	0				
Keset	_	—	_	—		_	U	U				

91h.1~0 **PORTIDX:** Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PINMOD10		PINM	IOD1		PINMOD0				
R/W		R/	W			R/	W		
Reset	0	0	0	1	0	0	0	1	

A2h.7~4 **PINMOD1:** Px.1 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A2h.3~0 **PINMOD0:** Px.0 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD32		PINN	10D3		PINMOD2			
R/W		R/	W			R/	W	
Reset	0	0	0	1	0	0	0	1

A3h.7~4 **PINMOD3:** Px.3 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A3h.3~0 **PINMOD2:** Px.2 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD54		PINM	10D5		PINMOD4			
R/W		R/	W		R/W			
Reset	0	0	0	1	0	0	0	1

A4h.7~4 **PINMOD5:** Px.5 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A4h.3~0 **PINMOD4:** Px.4 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PINMOD76		PINM	10D7			PINN	10D6				
R/W		R/	W			R/	W				
Reset	0	0	0	1	0	0	0	1			

A5h.7~4 **PINMOD7:** Px.7 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A5h.3~0 **PINMOD6:** Px.6 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	CLRPWM0	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	1	0	0	0

F8h.5 CLRPWM0: PWM0 clear enable
0: PWM0 is running
1: PWM0 is cleared and held
F8h.4 CLRPWM1: PWM1/PWM2/PWM3/PWM4/PWM5 clear enable
0: PWM1/PWM2/PWM3/PWM4/PWM5 is running
1: PWM1/PWM2/PWM3/PWM4/PWM5 is cleared and held

11. ADC

The Chip offers a 12-bit ADC consisting of a 24-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register.

To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit.

Using the ADCVREFS option, the ADC internal reference voltage source (VREF) can be selected to be VCC or VBG. When ADCVREFS=1, set VBGSEL to select VBG as 1.18V or 2.5V. After power-on reset, VBG initially uses 2.5V Trimming value. To use VBG1.18V, the F/W needs to read the SFR E4h (VBG 1.18V trimming value) and copy it to SFR F5h.

11.1 ADC Channels

The ADC channels are connected to the analog input pins through analog switch multiplexers. The analog switch multiplexer is controlled by the ADCHS register. The chip provides up to 22 IO input pins. In addition, there are 4 internal reference voltages (VBG, VSS, VCC/4, VCC/201). When ADCHS is set to 01100b, the analog input will be connected to VBG. When ADCHS is set to 01101b, the analog input will be connected to the P1.2 input pin. At this time, P1.2 must also be set to ADC channel mode. For example, PORTIDX = 1, and the lower 4 bits of PINMOD32 are set to 0011.

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. A total of 21 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	EEPIE	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.3 ADIE: ADC Interrupt enable 0: disable ADC interrupt

涑

1: enable ADC interrupt

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	_	TM3CKS	WDTPSC		ADCKS		PWM1NMSK	PWM1PMSK
R/W	_	R/W	R/	W	R/	W	R/W	R/W
Reset		0	0	0	0	0	0	0

94h.3~2 ADCKS: ADC clock rate select

00: F_{SYSCLK}/32

01: F_{SYSCLK}/16

10: F_{SYSCLK}/8

11: $F_{SYSCLK}/4$

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF		—	ADIF		—	PCIF	TF3
R/W	R/W	_	_	R/W	_	_	R/W	R/W
Reset	0		_	0		_	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDL		ADCDL				—	—	_
R/W		I	ર		—	—	—	
Reset	_	-	_	_	_	_	_	_

AAh.7~4 ADCDL: ADC data bit 3~0

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCDH		ADCDH									
R/W		R									
Reset	_	-	_	_	-	-	-	_			

ABh.7~0 ADCDH: ADC data bit 11~4

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCHSEL			ADCHS			ADCVREFS	VBG	SEL			
R/W			R/W			R/W	R/	W			
Reset	1	1	1	1	1	0	0	0			
B6h.4~0	ADCHS: AI	OC channel s	elect								
	00000: CH	0 (P0.0)	0.	1101: CH13	(P1.2)						
	00001: CH	1 (P0.1)	01	1110: CH14	(P1.3)						
	00010: CH2 (P0.2) 01111: CH15 (P1.4)										
	00011: CH	00011: CH3 (P0.3) 10000: CH16 (P1.5)									
	00100: CH4	2: CH4 (P0.4) 10001: CH17 (P3.0)									
	00101: CH	5 (P0.5)	10	0010: CH18	(P3.1)						
	00110: CH	10: CH6 (P3.7) 10011: CH19 (P1.6)									
	00111: CH	7 (P3.6)	10	0100: CH20	(P1.7)						
	01000: CH	8 (P3.5)	10	0101: CH21	(P3.3)						
	01001: CH	9 (P3.4)	10	0110: CH22	(P3.2)						
	01010: CH	10 (P1.0)	0	thers: reserve	ed						
	01011: CH	11 (P1.1)	1	1110: VCC/2	201						
	01100: CH	12 VBG (ba	ng gap volta	ge) 1111	1: VCC/4						
B6h.2	ADCVERFS	S: ADC refer	ence voltage	select							
	0: VCC										
	1: VBG										
B6h.1	VBGSEL: V	BG voltage	select								
	00: 1.18V (r	need read SF	R E4h value	and copy it to	o SFR F5h)						
	10: 2.5V										
OFD 01L	D:47	D:4 (D'4 5	D'4 4	D'/ 2	D'4 0	D:4 1	D:4 0			

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTIDX		_	_			—	POR	ΓIDX
R/W		—	—			—	R/W	
Reset		—	—			—	0	0
011 1 0	DODTIDY	D 1						

91h.1~0 PORTIDX: Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PINMOD10		PINN	IOD1			PINN	10D0				
R/W		R/	W			R/	W				
Reset	0	0	0	1	0	0	0	1			

A2h.7~4 **PINMOD1:** Px.1 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A2h.3~0 **PINMOD0:** Px.0 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PINMOD32		PINM	1OD3			PINMOD2 P/W/			
R/W		R/	W			R/	W		
Reset	0	0 0 0 1				0	0	1	

A3h.7~4 **PINMOD3:** Px.3 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A3h.3~0 **PINMOD2:** Px.2 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD54	PINMOD5					PINM	10D4	
R/W		R/	W		R/W			
Reset	0	0	0	1	0	0	0	1

A4h.7~4 **PINMOD5:** Px.5 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A4h.3~0 **PINMOD4:** Px.4 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD76		PINM	10D7			PINM	10D6	
R/W		R/	W			R/W		
Reset	0	0	0	1	0	0	0	1

A5h.7~4 **PINMOD7:** Px.7 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

A5h.3~0 **PINMOD6:** Px.6 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	CLRPWM0	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	1	0	0	0

F8h.4 **ADSOC:** Start ADC conversion

Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

12. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. All of the IO pins can be the Common pins. User can flexibly adjust the Common pins and Segment pins. It is capable of driving the LCD panel with 121 dots (Max.) by 11 Commons (COM) and 11 Segments (SEG). The P0.0~P0.5 are used for Common pins COM00~COM07. The P1.0~P1.7 are used for Common pins COM10~COM17. The P3.0~P3.7 are used for Common pins COM30~COM37. Common pins are capable of driving 1/2 bias by setting the corresponding PINMODE=15 (*see section 7*). Refer to the following figures.

LCD COM00 Circuit

The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.

1/4 Duty, 1/2 Bias Output Waveform

13. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes an 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: X¹⁶ + X¹⁵ + X² + 1

CRCDL CRCDL								
	CRCDL							
R/W R/W	R/W							
Reset 1 1 1 1 1 1 1	1							

F1h.7~0 CRCDL: 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCDH		CRCDH									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

F2h.7~0 CRCDL: 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCIN		CRCIN									
W		W									
Reset		_	_	_	_	_	_	_			
	~ ~ ~ ~ ~ ~	~ ·									

F3h.7~0 CRCIN: CRC input data register

14. Multiplier and divider

The chip provide multiplier and divider have the following functions. The 8 bit operation is fully compatible with industry standard 8051.

- 8 bits \times 8 bits = 16 bit (standard 8051)
- 8 bits \div 8 bits = 8 bits, 8 bits remainder (standard 8051)
- 16 bits \times 16 bits = 32 bit
- 16 bits \div 16 bits = 16 bits, 16 bits remainder
- 32 bits \div 16 bits = 32 bits, 16 bits remainder

No matter 8bit / 16bit / 32bit operation, it's easy to execute by MUL AB and DIV AB instruction. There is extra SFR EXA/EXA2/EXA3/EXB for 16bit / 32bit multiply and divide operation.

For 8 bit multiplier/divider operation, be sure SFR bit muldiv16=0 and div32=0.

For 16 bit multiplier operation, multiplicand, multiplier and product as follows. 16 bit multiplier takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0							
Multiplication	Byte3	Byte2	Byte1	Byte0					
Multiplicand	-	-	EXA	А					
Multiplier	-	-	EXB	В					
Product	EXB	В	А	EXA					
OV	Product (EX	KB or B) !=0	-	-					

For 16 bit divider operation, dividend, divisor, quotient, remainder read as follows. 16 bit divider takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0								
Division	Byte3	Byte2	Byte1	Byte0						
Dividend	-	-	EXA	А						
Divisor	-	-	EXB	В						
Quotient	-	-	А	EXA						
Remainder	-	-	В	EXB						
OV	Divisor $EXB = B = 0$									

For 32 bits \div 16 bits operation, dividend, divisor, quotient, remainder read as follows. 32 bit divider takes 32 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=1								
Division	Byte3	Byte2	Byte1	Byte0						
Dividend	EXA3	EXA2	EXA	А						
Divisor	-	-	EXB	В						
Quotient	А	EXA	EXA2	EXA3						
Remainder	-	-	В	EXB						
OV		Divisor EXB=B =0								

SFR CEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA2				EX	A2			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

CEh.7~0 **EXA2:** Expansion accumulator 2

SFR CFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EXA3		EXA3							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

CFh.7~0 EXA3: Expansion accumulator 3

SFR E6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA		EXA								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

E6h.7~0 **EXA:** Expansion accumulator

SFR E7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
EXB		EXB										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

E7h.7~0 **EXB:** Expansion B register

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAF	MULDIV16	
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.3 **DIV32:** (only active when MULDVI16=1)

0: instruction DIV as 16/16 bit division operation

1: instruction DIV as 32/16 bit division operation

F7h.0 **MULDIV16:**

0: instruction MUL/DIV as 8*8, 8/8 operation

1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation

ARITHMETIC								
Mnemonic	Description	byte	cycle	opcode				
MUL AB	Multiply A by B	1	8/16	A4				
DIV AB	Divide A by B	1	8/16/32	84				

15. Master I²C Interface

Master I²C interface transmit mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and write MIDAT to start first data transmission. When MIIF convert to 1, data transfer to slave was complete. User can write MIDAT again to transfer next data to slave. Set MISTOP to finish transmit mode. The main I2C clock frequency selection needs to be limited to below 260KHz

MISTART must remain at 1 for the next transfer. After the final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I^2C protocol. SCL clock can be adjusted via MICR.

Master I²C Transmit flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF
- (4) Write data to MIDAT to start next transfer (MISTART must remain at 1)
- (5) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF, Loop (4) ~ (5) for next transfer.
- (6) Clear MISTART and set MISTOP to stop the I²C transfer

Master Transmit Timing

Note: MISTART should remain 0 longer than a SCL period before starting the next Master I^2C *protocol.*

Master I²C interface Receive mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and read MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave). When MIIF convert to 1, data receive from slave was complete. User can read MIDAT to get data from slave, and start next receive. Set MISTOP to finish receive mode.

MISTART must remain at 1 for the next transfer. After final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I^2C protocol. SCL clock can be adjusted via MICR.

From master to slave	A: acknowledge	A: Non acknowledge
Erom slave to master	S: start condition	
	P: stop condition	

Master I²C Receive flow:

- (1) Write the slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transfer
- (3) Wait until MIIF converts to 1 (issue an interrupt according to user requirements), clear MIIF
- (4) Read MIDAT to start receiving data for the first time (receiving data has not been completed at this

time, and the read MIDAT should be discarded)

- (5) Wait until MIIF converts to 1 (issue an interrupt according to user requirements), clear MIIF
- (6) Read MIDAT to get the received data, and loop (5)~(6) for the next reception
- If it is the last transaction, you need to set MIACKO and MISTOP first, and then read MIDAT.
- (7) Set MISTOP to stop I²C transmission

	> 1 SCL
MISTART	
MISTOP	
SCL	
SDA	
MIDAT A1 25 25	A6
MIIF	
Note: MIDAT 25h and A6h are data from slave Note: MISTART should remain 0 longer than a SCL clock before starting the next Master I ² C Transfer protoc	ol

Master Receive Timing

I ² C Function Pin	PINMODxx	Px.n SFR data	Pin State
I ² C Master SCI	0000	Х	I ² C Clock Output (Open Drain Output, Pull-up)
I C Master SCL	xx10	Х	I ² C Clock Output (CMOS Push-Pull)
I ² C Master SDA	0000	I ² C DATA (Pull-up)	

Pin Mode Setting for Master I²C

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	UART2PS		UART1PS		
R/W	R/W	R/W	R/W	R/W	R/W		R/	R/W	
Reset	0	0	0	0	0	0	0	0	

A6h.4 **I2CPS:** I²C pin select 0: SCL/SDA = P0.0/P0.1 1: SCL/SDA = P3.0/P3.1

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	_	ADIE	LVDIE	PCIE	TM3IE
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	0	0	0	—	0	0	0	0

A9h.6 **I2CE:** I²C interrupt enable

0: Disable I²C interrupt

1: Enable I²C interrupt

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR				
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	1	0	0				
E1h.7	MIEN: Mast	er I ² C enable										
	0: disable											
	1: enable											
E1h.6	MIACKO: W	When Master	I ² C receive c	lata, send acl	nowledge to	I ² C Bus						
	0: ACK to slave device											
	1: NACK to slave device											
E1h.5	MIIF: Maste	MIIF : Master I ² C Interrupt flag										
	0: write 0 to	o clear it										
	1: Master I ²	C transfer on	e byte compl	lete								
E1h.4	MIACKI: W	hen Master I	² C transfer, a	acknowledge	ment form I ²	C bus (read o	only)					
	0: ACK rec	eived										
	1: NACK re	eceived										
E1h.3	MISTART: 1	Master I ² C S	tart bit									
	1: start I ² C	bus transfer										
E1h.2	MISTOP: M	aster I ² C Sto	p bit									
	1: send STC	OP signal to s	top I ² C bus									
E1h.1~0	MICR: Mast	ter I ² C (SCL)	clock freque	ency selection	n							
	00: F _{SYSCLK} /	/4 (ex. If F ₅	SYSCLK=16MH	Iz, I ² C clock	is 4 MHz)							
	01: F _{SYSCLK} /	/16 (ex. If F	SYSCLK=16M	Hz, I ² C clock	x is 1 MHz)							
	10: F _{SYSCLK} /	/64 (ex. If F	SYSCLK=16M	Hz, I ² C clock	t is 250 KHz))						
	11: F _{SYSCLK} /	/256 (ex. If I	F _{SYSCLK} =16M	Hz, I ² C cloc	k is 62.5 KH	z)						
	Note: The n	nain I2C cloc	k frequency	selection nee	ds to be limit	ted to below	260KHz.					
	That is, whe	en F _{SYSCLK} =1	6MHz, the of	ptions 00/01	(division by 4	4 / 16) canno	t be selected.					
					-							

SFR E2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
MIDAT	MIDAT										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

E2h.7~0 **MIDAT**: Master I^2C data shift register

(W):After Start and before Stop condition, write this register will resume transmission to I^2C bus (R): After Start and before Stop condition, read this register will resume receiving from I^2C bus

16. In Circuit Emulation (ICE) Mode

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode.
- 3. The Program Memory's addressing space 2D00h~2FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The HT-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1 (only in ICE Mode).
- 6. The V_{DD} level is controlled by HT-Link module.

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80h	0000-0000	P0	-	_	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
81h	0000-0111	SP				S	SP			
82h	0000-0000	DPL				D	PL			
83h	0000-0000	DPH				D	PH			
84h	xxxx-xx00	INTE2	-	-	-	-	-	-	PWM1IE	PWM0IE
85h	xxxx-0x00	INTPORT	-	-	-	-	P3IF	-	P1IF	P0IF
86h	xxxx-x000	INTPWM	-	-	-	-	-	-	PWM1IF	PWM0IF
87h	0xxx-0000	PCON	SMOD	I	-	-	GF1	GF0	PD	IDL
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89h	0000-0000	TMOD	GATE1	GATE1 CT1N TMOD1 GATE0 CT0N TMOD0						OD0
8Ah	0000-0000	TL0				Т	LO			
8Bh	0000-0000	TL1				Т	L1			
8Ch	0000-0000	TH0				T	H0			
8Dh	0000-0000	TH1				T	H1	-	-	
8Eh	0100-0000	SCON2	SM	_	-	REN2	TB82	RB82	TI2	RI2
8Fh	xxxx-xxxx	SBUF2				SB	UF2			
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
91h	xxxx-xx00	PORTIDX	-	-	-	-	-	-	POR	ΓIDX
93h	0000-0000	UARTCON		UAR	JART2PS – UARTPS					
94h	0000-0000	OPTION	-	TM3CKS	WD	ГРSC	AD	CKS	PWM1NMSK	PWM1PMSK
95h	0000-xx00	INTFLG	LVDIF	EEPIF	EEPBUSY	ADIF	-	-	PCIF	TF3
96h	0000-0000	INTPIN	PIN7IF	PIN6IF	PIN5IF	PIN4IF	PIN3IF	PIN2IF	PIN1IF	PIN0IF
97h	xxxx-xx00	SWCMD		SWRST / IAPALL / WDTO						
98h	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99h	XXXX-XXXX	SBUF				SB	UF			
9Ah	XXXX-XXXX	EEPWD0				EEP	WD0			
9Bh	XXXX-XXXX	EEPWD1				EEP	WD1			
9Ch	XXXX-XXXX	EEPWD2				EEP	WD2			
9Dh	XXXX-XXXX	EEPWD3				EEP	WD3			
9Eh	0000-0000	EEPWAD R				EEPV	VADR			
9Fh	0000-0000	UART2CO	_				UART2BRP	1		
A0h	1111_1111	N P2	P2 7	P2.6	P2 5	P2 4	P2 3	P2 2	P2 1	P2.0
Alh	xx10-1010	PWMCON	PWM	1CKS	PWM1EN	PWM0EN	PWM	OCKS	PWM0NMSK	PWM0PMSK
A2h	0001-0001	PINMOD10	1	PINN	10D1	1	1 11 11	PINN	40D0	
A3h	0001-0001	PINMOD32		PINN	10D3			PINN	10D0 10D2	
A4h	0001-0001	PINMOD54		PINN	10D5			PINN	40D4	
A5h	0001-0001	PINMOD76		PINN	10D7			PINN	40D6	
A6h	0000-0000	PINMOD	HSNK2EN	HSNK1EN	HSNK0EN	I2CPS	_	TCOE	T2OE	TOOE
A7h	0000-0000	PWMCON2	PWM0MOD	PWM0MSKE	PWN	100M		PWN	/10DZ	
A8h	0x00-0000	IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
A9h	0000-0000	INTE1	PWMIE	I2CE	ES2	EEPIE	ADIE	LVDIE	PCIE	TM3IE
AAh	XXXX-XXXX	ADCDL		AD	CDL			ـــــــــــــــــــــــــــــــــــــ	-	
ABh	XXXX-XXXX	ADCDH				AD	CDH			
AEh	xxxx-x000	EEPWCON	_	_	_	_	_	HWSTART	hw	len
AFh	0000-0000	PWMCON3	PWM1MOD	PWM1MSKE	PWM	110M		PWN	AIDZ	
B0h	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
B6h	xxx1-1111	ADCHSEL			ADCHS			ADCVREFS	VBC	SEL
B8h	xx00-0000	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0
B9h	xx00-0000	IPH	-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
BAh	000x-0000	IP1	PPWM	PI2C	PS2	PEEP	PADI	PLVD	PPC	PT3
BBh	000x-0000	IP1H	PPWMH	PI2CH	PS2H	PEEPH	PADIH	PLVDH	PPCH	РТ3Н
BFh	000x-0000	LVDS	LVDM	LVDO	-	LVDPD		LVD	DSEL	
C1h	0000-0000	PWM4DH				PWN	/I4DH			
C2h	0000-0000	PWM4DL				PWN	/I4DL			
C3h	0000-0000	PWM5DH				PWN	15DH			
C4h	0000-0000	PWM5DL			1	PWN	15DL		<u></u>	
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
C9h	0000-0000	IAPWE_SFR		IAPWE / IAPTO / EEPWE / INFOWE / EEPTO						
CAh	0000-0000	RCP2L		RCP2L						
CBh	0000-0000	RCP2H				RC	P2H			
CCh	0000-0000	TL2		TL2						
CDh	0000-0000	TH2		TH2						
CEh	0000-0000	EXA2		EXA2						
CFh	0000-0000	EXA3				EX	CA3			
D0h	0000-0000	PSW	CY	AC	F0	RS1	RSO	OV	Fl	Р
DIh	0000-0000	PWM0DH				PWN	AODH			
D2h	0000-0000	PWM0DL				PWN	AODL			
D3h	0000-0000	PWMIDH				PWN				
D4n	0000-0000	PWMIDL				PWN				
DSh	0000-0000	PWM2DH				PWN	12DH 12DI			
Don	0000-0000 00x0 0011	PWM2DL			STRCK	STDDCK	STRECK	SELECK	CLK	TRC .
Doll	1111 1111	PWM0PRDH	_	_	SILCK	DWM	JODDH	SELFCK	CLN	I SC
D9II D4h	1111-1111	PWM0PRDL				PWM				
DRh	1111-1111	PWM1PRDH				PWM	IPRDH			
DCh	1111-1111	PWM1PRDL				PWM	1PRDL			
DDh	0000-0000	PWM3DH				PWN	A3DH			
DEh	0000-0000	PWM3DL				PWN	A3DL			
DFh	0000-0011	RDCTLL	_	_	_	_	_	ATDEN	AT	`DT
E0h	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
E1h	000x-0100	MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
E2h	0000-0000	MIDAT			1	MI	DAT			
E3h	x100-0000	LVRCON	_	PORPD_SAV	PORPD	LVRPD		LVR	SEL	
E4h	xxxx-xxxx	CFGBG2	-	-	-			BGTRIM2		
E5h	0000-0x00	EFTCON	EFT2CS	EFT1CS	EF	T1S	EFTSLOW	-	EFTWOUT	CKHLDE
E6h	0000-0000	EXA				E	XA	11	I	
E7h	0000-0000	EXB		1		E	XB	r		r
EFh	xx00-0000	AUX3	warmtime		TM	3PSC	r	-	FJMPE	FJMPS
F0h	0000-0000	B	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
F1h	1111-1111	CRCDL				CR	CDL			
F2h	1111-1111	CRCDH				CR	CDH			
F3h	0000-0000	CRCIN		1	,	CR	CIN			
F5h	XXXX-XXXX	CFGBG	_	_	-			BGTRIM1		
F6h	XXXX-XXXX	CFGWL	_		1		FRCTRIM	[[
F7h	0000-0110	AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAF	ΎТЕ	MULDIV16
F8h	0010-1000	AUX1	CLRWDT	CLRTM3	CLRPWM0	ADSOC	CLRPWM1	T2SEL	T1SEL	DPSEL

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FF9	CFGBG2	-	-	-			BGTRIM2		
3FFB	CFGBG1	-	-	-	BGTRIM1				
3FFD	CFGWL	-				FTCTRIM			
3FFFh	CFGWH	PROT	XRSTE	PORSEL					_

SFR & CFGW DESCRICPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	PO	7~0	P0	R/W	FFh	Port0 data
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
84h	INTE?	1	PWM1IE	R/W	0	 PWM1 Interrupt Enable 0: disable PWM1 ~ PWM5 interrupt 1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)
0411	04II II(122	0	PWM0IE	R/W	0	PWM0 Interrupt Enable0: disable PWM0 interrupt1: enable (note: PWMIE must be 1 at the same time to generatePWM interrupt)
		3	P3IF	R/W	0	PORT3 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
85h	INTPORT	1	P1IF	R/W	0	PORT1 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	P0IF	R/W	0	PORT0 Pin Change Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
86h INTPWM	1	PWM1IF	R/W	0	PWM1~PWM5 interrupt Flag. Set by H/W at the end of PWM1 period, S/Wwrite 1h to clear int flag	
	INTPWM	0	PWM0IF	R/W	0	PWM0 Interrupt Flag. Set by H/W at the end of PWM0 period, S/Wwrite 2h to clear int flag
		7	SMOD	R/W	0	Set 1 to enable UART1 double baud rate
		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter Halt/Stop mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter Idle mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin
		1	IEO	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		0	ITO	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is
		6	CT1N	R/W	0	Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin's negative edge
		5~4	TMOD1	R/W	00	Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops
89h	TMOD	3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
	2 CTON R	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge		
		1~0	TMOD0	R/W	00	Timer0 mode select 00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow. 11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte
		7	SM	R/W	0	UART2 Serial port mode select bit 0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable
		4	REN2	R/W	0	UART2 reception enable 0: Disable reception 1: Enable reception
8Eh	SCON2	3	TB82	R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode3
0LII	5001(2	2	RB82	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode3
		1	TI2	R/W	0	Transmit interrupt flag Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.
		0	RI2	R/W	0	Receive interrupt flag Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.
8Fh	SBUF2	7~0	SBUF2	R/W	-	UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.
90h	P1	7~0	P1	R/W	FFh	Port1 data
91h	PORTIDX	1~0	PORTIDX	R/W	00	Port index of INTPIN, PINMOD10, PINMOD32, PINMOD54, PINMOD76
93h	UARTCON	7~4	UART2PS	R/W	0000	UART2 Pin Select 0000: RXD2/TXD2 = P0.0/P0.1 0001: RXD2/TXD2 = P3.5/P3.6 0010: RXD2/TXD2 = P0.1/P0.0 0011: RXD2/TXD2 = P3.6/P3.5 0100: RXD2/TXD2 = P0.1/P0.1; 1-wire

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						0101: RXD2/TXD2 = P3.6/P3.6; 1-wire
						0110: RXD2/TXD2 = P0.0/P0.0; 1-wire
						0111: RXD2/TXD2 = P3.5/P3.5; 1-wire
						1000: RXD2/TXD2 = P0.2/P0.3
						1010: RXD2/TXD2 = P0.3/P0.2
						1100: RXD2/TXD2 = P0.3/P0.3; 1-wire
						1110: RXD2/TXD2 = P0.2/P0.2; 1-wire
						UART1 Pin Select
						000: RXD/TXD = P3.0/P3.1
						001: RXD/TXD = P3.2/P3.3
						010: $RXD/TXD = P3.1/P3.0$
		2~0	UARTPS	R/W	000	011: RXD/TXD = P3.3/P3.2
						100: RXD/TXD = P3.1/P3.1; 1-wire
						101: RXD/TXD = P3.3/P3.3; 1-wire
						110: RXD/TXD = P3.0/P3.0; 1-wire
						111: RXD/TXD = P3.2/P3.2; 1-wire
						Timer3 Clock Source Select.
		6	TM3CKS	R/W	0	0: Slow clock (SRC)
						1: FRC/512 (36KHz)
						Watchdog Timer pre-scalar time select
	94h OPTION					00: 220 ms WDT overflow rate
		5~4	WDTPSC	R/W	00	01: 110 ms WDT overflow rate
						10: 54 ms WDT overflow rate
94h						11: 27 ms WDT overflow rate
						ADC clock rate select
						00: F _{SYSCLK} /32
		3~2	ADCKS	R/W	00	01: $F_{SYSCLK}/16$
						10: $F_{SYSCLK}/8$
						11: $F_{SYSCLK}/4$
		1	PWM1NMSK	R/W	0	PWM1N Mask Data, while CLRPWM1=1 and PWM1MSKE=1
		0	PWM1PMSK	R/W	0	PWM1P Mask Data, while CLRPWM1=1 and PWM1MSKE=1
						Low Voltage Detect Interrupt flag
		7	I VDIF	R/W	_	Set by H/W when a low voltage occurs.
			LVDI	IX/ W		S/W can write 7Fh to INTFLG to clear this flag if VCC is not at
						Low Voltage.
						EEP write finish interrupt
		6	EEPIF	R/W	0	Set by H/W when write EEP finish,
						H/W auto clear when enter Interrupt subroutine
		5	EEPBUSY	R	0	EEP Busy Flag is set high when write EEP
						ADC interrupt flag
95h	INTEL G	4	ADIF	R/W	0	Set by H/W at the end of ADC conversion. S/W writes EFh to
7511	INTEG					INTFLG or sets the ADSOC bit to clear this flag.
						Port0~Port3 Pin change interrupt flag
						Set by H/W when Port0~Port3 pin state change is detected and
		1	PCIF	R/W	0	its interrupt enable bit is set.
						S/W can write 0 to clear all pin interrupt flags (Port0~Port3), it
						will also clear PIN0IF~PIN7IF and P0IF~P3IF.
						Timer3 Interrupt Flag
		0	TF3	R/W	0	Set by H/W when Timer3 reaches TM3PSC setting cycles. It is
		0		10/11	0	cleared automatically when the program performs the interrupt
						service routine. S/W can write FEh to INTFLG to clear this bit.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	PIN7IF	R/W	0	Px.7 pin change interrupt flag, Write 0 to clear Px.7 pin change interrupt flag port number (x) define by PORTIDX
		6	PIN6IF	R/W	0	Px.6 pin change interrupt flag, Write 0 to clear Px.6 pin change interrupt flag port number (x) define by PORTIDX
		5	PIN5IF	R/W	0	Px.5 pin change interrupt flag, Write 0 to clear Px.5 pin change interrupt flag port number (x) define by PORTIDX
96h		4	PIN4IF	R/W	0	Px.4 pin change interrupt flag, Write 0 to clear Px.4 pin change interrupt flag port number (x) define by PORTIDX
7011		3	PIN3IF	R/W	0	Px.3 pin change interrupt flag, Write 0 to clear Px.3 pin change interrupt flag port number (x) define by PORTIDX
		2	PIN2IF	R/W	0	Px.2 pin change interrupt flag, Write 0 to clear Px.2 pin change interrupt flag port number (x) define by PORTIDX
		1	PIN1IF	R/W	0	Px.1 pin change interrupt flag, Write 0 to clear Px.1 pin change interrupt flag port number (x) define by PORTIDX
		0	PIN0IF	R/W	0	Px.0 pin change interrupt flag, Write 0 to clear Px.0 pin change interrupt flag port number (x) define by PORTIDX
	97h SWCMD	7~0	SWRST	W		Write 56h to generate S/W Reset
97h		7~0	IAPALL	W		Write 65h to set IAPEN control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.
<i>)</i> /II		1	WDTO	R	0	WatchDog Time-Out flag
		0	IAPALL	R	0	Flag indicates Flash memory can be accessed by IAP or not. 0: Disable Flash IAP 1: Enable Flash IAP
		7	SM0	R/W	0	UART1 Serial port mode select bit 0, 1 (SM0, SM1) =
		6	SM1	R/W	0	00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2 01: Mode1: 8 bit UART1, Baud Rate is variable 10: Mode2: 9 bit UART1, Baud Rate=F _{SYSCLK} /32 or /64 11: Mode3: 9 bit UART1, Baud Rate is variable
0.81	SCON	5	SM2	R/W	0	Serial port mode select bit 2 SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.
9811	SCON	4	REN	R/W	0	Set 1 to enable UART1 Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 if $SM2-0$
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W
		0	RI	R/W	0	Receive Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.
99h	SBUF	7~0	SBUF	R/W	_	UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.
9Ah	EEPWD0	7~0	EEPWD0	W	_	H/W Wrire EEP 1 st byte DATA0, when EEPWCON=04h~07h

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
9Bh	EEPWD1	7~0	EEPWD1	W	_	H/W Wrire EEP 2 nd byte DATA1, when EEPWCON=05h~07h
9Ch	EEPWD2	7~0	EEPWD2	W	_	H/W Wrire EEP 3 rd byte DATA2, when EEPWCON=06h~07h
9Dh	EEPWD3	7~0	EEPWD3	W	_	H/W Wrire EEP 4 th byte DATA3, when EEPWCON=07h
9Eh	EEPWADR	7~0	EEPWADR	W	0	H/W Wrire EEP start address (00h~FFh).
A0h	P2	7~0	P2	R/W	FFh	P2 data
11011	12	10	12	10 11		PWM1~5 clock source
		7~6	PWM1CKS	R/W	00	00: F_{SYSCLK} 01: FRC/256 10: FRC 11: FRC x 2 ($V_{CC} > 3.0V$)
		5	PWM1EN	R/W	0	PWM1~5 Enable. 0: PWM1~5 Disable 1: PWM1~5 ensable
Alh	PWMCON	4	PWM0EN	R/W	0	PWM0 Enable. 0: PWM0 Disable 1: PWM0 ensable
		3~2	PWM0CKS	R/W	00	PWM0 clock source $00: F_{SYSCLK}$ 01: FRC/256 10: FRC $11: FRC x 2 (V_{CC} > 3.0V)$
		1	PWM0NMSK PWM0PMSK	R/W R/W	0	PWM0N Mask Data. while CLRPWM0=1 and PMW0MSKE=1 PWM0P Mask Data, while CLRPWM0=1 and PMW0MSKE=1
		7~4	PINMOD1	R/W	0001	Px.1 pin control, port index (x) is defined by PORTIDX
A2h	A2h PINMOD10	3~0	PINMOD0	R/W	0001	Px.0 pin control, port index (x) is defined by PORTIDX
	7~4	PINMOD3	R/W	0001	Px.3 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1	
ASI	A3n PINMOD32	3~0	PINMOD2	R/W	0001	Px.2 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
		7~4	PINMOD5	R/W	0001	Px.5 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A4h	PINMOD54	3~0	PINMOD4	R/W	0001	Px.4 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
4 51		7~4	PINMOD7	R/W	0000	Px.7 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
A5h	PINMOD76	3~0	PINMOD6	R/W	0001	Px.6 pin control, port index (x) is defined by PORTIDX 0000~1111: see table 7.1
		7	HSNK2EN	R/W	0	Pin H-sink enable (Group 2: P3.0~P3.7) 0: Group 2 High-sink disable 1: Group 2 High-sink enable
		6	HSNK1EN	R/W	0	Pin H-sink enable (Group 1: P1.0~P1.7) 0: Group 1 High-sink disable 1: Group 1 High-sink enable
		5	HSNK0EN	R/W	0	Pin H-sink enable (Group 0: P0.0~ P0.5) 0: Group 0 High-sink disable 1: Group 0 High-sink enable
A6h	PINMOD	4	I2CPS	R/W	0	I ² C Pin Select 0: SCL/SDA = P0.0/P0.1 1: SCL/SDA = P3.0/P3.1
		2	TCOE	R/W	0	"Instruction Cycle Clock" signal output to P1.4 pin 0: disable; 1: ensable
		1	T2OE	R/W	0	"Timer2 overflow divided by 2" signal output to P1.0 pin 0: disable; 1: enable
		0	TOOE	R/W	0	"Timer0 overflow divided by 64" signal output to P3.4 pin 0: disable; 1: enable
A7h	PWMCON2	7	PWM0MOD	R/W	0	PWM0 mode select 0: Normal mode 1: Half-bridge mode
		6	PWM0MSKE	R/W	0	PWM0 mask output enable

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						0: Disable
						1: Enable, PWM0P/PWM0N output data by
						PWM0PMSK/PWM0NMSK while CLRPWM0=1 PWM0 output mode select
						00: Mode0
		5~4	PWM00M	R/W	00	01: Mode1
						10: Mode2
						11: Mode3
						PWM0 dead zone (Dead zone is prohibited in half-bridge
						mode)
		3~0	PWM0DZ	R/W	0000	$0000: 0 \times T_{PWMCLK}$
						0001: 1 x 1 _{PWMCLK}
						 1111: 15 x TDUMCLK
						Global interrupt enable control.
		7	EA	DAV	0	0: Disable all Interrupts.
		/	LA	K/ W	0	1: Each interrupt is enabled or disabled by its own interrupt
						control bit.
		5	ET2	R/W	0	Set 1 to enable Timer2 interrupt
A8h	IE	4	ES	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt
		3	ETI	R/W	0	Set 1 to enable Timer 1 Interrupt
		2	EX1	R/W	0	Set I to enable external INTI pin Interrupt & Halt/Stop mode
		1	ET0	R/W	0	Set 1 to enable Timer() Interrupt
		1	LIU	K / W	0	Set 1 to enable external INTO pin Interrupt & Halt/Stop mode
		0	EX0	R/W	0	wake up capability
		7	PWMIE	R/W	0	Set 1 to enable PWM0~PWM1 interrupt
		6	I2CE	R/W	0	Set 1 to enable I ² C interrupt
		5	ES2	R/W	0	Set 1 to enable Serial Port (UART2) interrupt
Δ9h	INTF1	4	EEPIE	R/W	0	Set 1 to enable EEP write finish interrupt
AJII	INTEL	3	ADIE	R/W	0	Set 1 to enable ADC Interrupt
		2	LVDIE	R/W	0	Set 1 to enable LVD interrupt
		1	PCIE	R/W	0	Set 1 to enable Port0~Port3 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt
AAh	ADCDL	7~4	ADCDL	R	_	ADC data bit 3~0
ABh	ADCDH	7~0	ADCDH	R	_	ADC data bit 11~4
						O: disable HW write EEP
		2	HWSTART	W	0	1: Start to write Data (stored in 9A~9D)to EEP (adr. stored in 9E).
AEh	EEPWCON					this bit is auto clear when write finish
		1.0	HWI EN	w	0	HW write EEP data length when HWSTART is set to high
		1~0	IIWLEN	vv	0	0: 1 byte; 1: 2 bytes; 2: 3 bytes; 3: 4 bytes
		7	DUNINOD	DAV	0	PWM0 mode select
		/	PWMIMOD	R/W	0	U: Normal mode
						PWM1 mask output enable
						0: Disable
		6	PWMIMSKE	R/W	0	1: Enable, PWM1P/PWM1N output data by
						PWM1PMSK/PWM1NMSK while CLRPWM1=1
AFh	PWMCON3	5~4	PWM10M	R/W	00	PWM1 output mode select
						00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
						PWM1 dead zone (Dead zone is prohibited in half-bridge
						$10000 \cdot 0 \times T$
		3~0	PWM1DZ	R/W	0000	$0001:1 \times T_{PWMCLK}$
						rwmulk
						1111: 15 x T _{PWMCLK}
B0h	P3	7~0	P3	R/W	FFh	Port3 data

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						ADC Channel Select
						00000: CH0 (P0.0)
						00001: CH1 (P0.1)
						00010: CH2 (P0.2)
						00011: CH3 (P0.3) 00100: CH4 (P0.4)
						00100. CH4 (F0.4) 00101. CH5 (P0.5)
						00110: CH6 (P3 7)
						00111: CH7 (P3.6)
						01000: CH8 (P3.5)
						01001: CH9 (P3.4)
						01010: CH10 (P1.0)
						01011: CH11(P1.1)
		7~3	ADCHS	R/W	1Fh	01100: CH12 V _{BG} (Internal Bandgap Reference Voltage)
						01101: CH13 (P1.2)
Dch	ADCHE					01110: CH14 (P1.3) 01111: CH15 (D1.4)
DOII	АДСПЗ					01111: CH15 (P1.4) 10000: CH16 (P1.5)
						10001: CH17 (P3.0)
						10010: CH18 (P3.1)
						10011: CH19 (P1.6)
						10100: CH20 (P1.7)
						10101: CH21 (P3.3)
						10110: CH22 (P3.2)
						Others: reserved
						11110: CH30(VCC/201)
		2	ADOUDEES	DAV	0	ADC reference voltage
		2	ADCVREFS	K/W	0	$0: V_{CC}$
		1~0	VBGSEL	R/W	00	VBG voltage select, When ADCVREF is selected as VBG
		~	DTO	D /IV	0	00: 1.18V; 10: 2.5V;
		5	P12	K/W	0	1 imer2 interrupt Priority Low bit
		4	PS DT1	K/W	0	Serial Port (UARTI) Interrupt Priority Low bit
B8h	IP	3	PII	K/W	0	Timer I Interrupt Priority Low bit
		1	PA1 DT0	K/W	0	External INTT Pin Interrupt Priority Low bit
		1	P10	K/W	0	
		0	PX0	K/W	0	External IN 10 Pin Interrupt Priority Low bit
		5	P12H	K/W	0	I imer 2 Interrupt Priority High bit
		4	PSH	K/W	0	Serial Port (UARTI) Interrupt Priority High bit
B9h	IPH	3	PIIH	K/W	0	Timer I Interrupt Priority High bit
		2	PXIH	R/W	0	External INTT Pin Interrupt Priority High bit
		1	РТОН	R/W	0	Timer0 Interrupt Priority High bit
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit
		7	PPWM	R/W	0	PWM Interrupt Priority Low bit
		6	PI2C	R/W	0	I ² C Interrupt Priority Low bit
		5	PS2	R/W	0	Serial Port (UART2) interrupt priority low bit
BAh	IP1	4	PEEP	R/W	0	EEP Interrupt Priority Low bit
Dim		3	PADI	R/W	0	ADC Interrupt Priority Low bit
		2	PLVD	R/W	0	LVD Interrupt Priority Low bit
		1	PPC	R/W	0	Port0~Port3 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit
		7	PPWMH	R/W	0	PWM Interrupt Priority High bit
		6	PI2CH	R/W	0	I ² C Interrupt Priority High bit
		5	PS2H	R/W	0	Serial Port (UART2) interrupt priority high bit
BBh	IP1H	4	PEEPH	R/W	0	EEP Interrupt Priority High bit
		3	PADIH	R/W	0	ADC Interrupt Priority High bit
		2	PLVDH	R/W	0	LVD Interrupt Priority High bit
		1	PPCH	R/W	0	Port0~Port3 pin change Interrupt Priority High bit

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		0	РТЗН	R/W	0	Timer3 Interrupt Priority High bit
		7	LVDM	R/W	0	0: VCC < VLVD (LVDIF = 1 while LVDO = 1) 1: VCC > VLVD (LVDIF = 1 while LVDO = 0)
		6	LVDO	R	0	LVD real-time Output
		4	LVDPD	R/W	0	LVD Power Down. 0: LVD Enable, 1: LVD Disable
BFh	LVDS	3~0	LVDSEL	R/W	Oh	Low Voltage Detect (LVD) select. (step=0.16V) 0000: Set LVD at 1.79V 0001: Set LVD at 1.95V 0010: Set LVD at 2.11V 0011: Set LVD at 2.26V 0100: Set LVD at 2.26V 0100: Set LVD at 2.40V 0101: Set LVD at 2.56V 0110: Set LVD at 2.71V 0111: Set LVD at 2.71V 1000: Set LVD at 3.03V 1000: Set LVD at 3.03V 1001: Set LVD at 3.18V 1010: Set LVD at 3.32V 1011: Set LVD at 3.50V 1100: Set LVD at 3.63V 1101: Set LVD at 3.80V 1110: Set LVD at 3.94V 1111: Set LVD at 4.12V
C1h	PWM4DH	7~0	PWM4DH	R/W	00h	PWM4 duty high byte
C2h	PWM4DL	7~0	PWM4DL	R/W	00h	PWM4 duty low byte
C3h	PWM5DH	7~0	PWM5DH	R/W	00h	PWM5 duty high byte
C4h	PWM5DL	7~0	PWM5DL	R/W	00h	PWM5 duty low byte

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.
		5	RCLK	R/W	0	UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3
		4	TCLK	R/W	0	UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3
C8h	T2CON	3	EXEN2	R/W	0	T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0
		2	TR2	R/W	0	Timer2 run control 0:timer stops 1:timer runs
		1	CT2N	R/W	0	Timer Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin's negative edge
		0	CPRL2N	R/W	0	 Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.
		7~0	IAPWE_SFR	W	_	Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write. Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It is recommended to clear it immediately after IAP write. Write E2h to set EEPWE flag; write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPWE flag. It is recommended to clear it immediately after EEPWE flag. It is recommended to clear it immediately after EEPROM write.
C9h	IAPWE_SFR	7	IAPWE	R	_	Flag indicates Flash memory can be written by IAP or not 0: IAP Write disable 1: IAP Write enable
		6	ΙΑΡΤΟ	R	0	Time-Out flag of IAP write / INFO write. Set by H/W when IAP or INFO write Time-out occurs. Cleared this flag by H/W when IAPWE=0 or INFOWE=0.
		5	EEPWE	R	0	Flag indicates EEPROM memory can be written or not 0: EEPROM Write disable 1: EEPROM Write enable
	-	4	INFOWE	R	0	Flag indicates INFO memory can be written or not 0: INFO IAP Write disable 1: INFO IAP Write enable
		3	EEPTO	R	0	Time-Out flag of EEPROM write Set by H/W when EEPROM write Time-out occurs. Cleared this flag by H/W when EEPWE=0.
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte
CEh	EXA2	7~0	EXA2	R/W	00h	Expansion accumulator 2
CFh	EXA3	7~0	EXA3	R/W	00h	Expansion accumulator 3
		7	CY	R/W	0	ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
		5	F0	R/W	0	General purpose user-definable flag
D0h	DOL DOW	4	RS1	R/W	0	Register Bank Select bit 1
Doll	rsw	3	RS0	R/W	0	Register Bank Select bit 0
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
		0	Р	R/W	0	Parity flag
D1h	PWM0DH	7~0	PWM0DH	R/W	00h	PWM0 duty high byte
D2h	PWM0DL	7~0	PWM0DL	R/W	00h	PWM0 duty low byte
D3h	PWM1DH	7~0	PWM1DH	R/W	00h	PWM1 duty high byte
D4h	PWM1DL	7~0	PWM1DL	R/W	00h	PWM1 duty low byte
D5h	PWM2DH	7~0	PWM2DH	R/W	00h	PWM2 duty high byte
D6h	PWM2DL	7~0	PWM2DL	R/W	00h	PWM2 duty low byte
		5	STPSCK	R/W	1	Set 1 to stop Slow clock in PDOWN mode
		4	STDDCK	D /W/	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current
		4	SHICK	IX/ W	0	reducing.
		3	STPECK	R/W	0	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This
		-				bit can be changed only in Slow mode.
		2				System clock select. This bit can be changed only when
D8h	CLKCON		SELFCK	R/W	0	0: Slow clock
2011	CLIRCON					1: Fast clock
						System clock prescaler. Effective after 16 clock cycles (Max.)
						delay.
		1~0	CLKPSC	R/W	11	00: System clock is Fast/Slow clock divided by 16
		1.0	CLIM SC	N/W	11	01: System clock is Fast/Slow clock divided by 4
						10: System clock is Fast/Slow clock divided by 2
D01		7.0		D/W	DD1	11: System clock is Fast/Slow clock divided by 1
D9n	PWM0PRDH	7~0	PWM0PRDH	K/W	FFn EEL	P WMO period high byte
DAn	PWM0PRDL	7~0	PWM0PRDL	K/W	FFn EEL	P who period low byte $PWM1/2/2/4/5 = arrived high herte$
DBn		7~0		K/W	FFN	P WM1/2/3/4/5 period high byte
DCI		7~0	PWM1PRDL	K/W	CC11	PWM1/2/5/4/5 period low byte
DDI	PWM3DH	7~0		K/W	001	P WMS duty high byte
DEn	PWM5DL	/~0	PWM3DL	K/W	UUn	PWMS duty low byte Elash ATD(Address Transition Detection) read control anablel:
		2	ATDEN	R/W	0	0: Elash Read always=1
		2	MIDLI	N/W	0	1: Flash Read use ATD (for power saving at at slow clock)
DEI	DDCT					ATD timing controlwhen ATDEN=1
DFn	KDCTL					0: 5.4ns@5V or 9.0ns@3V
		1~0	ATDT	R/W	3h	1: 6.8ns@5V or 10.7ns@3V
						2: 9.7ns@5V or 15.1ns@3V
- DCI	1.63			D	0.61	3: 12.3ns@5V or 19.4ns@3V
E0h	ACC	/~0	ACC	R/W	00h	Accumulator

EIA MIEN RW Master TC enable 6 MIACKO RW 0 0. disable 1 enable When Master TC receive data, send acknowledge to FC Bus. 5 MIIF RW 0 0. disable 1< NACKO RW 0 0. CACK to slave device 5 MIIF RW 0 0. disable 1< Master TC tansfer cone byte complete 1. Master TC tansfer cone byte complete 3 MISTART RW 0 Master TC tansfer cone byte complete 1 NISTART RW 0 Master TC tansfer cone byte complete 1 MIACKD R 1 Master TC Starb bit 1 1 rsscrat TC Starb bit 1. send STOP signal to stop FC bus 1 MICR RW 0 0. Syscrat 74 (ex. IF Syscrat 74 (bit RL) FC clock is 25(R Hz) 10 MICR RW 0 0. Syscrat 74 (ex. IF Syscrat 74 (bit RL) FC clock is 12(R Hz) 10 Fyscrat 74 (bit RL) FC clock is 12(R Hz) 0. Syscrat 74 (bit RL) FC clock is 12(R Hz) 10 <	Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
Filth MIEN R/W 0							Master I ² C enable
E1h MIACKO R/W 0 When Master I ^C creceive data, send acknowledge to I ^C C Bus 6 MIACKO R/W 0 OccCK to shave device 5 MIIP R/W 0 OccCK to shave device 6 MIACKI R/W 0 OccMCK to shave device 7 MIIP R/W 0 OccMCK to shave device 8 MICON 4 MIACKI R - 7 MISTOP R/W 0 Mister I ^C cransfer one byte complete - 1 NACK received - - OccCK received - - 1 - MISTOP R/W 1 Mister I ^C Cass ransfer - 0 OccCK received - - - 0 OccCK received - <td></td> <td></td> <td>7</td> <td>MIEN</td> <td>R/W</td> <td>0</td> <td>0: disable</td>			7	MIEN	R/W	0	0: disable
Filh MILCKO R/W 0 0. CACK to slave device 1: NACK to slave device 1: NACK to slave device 1: NACK to slave device 5 MIIF R/W 0 0. cACK to slave device 6 MILCON R 0. cvrite 0 to clear it 7 MILEON R 0. write 0 to clear it 8 MISTAT R/W 0 0. cvrite 0 to clear it 1 MISTOP R/W 1 Mistafr C transfer, acknowledgement form FC bus (read 1 MISTAT R/W 0 1. staff C transfer, acknowledgement form FC bus (read 1 1. sead STOP signal to stop FC bus Master FC (SCL) clock frequency selection 0. Fyscard / 4 (cvrite), FC clock is MHz) 10 MICR R/W 0. Fyscard / 4 (cvrite), FC clock is MHz) 0. Fyscard / 4 (cvrite), FC clock is 10 MHz) 11 MIDAT 7-0 MIDAT R/W 0. Fyscard / 4 (cvrite), Fyscard = 6 (mHz, FC clock is 5 CHz) 11 F Master FC frame Master FC frame Master FC staff 12 MIDAT 7-0 MIDAT							1: enable
Elh MICON 6 MIACKO R/W 0 0. ACK to slave device 5 MIIF R/W 0 0. excK to slave device 6 MILCON 4 MILCKI R Master TC Interrupt flag 7 0 0. excK received 1. Master TC Interrupt flag 0. excK received 1 MISTART R/W 0 Mitter TC Start for the tecomplete 1.0 MISTOP R/W 1 Mister TC Start for the tecomplete 1.0 MISTART R/W 0 Mister TC Start for the tecomplete 1.0 MISTOP R/W 1 Mister TC Start for the tecomplete 1.0 MISTOP R/W 1 Insert for Start for the tecomplete 1.0 MICR R/W 1 Insert for Start for the tecomplete 1.0 Postrat for Start for the tecomplete 1. Start for Start and before Stop condition, write this register will result transmission to 1CP use in the teces tecomplete 1.1.0 Firstart and before Stop condition, read this register will result transmission to 1CP use in the tecomplete 1. PoR disable at PDOWN							When Master I ² C receive data, send acknowledge to I ² C Bus
Eth NICON $\left \begin{array}{c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			6	MIACKO	R/W	0	0: ACK to slave device
Harron Source of the second seco							1: NACK to slave device
Film MICON S MIIP R/W 0 0. Write to clear it Mister PC ransfer one byte complete HINON 4 MIACKI R - 0ily - 0ily 2 MISTART R/W 0 1. NACK received - 0ily 2 MISTOP R/W 1 1. Send STO 5 point - 0ily 2 MISTOP R/W 1 1. Send STO 5 point - 0ily 2 MISTOP R/W 1 - send STO 5 point - 0ily 1-0 MICR R/W 0 - send STO 5 point - 0ily - 0ily - 0ily - 0ily 0ily - 0ily 0ily 0ily 0ily 0ily 0ily - 0ily			~		D /III	0	Master I ² C Interrupt flag
E1h MICON $\left \begin{array}{cccc} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			5	MIIF	R/W	0	0: write 0 to clear it
E1h MICON $\left \begin{array}{c} 4 \\ 4 \end{array} \right MICON \left \begin{array}{c} 4 \\ 4 \end{array} \right MIACKI R \\ - 0 \\$							1: Master I C transfer one byte complete When Master I^2C transfer a large shade a spectrum I^2C has (and
Elh MICON 4 MIACKI R - - 0.0 ACK received 1: NACK received 1: NACK received 1: NACK received 1: NACK received 3 MISTART R/W 0 Mister IC Start bit 1: start IC bus transfer 2 MISTOP R/W 1 Mister IC Start bit 1: start IC bus transfer 1 Mister IC Start bit 1: start IC bus transfer 1 Mister IC Stop bit 1: start IC bus transfer 1-0 MICR R/W 00 01: Eyroxx / 160 (es. II Fyroxx = 16MHz, IC clock is 1M Hz) 10: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyroxx / 256 (es. II Fyroxx = 16MHz, IC clock is 20K Hz) 11: Eyrox = 16MHz, IC clock is 00 (is 00) E2h MIDAT 7-0 MIDAT R/W 0 Naster IC data shit register F2 MIDAT 7-0 MIDAT R/W 0 IVR Power Down.0: DVR Enable, 1: LVR Disable F3 PORPD_SAV R/W 0 IVR Power Down.0: LVR Enable, 1: LVR Disable F4 LVRDP R/W 0 IVR Power Down.0: LVR Enable, 1: LVR Disable F4 LVRDY R/W 0 IVR Power Down.0: LVR Enable, 1: LVR Disable F4 LVRDE <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>when Master I C transfer, acknowledgement form I C bus (fead</td></td<>							when Master I C transfer, acknowledgement form I C bus (fead
	E1b	MICON	4	MIACKI	R	-	0: ACK received
interface 3 MISTART R/W 0 Misser IC Star bit 1: start IC bus transfer 2 MISTOP R/W 1 Misser IC Star bit 1: send STOP signal to stop IC bus 1-0 MICR R/W 0 Misser IC Star bit 1: send STOP signal to stop IC bus 1-0 MICR R/W 00 01: Eyrocx/(4 (ex. IF Eyrocx = 16MHz, IC clock is MH h) 10: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /256 (ex. IF Fyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /256 (ex. IF Fyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /256 (ex. IF Fyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx /16 (ex. IF Eyrocx = 16MHz, IC clock is 250K Hz) 11: Eyrocx and before Stop condition, read this register will resume transmission to IC bus 5 PORPD_SAV R/W 0 IC POR branbe, 1: POR Disable 4 LVRPD R/W 0 DVP Power Down. 0: LVR Enable, 1: LVR Disable 5 PORPD_RAV 0 DVP Power Down. 0: LVR Enable, 1: LVR Disable DVO DOW Set LVR at 1.55V 0000: Set LVR at 1.5V 0000: Set LVR at 2.6V 0101: Set LVR at 2.6V 0101: Set LVR at 2.6V 0101: Set LVR at 2.6V 0101: Set LVR at 3.63V <td>LIII</td> <td>MICON</td> <td></td> <td></td> <td></td> <td></td> <td>1: NACK received</td>	LIII	MICON					1: NACK received
Final Probability 3 MISTART R/W 0 1: start 1 ² C bus transfer 2 MISTOP R/W 1 Naster 1 ² C Stop bit Naster 1 ² C Stop bit 1-0 MICR R/W 0 0: Fystart / C (SCL) clock frequency selection 0: 0: Fystart / C (SCL) clock frequency selection 0: 0: Fystart / C (SCL) clock is 20K H.D) 1-0 MICR R/W 00 0: Fystart / C (SCL) clock frequency selection 0: 0: Fystart / C (SCL) clock frequency selection 0: 0: Fystart / C (SCL) clock is 20K H.D) 10: Fystart / C (SCL) clock is 20K H.D) 1: Fystart / C (SCL) clock frequency selection 0: Fystart / C (SCL) clock frequency selection 10: Fystart / C (SCL) clock is 20K H.D) E2h MIDAT 7-0 MIDAT R/W 0 Naster 1 ² C data shift register (W): After Start and before Stop condition, write this register will resumer secting from 1 ² C bus 10: POR disable at PDOWN 10: POR disable at PDOWN 5 PORPD R/W 0 V/R Power Down. 0: LVR Enable, 1: LVR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 PORPD_SAV R/W 0 LVR Vart at 2.10V 0001: Set LVR at 1.59V 0001: Set LVR at 1.59V 0001: Set LVR at 2.40V 0101: Set LVR at 3.50V 100							Master I ² C Start bit
Eth 2 MISTOP R/W 1 Master FC Stop bit 1: send STOP signal to stop FC bus Master FC (SCL) clock frequency selection 00: Fxyscc, 4/ (ex. IF Fxyscc, 16MHz, FC clock is 4M Hz) 10: Fxyscc, 7/16 (ex. IF Fxyscc, 16MHz, FC clock is 20K Hz) 10: Fxyscc, 7/16 (ex. IF Fxyscc, 16MHz, FC clock is 6.25K Hz) E2h MIDAT 7-0 MIDAT R/W 00 If Fxyscc, 7/16 (ex. IF Fxyscc, 16MHz, FC clock is 6.25K Hz) E2h MIDAT 7-0 MIDAT R/W 00 R/W fC Mister FC data shift register E2h MIDAT 7-0 MIDAT R/W 00 Paysecc, 16MHz, FC clock is 6.25K Hz) E3h LVRCON 6 PORPD_SAV R/W 0 POR Power Down. 0: Dro Endition, write this register will resume receiving from I*C bus E3h LVRCON 3-0 LVRSEL R/W 0 POR Power Down. 0: FOR Enable, 1: EVR Disable LVRCON 3-0 LVRSEL R/W 0 POR Power Down. 0: FOR Enable, 1: LVR Disable E3h LVRCON 3-0 LVRSEL R/W 0 OID: Set LVR at 2.36V O000: Set LVR at 2.17V 0 OID: Set LVR at 3.30V OID: Set LVR at			3	MISTART	R/W	0	1: start I^2C bus transfer
			-	MUTTOR	DAU		Master I ² C Stop bit
Eah Image: Line Image: Line Milcr R/W Master fC (SCL) clock frequency section 00: FyyscL/4 (ex. If FyyscL =16MHz, fC clock is 4M Hz) 10: FyyscL /16 (ex. If FyyscL =16MHz, fC clock is 250K Hz) 11: FyyscL /256 (ex. If FyyscL =16MHz, fC clock is 250K Hz) 11: FyyscL /256 (ex. If FyyscL =16MHz, fC clock is 62.5K Hz) E2h MIDAT 7-0 MIDAT R/W 00 Master fC data shift register (W): After Start and before Stop condition, write this register will resume transmission to FC bus E2h MIDAT 7-0 MIDAT R/W 01 OP OR bissistic at and before Stop condition, write this register will resume transmission to FC bus E3h MIDAT 7-0 MIDAT R/W 0 OR Power Down. 0: POR Isable 5 PORPD R/W 0 OR Power Down. 0: POR Isable at PDOWN 1 6 LVRPD R/W 0 EVR Owr Output: Net at 2.11V 0000: Set LVR at 1.59V 61 LVRPD R/W 0 EVR Owr Power Down. 0: POR Isable 1 63 LVREN A LVREN 0 OID: Set LVR at 2.5V 0000: Set LVR at 2.40V 0010: Set LVR at 2.40V 00100: Set LVR at 2.37V 1000: Set LVR at 2.3			2	MISTOP	R/W	1	1: send STOP signal to stop I^2C bus
E2h MIDAT 1-0 MICR R/W 00 00: Fyystry 4/ (ex. IF Fyystry 16 (interpretation of the product							Master I ² C (SCL) clock frequency selection
Intermediate I							00: $F_{SYSCLK}/4$ (ex. If $F_{SYSCLK} = 16$ MHz, I ² C clock is 4M Hz)
E3h LVRCN NUCK			1~0	MICR	R/W	00	01: F_{SYSCLK} /16 (ex. If F_{SYSCLK} =16MHz, I^2C clock is 1M Hz)
E2h MIDAT 7-0 MIDAT R/W 0 Master TC data shift register (W: After Start and before Stop condition, write this register will resume transmission to TC bus E2h MIDAT 7-0 MIDAT R/W 0 Master TC data shift register E3h NIDAT 7-0 MIDAT R/W 0 0 POR isable at PDOWN 5 PORPD R/W 0 0 POR Power Down.0: LVR Enable, 1: POR Disable 4 LVRPO R/W 0 UVR Power Down.0: LVR Enable, 1: LVR Disable 6 PORPL_SAV R/W 0 UVR Power Down.0: LVR Enable, 1: LVR Disable 1 LVRCON 5 PORPD R/W 0 UVR Power Down.0: LVR Enable, 1: LVR Disable 6 00RD LVR LVR at 1.59V 0000: Set LVR at 1.79V 0000: Set LVR at 1.79V 0010: Set LVR at 2.6VV 0101: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 3.27V 0010: Set LVR at 3.18V 0 0111: Set LVR at 3.33V 01010: Set LVR at 3.33V 1000: Set LVR at 3.30V 1100: Set LVR at 3.30V 1101: Set			1.0	MICK	N / W	00	10: F_{SYSCLK} /64 (ex. If F_{SYSCLK} =16MHz, I ² C clock is 250K Hz)
E2h MIDAT 7-0 MIDAT R/W 00 Master I ^C data shift register (W): After Start and before Stop condition, write this register will resume transmission to I ^C bus E2h MIDAT 7-0 MIDAT R/W 10 0: POR disable at PDOWN R: I. After Start and before Stop condition, read this register will resume transmission to I ^C bus 0: POR disable at PDOWN 5 PORPD R/W 0 VR Power Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 PORPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 VARPOW R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 VARPOW R/W 0 LVR Power Down. 0: LVR at 1.95V 0000: Set LVR at 1.99V 0001: Set LVR at 2.16V 0010: Set LVR at 2.16V 7 LVRSEL R/W 0 0111: Set LVR at 2.6V 100: Set LVR at 3.19V 100: Set LVR at 3.3V 100: Set LVR at 3.63V 100: Set LVR at 3.6V 101: Set LVR at 3.6V 101: Set LVR at 3.64V 10							11: F_{SYSCLK} /256 (ex. If F_{SYSCLK} =16MHz, I ² C clock is 62.5K
E2h MIDAT 7-0 MIDAT R.W 00 Master I*C data shift register E2h MIDAT 7-0 MIDAT R.W 00 (W: After Start and before Stop condition, write this register will resume trainsmission to I*C bus K: After Start and before Stop condition, read this register will resume receiving from 1*C bus (W: After Start and before Stop condition, read this register will resume receiving from 1*C bus K: After Start and before Stop condition, read this register will resume receiving from 1*C bus 5 PORPD_SAV R/W 1 0: POR disable at PDOWN K: After Start and before Stop condition, write this register will resume receiving from 1*C bus 5 PORPD R/W 0 UVR over Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 UVR over Down. 0: LVR trabels, 1: LVR Disable 1000: Set LVR at 1.79V 0001: Set LVR at 1.79V 0010: Set LVR at 1.79V 0010: Set LVR at 2.64V 0101: Set LVR at 3.63V 1001: Set LVR at 3.63V 1101: Set LVR at 3.63V							Hz)
E2h MIDAT 7-0 MIDAT R/W 00 (W): After Start and before Stop condition, write this register will resume transmission to 1°C bus R): 6 PORPD_SAV R/W 1 0: POR disable at PDOWN 5 PORPD R/W 0 POR basele at PDOWN 0: DY CP disable at PDOWN 4 LVRPD R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 5 PORPD R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 4 LVRPD R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 6 PORPD_SAV R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 6 PORPD_SAV R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 6 PORPD_SAV R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 6 PORPD_SAV R/W 0 LVR disable at PDOWN 0: DY CP disable at PDOWN 10: DY CP disable at PDOWN III: Set LVR at 1.79V 0: DY CP disable at PDOWN 0: DY CP disable at PDOWN 10: DY CP disable at PDOWN IIII: Set LV				MIDAT			Master I ² C data shift register
E2h MIDA1 7-0 MIDA1 R/W 00 resume transmission b7C bus R:: After Start and before Stop condition, read this register will resume receiving from 1 ² C bus 0: POR disable at PDOWN 0: POR disable at PDOWN 5 PORPD R/W 0 POR Power Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 5 PORPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 PORPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 LVRPD R/W 0 LVR SetL VR at 2.40V 0001: Set LVR at 1.95V 0001: Set LVR at 2.40V 0101: Set LVR at 2.40V 0101: Set LVR at 2.40V 0101: Set LVR at 2.40V 0101: Set LVR at 3.40V 0101: Set LVR at 3.40V 0 0111: Set LVR at 3.40V 1001: Set LVR at 3.40V 1001: Set LVR at 3.40V 1001: Set LVR at 3.40V 1001: Set LVR at 3.40V 1001: Set LVR at 3.40V 1101: Set LVR at 3.60V 1100: Set LVR at 3.40V 1101: Set LVR at 3.60V 1101: Set LVR at 4.12V 1101: Set LVR at 4.12V E4h CFGBG2 4-0 BGTRIM2			7.0		R/W	00	(W): After Start and before Stop condition, write this register will $\frac{1}{2}$
E3h CR: After Start and before Slop condition, read this register will resume receiving from I ⁺ C bus F PORPD_SAV R/W 1 0: POR disable at PDOWN 5 PORPD R/W 0 POR power Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 VCR Power Down. 0: LVR Enable, 1: LVR Disable 5 PORPD R/W 0 UVR Power Down. 0: LVR Enable, 1: LVR Disable 6 LVRPO R/W 0 UVR Power Down. 0: LVR Enable, 1: LVR Disable 6 UVROW - - Low Voltage Reset (LVR) select. (step=0.16V) 0000: Set LVR at 1.79V 0000: Set LVR at 2.11V 0010: Set LVR at 2.11V 0010: Set LVR at 2.26V 0010: Set LVR at 2.26V 0101: Set LVR at 2.40V 010: Set LVR at 2.40V 0101: Set LVR at 2.37V 1000: Set LVR at 3.04V 100: Set LVR at 3.32V 1000: Set LVR at 3.32V 1000: Set LVR at 3.32V 100: Set LVR at 3.63V 1101: Set LVR at 3.63V 1101: Set LVR at 3.63V 110: Set LVR at 3.64V 1111: Set LVR at 3.64V 1111: Set LVR at 3.64V 110: Set LVR at 3.64V 1101: Set LVR at 3.64V	E2n	E2h MIDAT 7~	/~0	MIDAI		00	resume transmission to 1 ² C bus
East C Control Construction Construction 6 PORPD_SAV R/W 1 0: POR disable at PDOWN 1: POR disable at PDOWN 1: POR banle at PDOWN 5 PORPD R/W 0 POR Power Down. 0: POR Enable, 1: POR Disable 4 LVRDD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 5 PORPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 UVROW VAROW Voltage Reset (LVR) select. (step=0.16V) 0000: Set LVR at 1.95V 0000: Set LVR at 2.5V 0001: Set LVR at 2.26V 0001: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 2.26V 010: Set LVR at 3.20V 010: Set LVR at 3.24V 010: Set LVR at 3.26V 010: Set LVR at 3.26V 011: Set LVR at 3.30V 100: Set LVR at 3.32V 1010: Set LVR at 3.32V 1010: Set LVR at 3.36V 1							(R): After Start and before Stop condition, read this register will $\frac{1}{2}C$ has
E3h LVRCON 6 PORPD_SAV R/W 1 1: POR ebaile at PDOWN 5 PORPD R/W 0 PORPore Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 4 LVRPD R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 5 PORPJ_R/W 0 LVR Power Down. 0: LVR Enable, 1: LVR Disable 6 LVRPD R/W 0 Low Voltage Reset (LVR) select. (step=0.16V) 0000: Set LVR at 1.79V 0001: Set LVR at 1.95V 0000: Set LVR at 1.95V 0010: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.40V 010: Set LVR at 2.5V 0101: Set LVR at 2.5V 0101: Set LVR at 2.5V 010: Set LVR at 3.5V 0101: Set LVR at 3.5V 1001: Set LVR at 3.5V 1001: Set LVR at 3.3V 1001: Set LVR at 3.3V 1001: Set LVR at 3.3V 1001: Set LVR at 3.3V 1101: Set LVR at 3.3V 1101: Set LVR at 3.6V 1101: Set LVR at 3.5V 1101: Set LVR at 3.6V 1101: Set LVR at 3.6V 1101: Set LVR at 3.6V 1101: Set LVR at 3.6V 1101: Set LVR at 3.6V 1101: Set LVR at 3.6V 1111: Set LVR at 4.2V 1111: Set LVR at 4.2V E4h CFGBG2 4-0 BGTRIM2 R/W 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0: DOD disable at DDOWN</td>							0: DOD disable at DDOWN
E3h LTRCCOMIC Calls a LTONC 5 PORPD R/W 0 POR Power Down. 0: POR Enable, 1: POR Disable 4 LVRPD R/W 0 LOW Power Down. 0: LVR Enable, 1: LVR Disable 4 LVRPD R/W 0 LOW Voltage Reset (LVR) select. (step=0.16V) 0000: Set LVR at 1.79V 0001: Set LVR at 2.19V 0001: Set LVR at 2.19V 0001: Set LVR at 2.26V 0100: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.26V 0101: Set LVR at 2.37V 0101: Set LVR at 2.40V 0101: Set LVR at 2.71V 0111: Set LVR at 2.71V 0111: Set LVR at 2.37V 0100: Set LVR at 3.33V 1001: Set LVR at 3.30V 1001: Set LVR at 3.32V 1001: Set LVR at 3.32V 1001: Set LVR at 3.32V 1001: Set LVR at 3.40V 1110: Set LVR at 3.63V 1101: Set LVR at 3.63V 1101: Set LVR at 3.63V E4h CFGBG2 4~0 BGTRIM2 R/W V VBG trimming 2 value(VBG 1.18V) E4h CFGBG2 4~0 BGTRIM2 R/W 0 0: Disable EFT2			6	PORPD_SAV	R/W	1	1: POR disable at PDOWN
			5	PORPD	R/W	0	POP Power Down 0: POP Enable 1: POP Disable
			4			0	LVD Dower Down, 0, LVD Enable, 1, LVD Disable
E3h LVRCON Image Reserve (LVR) select. (step=0.16V) 3~0 LVRSEL R/W 0000: Set LVR at 1.79V 0010: Set LVR at 2.26V 0010: Set LVR at 2.26V 0100: Set LVR at 2.26V 0101: Set LVR at 2.26V 0100: Set LVR at 2.26V 0100: Set LVR at 2.71V 0101: Set LVR at 2.26V 0100: Set LVR at 2.71V 0110: Set LVR at 3.30V 0101: Set LVR at 3.30V 0100: Set LVR at 3.30V 0100: Set LVR at 3.30V 1000: Set LVR at 3.30V 1000: Set LVR at 3.30V 1001: Set LVR at 3.30V 1010: Set LVR at 3.30V 1001: Set LVR at 3.30V 1010: Set LVR at 3.30V 1010: Set LVR at 3.30V 1010: Set LVR at 3.30V 1010: Set LVR at 3.30V 1010: Set LVR at 3.30V 1101: Set LVR at 3.30V 1101: Set LVR at 3.60V 1100: Set LVR at 3.40V 1101: Set LVR at 3.40V 1111: Set LVR at 4.12V E4h CFGBG2 4-0 BGTRIM2 R/W 0 UB for imming 2 value(VBG 1.18V) E4h CFGBG2 4-0 BGTRIM2 R/W 0 0 Disable EFT1 1: Enable EFT2 1: Enable EFT2 1: Enable EFT1 1: Enable EFT1 <t< td=""><td></td><td></td><td>4</td><td>LVKPD</td><td>K/ W</td><td>0</td><td></td></t<>			4	LVKPD	K/ W	0	
							Low Voltage Reset (LVR) select. (step=0.16V)
E3h LVRCON Image: Section of the se							0000: Set LVR at 1.79V
E3h LVRCON E3h LVRCON E3h LVRCON 3-0 LVRSEL R/W 0 $010: Set LVR at 2.1V 3-0 LVRSEL R/W 0 010: Set LVR at 2.26V 010: Set LVR at 2.26V010: Set LVR at 2.56V010: Set LVR at 2.7V1000: Set LVR at 2.7V1000: Set LVR at 3.03V1001: Set LVR at 3.03V1001: Set LVR at 3.03V1011: Set LVR at 3.32V1011: Set LVR at 3.32V1011: Set LVR at 3.63V1101: Set LVR at 3.64V1101: Set LVR at 4.12V1101: Set LVR at 4.12V1111: Set LVR at 4.12V$							0001: Set LVR at 1.95V
E3h LVRCON E3h LVRCON E3h $IVRCON$ E3h $IVRCON$ E5h $IVR 2000 + 10000 + 10000 + $							0010: Set LVR at 2.11V
E3h LVRCON $3 \sim 0$ LVRSEL R/W 0 0100: Set LVR at 2.40V Barbon $3 \sim 0$ LVRSEL R/W 0 0111: Set LVR at 2.56V 0100: Set LVR at 2.71V 0 0111: Set LVR at 2.71V 0100: Set LVR at 3.03V 1000: Set LVR at 3.03V 1000: Set LVR at 3.03V 1001: Set LVR at 3.03V 1001: Set LVR at 3.18V 1010: Set LVR at 3.30V 1001: Set LVR at 3.32V 1011: Set LVR at 3.30V 1010: Set LVR at 3.30V 1011: Set LVR at 3.40V 1100: Set LVR at 3.40V 1110: Set LVR at 3.40V 1110: Set LVR at 3.40V 1110: Set LVR at 3.40V 1110: Set LVR at 3.40V 1111: Set LVR at 4.12V E4h CFGBG2 4~0 BGTRIM2 R/W - VBG trimming 2 value(VBG 1.18V) E5h F7 EFT2 Detector enable 0: Disable EFT2 1: Enable EFT2 E5h F7 EFT1CS R/W 0 0: Disable EFT1 100: Set LVR at 3.40V 11: Enable EFT1 1: Enable EFT1 1: Enable EFT1 10: Earble 7 EFT1S R/W 00 EFT1 Detector sensitivity adjustment 5							0011: Set LVR at 2.26V
E3h LVRCON E3h LVRCON F CFGBG2 E5h EFTCON E5h EFT							0100: Set LVR at 2.40V
	E3h	LVRCON					0101: Set LVR at 2.56V
							0110: Set LVR at 2.71V
			3~0	LVRSEL	R/W	0	0111: Set LVR at 2.87V
							1000: Set LVR at 3.03V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1001: Set LVR at 3.18V
							1010: Set LVR at 3.32V
							1011: Set LVR at 3.50V
							1100: Set LVR at 3.63V
							1101: Set LVR at 3.80V
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \hline \\ \hline E4h & CFGBG2 & 4~0 & BGTRIM2 & R/W & - & VBG trimming2 value(VBG 1.18V) \\ \hline \\ \hline E4h & CFGBG2 & 4~0 & BGTRIM2 & R/W & - & VBG trimming2 value(VBG 1.18V) \\ \hline \\ \hline \\ & & & & & & & & & & & & & & &$							1110: Set LVR at 3.94V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1111: Set LVR at 4.12V
$E5h = EFTCON = \begin{bmatrix} 7 & EFT2CS & R/W & 0 & EFT2 Detector enable \\ 0 & Disable EFT2 \\ 1 & Enable EFT1 \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT1 Detector sensitivity adjustment \\ 3 & EFTSLOW & R/W & 0 & EFT1 Detector sensitivity adjustment \\ 1 & EFT2 Detector enable \\ 0 & Disable EFT1 \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT2 Detector sensitivity adjustment \\ 1 & EFT2 Detector enable \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT2 Detector enable \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT2 Detector enable \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT1 Detector sensitivity adjustment \\ 1 & EFT2 Det$	E4h	CFGBG2	4~0	BGTRIM2	R/W	-	VBG trimming2 value(VBG 1.18V)
E5h FTCON 7 EFT2CS R/W 0 0: Disable EFT2 6 EFT1CS R/W 0 0: Disable EFT1 1: Enable EFT1 1: Enable EFT1 5~4 EFT1S R/W 00 3 EFTSLOW R/W 0 1: Enable Force SYSCLK to SLOWCLK while EFT detected 0: Disable 0: Disable							EFT2 Detector enable
E5h EFTCON 6 EFT1CS R/W 0 0: Disable EFT1 1: Enable EFT1 1: Enable EFT1 3 5~4 EFT1S R/W 00 EFT1 Detector sensitivity adjustment Force SYSCLK to SLOWCLK while EFT detected 0: Disable 1: Enable			7	EFT2CS	R/W	0	0: Disable EFT2
E5h 6 EFT1CS R/W 0 EFT1 Detector enable 5~4 EFT1S R/W 00 EFT1 Detector sensitivity adjustment 3 EFTSLOW R/W 00 EFT1 Detector sensitivity adjustment							1: Enable EFT2
E5h EFTCON 6 EFT1CS R/W 0 0: Disable EFT1 5~4 EFT1S R/W 00 EFT1 Detector sensitivity adjustment 3 EFTSLOW R/W 0 0: Disable 1: Enable Force SYSCLK to SLOWCLK while EFT detected 3 EFTSLOW R/W 0							EFT1 Detector enable
1: Enable EFT1 5~4 EFT1S 8 R/W 9 EFT1 Detector sensitivity adjustment 9 Force SYSCLK to SLOWCLK while EFT detected 1: Enable 1: Enable	E5h	EFTCON	6	EFT1CS	R/W	0	0: Disable EFT1
5~4 EFTIS R/W 00 EFTI Detector sensitivity adjustment 3 EFTSLOW R/W 0 0: Disable 1 Enable 1< Enable	2011		<i>~</i> ·		D /11	0.0	1: Enable EFT1
3 EFTSLOW R/W 0 0: Disable			5~4	EFTIS	K/W	00	EF11 Detector sensitivity adjustment
J LI ISLOW IV V V. DISAUC			3	FETSLOW	R/W	0	POICE SI SULK 10 SLOWULK WITTE EFT detected O: Disable
			5	LITSLOW	12/ 18	U	1. Enable

Photo 1 ETWOUT R.W 0 EFTV AIT output to pin 0 CRH 0 CRH 0 CRH 0 CRH 0 Disable 66. FXA 7-0 EXA R.W 00 Expansion accumulator F66 FXA 7-0 EXA R.W 000 Expansion accumulator F7 FXB 7-0 EXA R.W 000 Expansion accumulator F66 FXA 7-0 EXA R.W 000 Expansion accumulator F67 FXB 7-0 EXA R.W 000 Expansion accumulator F67 FXB FA R.W 000 Expansion accumulator F67 FXB FA R.W 000 Financi 165351 Timeral clock cycle 0011: Timer3 Interrupt rate is 5231 Timer3 clock cycle 0101: Timer3 Interrupt rate is 1042 Timer3 clock cycle 0101: Timer3 Interrupt rate is 104 Timer3 clock cycle 1011: Timer3 Interrupt rate is 124 Timer3 clock cycle 1101: Timer3 Interupt rate is 124 Timer3 clock cycle 1101:	Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
Final Product R.W 0 0: P3.6 = normal U0 1: P3.6 = NETWATT 1: P3.6 = NETWATT 0 CKHLDE R.W 0 0: Disbale 1: Enable 0 CKHLDE R.W 00 Expansion accumulator E7h EXB 7-0 EXB R.W 000 Expansion accumulator E7h EXB 7-0 EXB R.W 000 Expansion accumulator E7h EXB 7-0 EXB R.W 000 Timeral Interrupt rate is 30218 Timeral clock cycle 0010: Timeral interrupt rate is 30218 Timeral clock cycle 0010: Timeral interrupt rate is 30218 Timeral clock cycle 0010: Timeral interrupt rate is 30218 Timeral clock cycle 0100: Timeral interrupt rate is 30218 Timeral clock cycle 0110: Timeral interrupt rate is 30218 Timeral clock cycle 0110: Timeral interrupt rate is 30218 Timeral clock cycle 1100: Timeral interrupt rate is 30218 Timeral clock cycle 1010: Timeral interrupt rate is 30218 Timeral clock cycle 1010: Timeral interrupt rate is 30218 Timeral clock cycle 1100: Timeral interrupt rate is 30218 Timeral clock cycle 1010: Timeral interrupt rate is 30218 Timeral clock cycle 1011: Timeral interupt rate is 30218 Timeral							EFTWAIT output to pin
Final Product State			1	EFTWOUT	R/W	0	0: P3.6 = normal I/O
Efh BUS CKHLDE CKHLDE F R/W OB 0 Exable Disable 1: Enable E60 EXA 7-0 EXA F R/W 000 Expansion accumulator E7h EXB 7-0 EXB F R/W 000 Expansion accumulator E7h EXB 7-0 EXB F R/W 000 Expansion accumulator E7h EXB 7-0 EXB F R/W 000 Time3 Interrupt rate is 202144 Time3 clock cycle 0000: Time3 Interrupt rate is 05356 Time3 clock cycle 0010: Time3 Interrupt rate is 05356 Time3 clock cycle 0100: Time3 Interrupt rate is 05356 Time3 clock cycle 0100: Time3 Interrupt rate is 1024 Time3 clock cycle 0100: Time3 Interrupt rate is 1024 Time3 clock cycle 1000: Time3 Interrupt rate is 104 Time3 clock cycle 1000: Time3 Interrupt rate is 10 Time3 clock cycle 1000: Time3 Interupt rate is 10 Time3 clock cycle 1000: Time3 Inter							1: $P3.6 = EFTWAIT$
Final Product CKHLDE R/W 0 Disable E60 EXA 7-0 EXA R/W 00h Expansion accumulator F7h EXB 7-0 EXB R/W 00h Expansion accumulator F7h EXB 7-0 EXB R/W 00h Expansion accumulator F7h EXB 7-0 EXB R/W 00h Expansion accumulator F7h EXB F.0 EXB R/W 00h Expansion accumulator F7h FXB F R/W 00h Timer3 Interrupt rate is 5201 Timer3 clock cycle F7h FAUX3 - TM3PSC R/W 0000 0111 Timer3 Interrupt rate is 520 Timer3 clock cycle F7h FAUX3 - TM3PSC R/W 0000 0111 Timer3 Interrupt rate is 520 Timer3 clock cycle F7h FAUX3 - TM3PSC R/W 00 1100 Timer3 Interrupt rate is 512 Timer3 clock cycle F7h FAUX3 - F2M CC requency atrupt rate is 512 Timer3							clock hold enable
Finh EXA R-W I: Enable B6h EXA R-0 EXA R-W 00b Expansion accumulator F7h EXB 7-0 FXB R/W 00b Expansion accumulator F7h EXB 7-0 FXB R/W 00b Expansion accumulator F8h EXB 7-0 FXB R/W 00b Expansion accumulator F8h EXB 7-0 FXB R/W 00b Expansion accumulator F8h F8h R/W F8h R/W 0000 Timer3 Interrupt rate is 521 Timer3 clock cycle F8h AUX3 F8h R/W 0000 Timer3 Interrupt rate is 512 Timer3 clock cycle F1h F1MPE R/W 0000 F1mer3 Interrupt rate is 512 Timer3 clock cycle F100: Timer3 Interrupt rate is 512 Timer3 clock cycle 1010: Timer3 Interrupt rate is 512 Timer3 clock cycle F10: Timer3 Interrupt rate is 512 Timer3 clock cycle 1010: Timer3 Interrupt rate is 512 Timer3 clock cycle F10: Timer3 Interrupt rate is 512 Timer3 clock cycle 1010: Timer3 Interupt rate is			0	CKHLDE	R/W	0	0: Disable
Föh FXA 7-0 EXA R/W 00h Expansion accumulator E7h FXB 7-0 EXB R/W 00h Expansion a registr E7h FXB 7-0 EXB R/W 00h Expansion a registr Image: Registric and the registris and the registric and the registric and the registric							1: Enable
FN EXB 7-0 EXB R/W 00h Expansion B register F H S P F P <t< td=""><td>E6h</td><td>EXA</td><td>7~0</td><td>EXA</td><td>R/W</td><td>00h</td><td>Expansion accumulator</td></t<>	E6h	EXA	7~0	EXA	R/W	00h	Expansion accumulator
Frh AUX3 For an analysis R/W OO Time3 Interrupt rate S02144 Time3 clock cycle 6-3 TM3PSC R/W 0001: Time3 Interrupt rate is 3208 Time3 clock cycle 0001: Time3 Interrupt rate is 3208 Time3 clock cycle 0011: Time3 Interrupt rate is 184 Time3 clock cycle 0011: Time3 Interrupt rate is 184 Time3 clock cycle 0010: Time3 Interrupt rate is 184 Time3 clock cycle 0101: Time3 Interrupt rate is 127 Time3 clock cycle 0101: Time3 Interrupt rate is 2048 Time3 clock cycle 0101: Time3 Interrupt rate is 217 Time3 clock cycle 1 FJMPE R/W 0000 Time3 Interrupt rate is 127 Time3 clock cycle 110: Time3 Interrupt rate is 217 Time3 clock cycle 1101: Time3 Interrupt rate is 217 Time3 clock cycle 110: Time3 Interrupt rate is 125 Time3 clock cycle 1101: Time3 Interrupt rate is 125 Time3 clock cycle 110: Time3 Interrupt rate is 125 Time3 clock cycle 111: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 111: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 1110: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 110: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 1110: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 111: Time3 Time3 uncertupt rate is 125 Time3 clock cycle 1110: Time3 Tinterrupt rate is 125 Time3 clock cycle	E7h	EXB	7~0	EXB	R/W	00h	Expansion B register
Frh AUX3 6-3 TM3PSC R/W 0000: Timer3 interrupt rate is 31072 Timer3 clock cycle 0010: Timer3 interrupt rate is 3536 Timer3 clock cycle 0010: Timer3 interrupt rate is 3268 Timer3 clock cycle 0100: Timer3 interrupt rate is 4096 Timer3 clock cycle 0101: Timer3 interrupt rate is 4096 Timer3 clock cycle 1001: Timer3 interrupt rate is 4096 Timer3 clock cycle 1001: Timer3 interrupt rate is 4096 Timer3 clock cycle 1001: Timer3 interrupt rate is 4006 Timer3 clock cycle 1101: Timer3 interrupt rate is 4006 Timer 40000 Timer 40000 Timer 4000 Timer 40000 Timer 4000 Timer 40000 Timer 4000 Timer 4000 Timer 4000 Timer 4000 Tim							Timer3 Interrupt rate
Frh AUX3 6-3 TM3PSC R/W 0010: Timer3 Interrupt rate is 5356 Timer3 clock cycle 0100: Timer3 Interrupt rate is 1024 Timer3 clock cycle 0100: Timer3 Interrupt rate is 1024 Timer3 clock cycle 0110: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1000: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1001: Timer3 Interrupt rate is 204 Timer3 clock cycle 1101: Timer3 Interrupt rate is 204 Timer3 clock cycle 1101: Timer3 Interrupt rate is 101 Timer3 clock cycle 1101: Timer3 Interrupt rate is 101 Timer3 clock cycle 1101: Timer3 Clock cycle 1100: Timer3 Clock cycle 1100: Timer3							0000: Timer3 Interrupt rate is 262144 Timer3 clock cycle 0001: Timer3 Interrupt rate is 131072 Timer3 clock cycle
FPh AUX3 6-3 TM3PSC R/W 0001: Timer3 Interrupt rate is 32768 Timer3 clock cycle 0100: Timer3 Interrupt rate is 4096 Timer3 clock cycle 0101: Timer3 Interrupt rate is 1024 Timer3 clock cycle 1000: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1100: Timer3 Interrupt rate is 2018 Timer3 clock cycle 1100: Timer3 Interrupt rate is 2018 Timer3 clock cycle 1100: Timer3 Interrupt rate is 51 Timer3 clock cycle 1100: Timer3 Interupt rate is 51 Timer3 clock cycle 1100: Timer3 Interupt rate is 5				TM3PSC	R/W	0000	0010: Timer3 Interrupt rate is 65536 Timer3 clock cycle
F7h AUX3 6-3 TM3PSC R.W 000: Timer3 Interrupt rate is 16384 Timer3 clock cycle 0110: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1000: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1001: Timer3 Interrupt rate is 204 Timer3 clock cycle 1001: Timer3 Interrupt rate is 4 Timer3 clock cycle 1101: Timer3 Interrupt rate is 4 Timer3 clock cycle 110 clock Trate3 clock cycle 110 clock Trate3 Clock cycle 11							0011: Timer3 Interrupt rate is 32768 Timer3 clock cycle
Fh AUX3 6-3 TM3PSC R.W 0001 Timer3 Interrupt rate is 192 Timer3 clock cycle FFh AUX3 3 TM3PSC R.W 0000 0111: Timer3 Interrupt rate is 1024 Timer3 clock cycle I001: Timer3 Interrupt rate is 128 Timer3 clock cycle 1001: Timer3 Interrupt rate is 128 Timer3 clock cycle 1001: Timer3 Interrupt rate is 256 Timer3 clock cycle I101: Timer3 Interrupt rate is 256 Timer3 clock cycle 1101: Timer3 Interrupt rate is 256 Timer3 clock cycle I101: Timer3 Interrupt rate is 258 Timer3 clock cycle 1101: Timer3 Interrupt rate is 256 Timer3 clock cycle I101: Timer3 Interrupt rate is 256 Timer3 clock cycle 1100: Timer3 Interrupt rate is 256 Timer3 clock cycle I101: Timer3 Interrupt rate is 105 Timer3 clock cycle 1100: Timer3 Interrupt rate is 256 Timer3 clock cycle I101: Timer3 Interrupt rate is 105 Timer3 clock cycle 1100: Timer3 Interrupt rate is 256 Timer3 clock cycle I110: Timer3 Interrupt rate is 105 Timer3 clock cycle 1100: Timer3 Interrupt rate is 257 Timer3 clock cycle I110: Timer3 Interrupt rate is 105 Timer3 clock cycle 1100: Timer3 Interrupt rate is 257 Timer3 clock cycle I110: Timer3 Interrupt rate is 105 Timer3 clock cycle 1100: Timer3 Interrupt rate is 105 Timer3 clock cycle I110: Timer3 Interrupt rate is 105 Timer3 clock cycle							0100: Timer3 Interrupt rate is 16384 Timer3 clock cycle
Fh AUX3 6-3 TM3PSC R/W 0000 0111: Timer3 Interrupt rate is 2048 Timer3 clock cycle 1000: Timer3 Interrupt rate is 121 Timer3 clock cycle 1001: Timer3 Interrupt rate is 512 Timer3 clock cycle 1010: Timer3 Interrupt rate is 512 Timer3 clock cycle 1011: Timer3 Interrupt rate is 64 Timer3 clock cycle 1010: Timer3 Interrupt rate is 64 Timer3 clock cycle 1010: Timer3 Interrupt rate is 64 Timer3 clock cycle 1010: Timer3 Interrupt rate is 72 Timer3 clock cycle F0h B 7-0 R/W 0 FRC frequency auto-change value F1h CRCDH 7-0 CRCDL R/W FFH 16-bit CRC data bit 17-0 F2h CRDH 7-0 CRCDL R/W FFH 16-bit CRC data bit 17-8 F3h CRCDH 7-0 CRCDL R/W - CRC input data F5h							0101: Timer3 Interrupt rate is 8192 Timer3 clock cycle
EFh AUX3 6-3 TM3PSC R/W 0000 0111: Time3 Interrupt rate is 204 Time3 clock cycle 1000: Time3 Interrupt rate is 102 Time3 clock cycle 1010: Time3 Interrupt rate is 25 Time3 clock cycle 1101: Time3 Interrupt rate is 64 Time3 clock cycle 1101: Time3 Interrupt rate is 64 Time3 clock cycle 1101: Time3 Interrupt rate is 64 Time3 clock cycle 1101: Time3 Interrupt rate is 70 Time3 clock cycle 1101: Time3 Interrupt rate is 8 Time3 clock cycle 1101: Time3 Interrupt rate is 103 Time3 clock cycle 111: Time3 Interrupt rate is 103 Time3 clock cycle 1111: Time3 Interrupt rate is 103 Time3 clock cycle 111: Time3 Interupt 111: Time3 Interupt rate is 100 Tima 11: instru							0110: Timer3 Interrupt rate is 4096 Timer3 clock cycle
EFh AUX3 Image: Construct on the second sec			6~3				0111: Timer3 Interrupt rate is 2048 Timer3 clock cycle
EFh AUX3 Image: Construct on the consention on the construct on the consention the construct on the co							1000: Timer3 Interrupt rate is 1024 Timer3 clock cycle
EFh AUX3 Filter of the second							1001: Timer3 Interrupt rate is 512 Timer3 clock cycle
EPh AUX3 AUX3 File	DD1	A T 18/2					1010: Timer3 Interrupt rate is 256 Timer3 clock cycle
Fh AUX1 7-6 BR FW 0 FRC frequency auto-change enable 1101: Timer3 Interrupt rate is 8 Timer3 clock cycle 1 FJMPE R/W 0 FRC frequency auto-change enable 0 0 FJMPS R/W 0 FRC frequency auto-change selection 0 0 FJMPS R/W 0 Crequency auto-change selection 0 0 FJMPS R/W 0 Crequency auto-change selection 0 0 FJMPS R/W 0 Crequency auto-change selection 0 10us trime-0 trime-0 trime-0 1 RC 110 trime-0 trime-0 trime-0 1 RC <	EFh	AUX3					1011. Timers Interrupt rate is 64 Timers clock cycle
F0h B 7-0 R/W 0 FKC frequency auto-change enable 0 FJMPE R/W 0 FKC frequency auto-change enable 0 FJMPS R/W 0 FKC frequency auto-change enable 0 FJMPS R/W 0 Crequency auto-change enable 0 FJMPS R/W 0 Crequency auto-change enable 0 FJMPS R/W 0 Crequency auto-change enable 1: (rim+0, +1, +2, +3, +0, -1, -2, -3; Exchange trim value every 10us) 10us) Creation 1: (rim+0, +1, +2, +3, +0, -1, -2, -3; Exchange trim value every 10us) Creation Creation F/h CRCDL 7-0 CRCDH R/W F/h CRCDH 7-0 CRCDH R/W F/h CFGBGL 4-0 BGTRIMI R/W - F/h CFGBGL 4-0 BGTRIMI R/W - VBG Crequency 2 F/h F/h I-0 FRC frequency 2 Their hight frequency - F/h CreGBGL							1100: Timer's Interrupt rate is 22 Timer's clock cycle
F0h B 7-0 B R/W 00 B Regeneration of the second s							1101. Timer3 Interrupt rate is 16 Timer3 clock cycle
Find Find <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1111: Timer3 Interrupt rate is 8 Timer3 clock cycle</td></th<>							1111: Timer3 Interrupt rate is 8 Timer3 clock cycle
File FIGE Requency and the properties and ended 1 FJMPE R/W 0 0: FRC frequency auto-change enable 0 FJMPS R/W 0 0: FRC frequency auto-change enable 0 FJMPS R/W 0 0: FRC frequency auto-change enable 0 FJMPS R/W 0 0: (trim+0, +1, +2, +3, +0, -1, -2, -3; Exchange trim value every 10us) 10 B 7-0 B R/W 00h B register FIh CRCDL 7-0 CRCDL R/W 0h B register F3h CRCIN 7-0 CRCIN R/W 0h B register F3h CRCIN 7-0 CRCIN R/W 0h CRC input data F5h CFGBG1 4-0 BGTRIM1 R/W - CRC input data F6h CFGWL 6-0 FRCTRIM R/W - Ob: lowest frequency 76 WDTE R/W 0 0: Set 1 to reduce the chip's power consumption at Idle/Halt/Stop mode 11: WDT al							FRC frequency auto-change enable
$F7h = AUX2 = \begin{bmatrix} 1 & 1.3H & 2 & 1.5W & 0 & 1.5H & FRC frequency auto-change enable \\ $			1	FIMPE	R/W	0	0: FRC frequency define by CEGWL
$F^{h} = AUX2 = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$			-		10 11	Ŭ	1: FRC frequency auto-change enable
$ F7h AUX2 \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$							RC frequency auto-change selection
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0: $(trim+0, +1, +2, +3, +0, -1, -2, -3;$ Exchange trim value every
F0hB7~0B R/W 00hB registerF1hCRCDL7~0CRCDL R/W 00hB registerF2hCRCDH7~0CRCDL R/W FFh16-bit CRC data bit 7~0F2hCRCIN7~0CRCIN W $-$ CRC input dataF5hCRGBG14-0BGTRIM1 R/W $-$ CRC input dataF6hCFGWL6-0FRCTRIM R/W $-$ CRC input dataF6hCFGWL6-0FRCTRIM R/W $-$ CRC input dataF7-6WDTE R/W 00hiowest frequency TFh: highest frequency $-$ 7~6WDTE R/W 0010: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode5PWRSAV R/W 0Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode.F7h 4 VBGOUT R/W 0Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode.F7h 4 VBGOUT R/W 0I: Bandgap voltage output control 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction MULD/DIV as 16% 8% 8% operation 1: wait 55 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog tim			0	FJMPS	R/W	0	10us)
F0hB7-0B R/W 00hB registerF1hCRCDL7-0CRCDL R/W FFh16-bit CRC data bit 7-0F2hCRCDH7-0CRCDH R/W FFh16-bit CRC data bit 15~8F3hCRCIN7-0CRCINW-CRC input dataF5hCFGBG14-0BGTRIMI R/W -VBG trimming1 value (VBG 2.5V)F6hCFGWL6-0FRCTRIM R/W -VBG trimming1 value (VBG 2.5V)F7hCFGWL6-0FRCTRIM R/W -VBG trimming1 value (VBG 2.5V)F7h FRC 6-0FRCTRIM R/W -VBG trimming1 value (VBG 2.5V)F7h FRC 6-0FRCTRIM R/W -VBG trimming1 value (VBG 2.5V)F7h FRC 6-0FRCTRIM R/W 0VBG trimming1 value (VBG 2.5V)F7h FRC 6-0FRCTRIM R/W 0VBG trimming1 value (VBG 2.5V)F7h FRC 6-0FRCTRIM R/W 0VBG trimming1 value (VBG 2.5V)5PWRSAV R/W 0VB to clause tripter value (VBG 2.5V)VD tripter value (VBG 2.5V)6PWRSAV R/W 0Set 1 to reduce the chip's power consumption at Idle/Halt/Stop mode73DIV32 R/W 0Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Ndde8Auxa4VBGOUT R/W 00: instruction DIV as 16/16 bit division operation 1: instruction DIV as 21/6							1: (trim+0, +2, +4, +6, +0, -2, -4, -6; Exchange trim value every
F0h B 7-0 B R/W 00h B register F1h CRCDL 7-0 CRCDL R/W FFh 16-bit CRC data bit 7-0 F2h CRCIN 7-0 CRCDH R/W FFh 16-bit CRC data bit 15-8 F3h CRCIN 7-0 CRCIN W - CRC input data F5h CFGBG1 4-0 BGTRIMI R/W - Vagt timmingl value (VBG 2.5V) F6h CFGWL 6-0 FRCTRIM R/W - Oh: lowest frequency F6h CFGWL 6-0 FRCTRIM R/W - Vagt timmingl value (VBG 2.5V) F7h 6-0 FRCTRIM R/W - Oh: lowest frequency 7Fh: highest frequency 7/Fh: highest frequency - 7Fh: highest frequency 0h: Ub WDT disable 0k: WDT disable 7-6 WDTE R/W 00 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop mode 11: WDT always enable - - Bandgap voltage output control 0k: P3.2 as normal I/O 13 DIV32 R/W 0 0: isstru							10us)
F1h CRCDL 7-0 CRCDL R/W FFh 16-bit CRC data bit 7-0 F2h CRCDH 7-0 CRCDH R/W FFh 16-bit CRC data bit 15~8 F3h CRCIN 7-0 CRCIN W - CRC input data F5h CFGBG1 4-0 BGTRIMI R/W - VBG trimingl value (VBG 2.5V) F6h CFGWL 6-0 FRCTRIM R/W - FRC frequency adjustment F6h CFGWL 6-0 FRCTRIM R/W - Watchdog Timer Reset control F7h No 7-6 WDTE R/W 00 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop mode F7h AUX2 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 8 AUX2 3 DIV32 R/W 0 Oil issue output control 1: Bandgap voltage output to P3.2 pin 7.1 IAPTE R/W 0 Oil issue output so 1616 bit division operation 1: surtuction DIV as 32/16 bit division operation 8 OIV 32 R/W 0 Oil i	F0h	В	7~0	В	R/W	00h	B register
F2h CRCDH 7-0 CRCDH R/W FFh 16-bit CRC data bit 15~8 F3h CRCIN 7~0 CRCIN W - CRC input data F3h CFGBG1 4~0 BGTRIMI R/W - VBG trimming1 value (VBG 2.5V) F6h CFGWL 6~0 FRCTRIM R/W - FRC frequency adjustment F7h 6~0 FRCTRIM R/W - VBC tripped value (VBG 2.5V) F7h 6~0 FRCTRIM R/W - VBC tripped value v	F1h	CRCDL	7~0	CRCDL	R/W	FFh	16-bit CRC data bit 7~0
F3h CRCIN 7-0 CRCIN W - CRC input data F5h CFGBG1 4-0 BGTRIM1 R/W - V _{BG} trimming1 value (VBG 2.5V) F6h CFGWL 6-0 FRCTRIM R/W - V _{BG} trimming1 value (VBG 2.5V) F6h CFGWL 6-0 FRCTRIM R/W - FRC frequency adjustment F7h 6-0 FRCTRIM R/W - Watchdog Timer Reset control 0x: WDT disable 7-6 WDTE R/W 00 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 6-0 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 7Fh 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 7 3 DIV32 R/W 0 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 7 1APTE R/W 0 0: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction MUL/DIV as 8*8, 8% operation 1: wait 55 ms trigger watchdog time-out flag 10: wait 27.5 ms trigger watchdog t	F2h	CRCDH	7~0	CRCDH	R/W	FFh	16-bit CRC data bit 15~8
F5h CFGBG1 4-0 BGTRIMI R/W - VBG trimming1 value (VBG 2.5V) F6h CFGWL 6-0 FRCTRIM R/W - FRC frequency adjustment 00h: lowest frequency 7Fh: highest frequency F6h CFGWL 6-0 FRCTRIM R/W - FRC frequency adjustment 00h: lowest frequency Value 7-6 WDTE R/W 0 Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 10: WDT always enable 11: WDT always enable 5 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 5 PWRSAV R/W 0 0: instruction DIV as normal I/O 1: Bandgap voltage output control 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 6 DIV32 R/W 0 0: instruction DIV as 32/16 bit division operation 1: instruction DIV as 16/16 bit division operation 1: wait 55 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 2~1 IAPTE	F3h	CRCIN	7~0	CRCIN	W	-	CRC input data
F6h CFGWL 6~0 FRCTRIM R/W - FRC frequency adjustment 00h: lowest frequency 7Fh: highest frequency Variable 7~6 WDTE R/W 00 Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 11: WDT always enable 5 PWRSAV R/W 0 4 VBGOUT R/W 0 8 AUX2 Aux1 7	F5h	CFGBG1	4~0	BGTRIM1	R/W	-	V _{BG} trimming1 value (VBG 2.5V)
F6h CFGWL 6-0 FRCTRIM R/W - 00h: lowest frequency 7Fh: highest frequency F7h Karten and Structure							FRC frequency adjustment
F7h AUX2 7~6 WDTE R/W 00 Watchdog Timer Reset control 0x: WDT disable F7h AUX2 7~6 WDTE R/W 00 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 5 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 3 DIV32 R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 2~1 IAPTE R/W 0 O Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 2~1 IAPTE R/W 0 O Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 0 MULDIV16 R/W 0 O IAP/EEP working output to P3.2 pin O 0 IAPTE R/W 00 O IAP/EEP watchdog time-out flag I0: wait 6.9 ms trigger watchdog time-out flag I1: wait 55 ms trigger watchdog time-out flag I1: wait 56 ms trigger watchdog time-out flag I1: wait 56 ms trigger watchdog time-out flag I1: wait 56 ms trigger wa	F6h	CFGWL	6~0	FRCTRIM	R/W	-	00h: lowest frequency
F7h AUX2 7~6 WDTE R/W 00 Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode F7h AUX2 5 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 8 AUX2 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 8 AUX2 3 DIV32 R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 2~1 IAPTE R/W 0 0 Istruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: wait 6.9 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 11: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation F8h AUX1 7 CLRWDT 0 Set 1 to clear WDT H/W auto clear it at next clock cycle							/Fn: nighest frequency
F7h AUX2 7~6 WDTE R/W 00 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode F7h AUX2 5 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. F7h 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. 3 DIV32 R/W 0 0: P3.2 as normal I/O 3 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 2~1 IAPTE R/W 0 0: instruction DIV as 32/16 bit division operation 10: wait 27.5ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation							watchdog 11mer Keset control
F7h AUX2 7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			7~6	WDTE	R/W	00	10: WDT enable in Fast/Slow mode disable in Idle/Halt/Ston
F7h AUX2 Image: Section of the sect							mode
F7h AUX2 5 PWRSAV R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. F7h 4 VBGOUT R/W 0 Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode. F7h 4 VBGOUT R/W 0 0: P3.2 as normal I/O 3 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 8*8, 8/8 operation 1: wait 55 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 11: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle							11: WDT always enable
F7h AUX2 J I WKSAV IV 0 Mode. 4 VBGOUT R/W 0 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 7 MOL 1: Bandgap voltage output to P3.2 pin 0.1: Bandgap voltage output to P3.2 pin 3 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 2~1 IAPTE R/W 00 0 MULDIV16 R/W 0 0 MULDIV16 R/W 0 0 MULDIV16 R/W 0 88h AUX1 7 CLRWDT R/W 0			5	DWDCAV	P / W	0	Set 1 to reduce the chip's power consumption at Idle/Halt/Stop
F7h AUX2 4 VBGOUT R/W 0 Bandgap voltage output control 6 VBGOUT R/W 0 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 7 0 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 2~1 IAPTE R/W 00 01: wait 6.9 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation			5	F WKSAV	K/ W	0	Mode.
F7h AUX2 4 VBGOUT R/W 0 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 0 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin 3 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 2~1 IAPTE R/W 00 0: wait 6.9 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 6 MULDIV16 R/W 0 7 CLRWDT R/W 0			4	VBGOUT	R/W	0	Bandgap voltage output control
F7h AUX2 Image: Construction of the second sec							0: P3.2 as normal I/O
3 DIV32 R/W 0 only active when MULDV116 =1 3 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 1: instruction DIV as 32/16 bit division operation 2~1 IAPTE R/W 00 01: wait 6.9 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation	F7h	AUX2					1. Danagap voltage output to P3.2 pin
5 DIV32 R/W 0 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation 2~1 IAPTE R/W 00 IAP/EEP watchdog timer enable 00: Disable 0 MULDIV16 R/W 00 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle			3	DIV32	R/W	0	only active when MULDV116 =1
Implementation 1: Instruction DIV as 52/16 bit division operation 2~1 IAPTE R/W 00 0 MULDIV16 R/W 0 0: Instruction MUL/DIV as 8*8, 8/8 operation 1: Instruction MUL/DIV as 16*16, 16/16 or 32/16 operation 1: Instruction MUL/DIV as 16*16, 16/16 or 32/16 operation 1: Instruction MUL/DIV as 16*16, 16/16 or 32/16 operation						U	U: instruction DIV as 16/16 bit division operation
Image: Provide the second structure of the seco			2~1	IAPTE	R/W	00	1. Instruction D1v as 52/16 bit division operation
Email 2~1 IAPTE R/W 00 01: wait 6.9 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle							1AF/EEF watchuog unter enable 00: Disable
F8h AUX1 7 CLRWDT R/W 0 OF 1. wait 0.5 ms trigger watchdog time-out flag 10: wait 27.5ms trigger watchdog time-out flag 11: wait 55 ms trigger watchdog time-out flag 0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation							01. wait 6.9 ms trigger watchdog time-out flag
Image: Figure of the second			2.~1		17/ 18	00	10: wait 27.5ms trigger watchdog time-out flag
0 MULDIV16 R/W 0 0: instruction MUL/DIV as 8*8, 8/8 operation F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle							11: wait 55 ms trigger watchdog time-out flag
0 MULDIV16 R/W 0 of instruction MUL/DIV as 16*16, 16/16 or 32/16 operation F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle			-			-	0: instruction MUL/DIV as 8*8. 8/8 operation
F8h AUX1 7 CLRWDT R/W 0 Set 1 to clear WDT H/W auto clear it at next clock cycle			0	MULDIV16	R/W	0	1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation
	F8h	AUX1	7	CLRWDT	R/W	0	Set 1 to clear WDT. H/W auto clear it at next clock cycle

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		6	CLRTM3	R/W	0	Set 1 to clear Timer3, HW auto clear it at next clock cycle.
		5	CLRPWM0	R/W	0	PWM0 clear enable 0: PWM0 is running 1: PWM0 is cleared and held
		4	ADSOC	R/W	0	ADC Start of Conversion Set 1 to start ADC conversion. Cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
3 CLRPWM1 R/W 0 0: PWM1 is running 1: PWM1 is cleared and held		PWM1 clear enable 0: PWM1 is running 1: PWM1 is cleared and held				
		2	T2SEL	R/W	R/W 0 Timer2 counter mode (CT2N=1) input select 0: P1.0 (T2) pin (8051standard) 1:Slow clock divide by 16 (SLOWCLK/16)	
1 T1SEL R/W 0 Timer1 counter mode (CT1N=1) input select 1 T1SEL R/W 0 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)		Timer1 counter mode (CT1N=1) input select 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)				
		0	DPSEL	R/W	0	Active DPTR Select

Adr	Flash	Bit#	Bit Name	Description
3FF9h	CFGBG2	4~0	BGTRIM2	VBG2 adjustment. VBG2 is trimmed to 1.18V in chip manufacturing.
3FFBh	FBh CFGBG1 4~0 BGTRIM1 VBG adjustr		BGTRIM1	VBG adjustment. VBG is trimmed to 2.5V in chip manufacturing.
3FFDh	CFGWL	6~0	FRCTRIM	FRC frequency adjustment. FRC is trimmed to 18.432 MHz in chip manufacturing.
		7	PROT	Flash Code Protect, 1=Protect
		6	XRSTE	External Pin Reset enable, 1=enable.
	~~~~	5	PORSEL	0: POR always on (when PORPD=0)
3FFFh	CFGWH	5	TORDEE	1: POR turn on 2ms (1/8duty when PORPD=0)
		4~0		Reserved



# **INSTRUCTION SET**

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes 1~8 System clock cycles to execute as listed in the 'cycle' column below.

ARITHMETIC						
Mnemonic	Description	byte	cycle	opcod e		
ADD A,Rn	Add register to A	1	2	28-2F		
ADD A,dir	Add direct byte to A	2	2	25		
ADD A,@Ri	Add indirect memory to A	1	2	26-27		
ADD A,#data	Add immediate to A	2	2	24		
ADDC A,Rn	Add register to A with carry	1	2	38-3F		
ADDC A,dir	Add direct byte to A with carry	2	2	35		
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37		
ADDC A,#data	Add immediate to A with carry	2	2	34		
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F		
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95		
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97		
SUBB A,#data	Subtract immediate from A with borrow	2	2	94		
INC A	Increment A	1	2	04		
INC Rn	Increment register	1	2	08-0F		
INC dir	Increment direct byte	2	2	05		
INC @Ri	Increment indirect memory	1	2	06-07		
DEC A	Decrement A	1	2	14		
DEC Rn	Decrement register	1	2	18-1F		
DEC dir	Decrement direct byte	2	2	15		
DEC @Ri	Decrement indirect memory	1	2	16-17		
INC DPTR	Increment data pointer	1	4	A3		
MUL AB	Multiply A by B	1	8/16	A4		
DIV AB	Divide A by B	1	8/16/32	84		
DA A	Decimal Adjust A	1	2	D4		

LOGICAL							
Mnemonic	Description	byte	cycle	opcode			
ANL A,Rn	AND register to A	1	2	58-5F			
ANL A,dir	AND direct byte to A	2	2	55			
ANL A,@Ri	AND indirect memory to A	1	2	56-57			
ANL A,#data	AND immediate to A	2	2	54			
ANL dir,A	AND A to direct byte	2	2	52			
ANL dir,#data	AND immediate to direct byte	3	4	53			
ORL A,Rn	OR register to A	1	2	48-4F			
ORL A,dir	OR direct byte to A	2	2	45			
ORL A,@Ri	OR indirect memory to A	1	2	46-47			
ORL A,#data	OR immediate to A	2	2	44			
ORL dir,A	OR A to direct byte	2	2	42			
ORL dir,#data	OR immediate to direct byte	3	4	43			
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F			
XRL A,dir	Exclusive-OR direct byte to A	2	2	65			
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67			
XRL A,#data	Exclusive-OR immediate to A	2	2	64			
XRL dir,A	Exclusive-OR A to direct byte	2	2	62			
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63			
CLR A	Clear A	1	2	E4			
CPL A	Complement A	1	2	F4			



LOGICAL							
Mnemonic	byte	cycle	opcode				
SWAP A	Swap Nibbles of A	1	2	C4			
RL A	Rotate A left	1	2	23			
RLC A	Rotate A left through carry	1	2	33			
RR A	Rotate A right	1	2	03			
RRC A	Rotate A right through carry	1	2	13			

DATA TRANSFER							
Mnemonic	Description	byte	cycle	opcode			
MOV A,Rn	Move register to A	1	2	E8-EF			
MOV A,dir	Move direct byte to A	2	2	E5			
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7			
MOV A,#data	Move immediate to A	2	2	74			
MOV Rn,A	Move A to register	1	2	F8-FF			
MOV Rn,dir	Move direct byte to register	2	4	A8-AF			
MOV Rn,#data	Move immediate to register	2	2	78-7F			
MOV dir,A	Move A to direct byte	2	2	F5			
MOV dir,Rn	Move register to direct byte	2	4	88-8F			
MOV dir,dir	Move direct byte to direct byte	3	4	85			
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87			
MOV dir,#data	Move immediate to direct byte	3	4	75			
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7			
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7			
MOV @Ri,#data	Move immediate to indirect memory	2	2	76-77			
MOV DPTR,#data	Move immediate to data pointer	3	4	90			
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	8	93			
MOVC A,@A+PC	Move code byte relative PC to A	1	8	83			
MOVX A,@Ri	Move external data(A8) to A	1	8	E2-E3			
MOVX A,@DPTR	Move external data(A16) to A	1	8	EO			
MOVX @Ri,A	Move A to external data(A8)	1	8	F2-F3			
MOVX @DPTR,A	Move A to external data(A16)	1	8	F0			
PUSH dir	Push direct byte onto stack	2	4	C0			
POP dir	Pop direct byte from stack	2	4	D0			
XCH A,Rn	Exchange A and register	1	2	C8-CF			
XCH A,dir	Exchange A and direct byte	2	2	C5			
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7			
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7			

BOOLEAN							
Mnemonic	Description	byte	cycle	opcode			
CLR C	Clear carry	1	2	C3			
CLR bit	Clear direct bit	2	2	C2			
SETB C	Set carry	1	2	D3			
SETB bit	Set direct bit	2	2	D2			
CPL C	Complement carry	1	2	B3			
CPL bit	Complement direct bit	2	2	B2			
ANL C,bit	AND direct bit to carry	2	4	82			
ANL C,/bit	AND direct bit inverse to carry	2	4	B0			
ORL C,bit	OR direct bit to carry	2	4	72			
ORL C,/bit	OR direct bit inverse to carry	2	4	A0			
MOV C,bit	Move direct bit to carry	2	2	A2			
MOV bit,C	Move carry to direct bit	2	4	92			



BRANCHING							
Mnemonic	Description	byte	cycle	opcode			
ACALL addr 11	Absolute jump to subroutine	2	6	11-F1			
LCALL addr 16	Long jump to subroutine	3	6	12			
RET	Return from subroutine	1	6	22			
RETI	Return from interrupt	1	6	32			
AJMP addr 11	Absolute jump unconditional	2	6	01-E1			
LJMP addr 16	Long jump unconditional	3	6	02			
SJMP rel	Short jump (relative address)	2	6	80			
JC rel	Jump on carry = 1	2	4 (or 6)	40			
JNC rel	Jump on carry $= 0$	2	4 (or 6)	50			
JB bit,rel	Jump on direct bit $= 1$	3	4 (or 6)	20			
JNB bit,rel	Jump on direct bit $= 0$	3	4 (or 6)	30			
JBC bit,rel	Jump on direct bit $= 1$ and clear	3	4 (or 6)	10			
JMP @A+DPTR	Jump indirect relative DPTR	1	6	73			
JZ rel	Jump on accumulator $= 0$	2	4 (or 6)	60			
JNZ rel	Jump on accumulator $\neq 0$	2	4 (or 6)	70			
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4 (or 6)	B5			
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4 (or 6)	B4			
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative		4 (or 6)	B8-BF			
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4 (or 6)	B6-B7			
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4 (or 6)	D8-DF			
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4 (or 6)	D5			

MISCELLANEOUS							
Mnemonic	Description	byte	cycle	opcode			
NOP	No operation	1	2	00			

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.



# **ELECTRICAL CHARACTERISTICS**

## **1.** Absolute Maximum Ratings $(T_A=25^{\circ}C)$

Parameter	Rating	Unit
Supply voltage	$V_{SS}$ -0.3 ~ $V_{SS}$ +5.5	
Input voltage	$V_{SS}$ -0.3 ~ $V_{CC}$ +0.3	V
Output voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	
All pins output current high	-80	A
All pins output current low	+150	IIIA
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +105	°C
Storage temperature	-65 ~ +150	Ľ

## **2. DC Characteristics** ( $T_A=25$ °C, $V_{CC}=2.2V \sim 5.5V$ )

Parameter	Symbol	C	onditions	Min	Тур	Max	Unit		
Operating Voltage	V _{CC}	F _{SYSCLk}	_x =18.432 MHz	2.4	—	5.5	V		
Input High	V	All Input	V _{CC} =5V	$0.6V_{CC}$	_	_	V		
Voltage	v _{IH}	All Input	V _{CC} =3V	$0.6V_{CC}$	-	-	V		
Input I ow Voltaga	V	All Input	V _{CC} =5V	_		$0.2V_{CC}$	V		
input Low voltage	V IL	An input	V _{CC} =3V	_	-	$0.2V_{CC}$	V		
		All Output	$V_{CC}$ =5V, $V_{OH}$ =0.9 $V_{CC}$	6	11	-			
I/O Port Source	T	(P0.0~P0.5,	$V_{CC}$ =5V, $V_{OH}$ =0.6 $V_{CC}$	10	33	_	m A		
Current	IOH	P3.0~P3.7)	$V_{CC}=3V,$ $V_{OH}=0.9V_{CC}$	2.5	4.8	_	IIIA		
			V _{CC} =3V, V _{OH} =0.66V _{CC}	5	13	_			
	I _{OL}				V _{CC} =5V, V _{OL} =0.1V _{CC} HSNKxEN=1	56	70	_	
I/O Port Sink		All Output, (P0.0~P0.5,	V _{CC} =5V, V _{OL} =0.1V _{CC} HSNKxEN=0	32	40	_			
Current		I _{OL} P1.0~P1.7, P3.0~P3.7)	V _{CC} =3V, V _{OL} =0.1V _{CC} HSNKxEN=1	24	32	_	mA		
			V _{CC} =3V, V _{OL} =0.1V _{CC} HSNKxEN=0	9	18	_			
		Fast mode	FRC=18.432 MHz	_	7	_			
Power Supply		V _{CC} =5V	FRC=9.216 MHz	_	4.5	_	mA		
Current	$I_{DD}$		FRC=18.432 MHz	_	3.7	-			
		Fast mode V _{CC} =3V	FRC=9.216 MHz	_	2.5	_			



Parameter	Symbol	C	onditions	Min	Тур	Max	Unit
		Slow mode	V _{CC} =5V	-	45	_	
		Slow mode	V _{CC} =3V	_	22	_	μΑ
			SRC, V _{CC} =5V POR ON	-	16	-	
		Idle mode	SRC, V _{CC} =5V LVR ON		68		
		No Load	SRC, V _{CC} =3V POR ON	_	8	-	
			SRC, V _{CC} =3V LVR ON		44		
		Idle mode $PWPSAV-1$	SRC, V _{CC} =5V	_	16	_	μA
		No Load	SRC, V _{CC} =3V	_	8	_	
		Stop mode PWRS $\Delta V-1$	V _{CC} =5V	0.3	-	-	
		No Load	V _{CC} =3V	0.1	-	-	
		Halt mode	V _{CC} =5V (Timer3=0.5 sec)	8	_	_	
		No Load	V _{CC} =3V (Timer3=0.5 sec)	3	_	_	
System Clock Frequency	F _{SYSCLK}	$V_{CC}$ >LVR _{TH}	V _{CC} =2.2V	_	_	18.432	MHz
		i		-	4.12	_	
				_	3.94	-	
				-	3.80	_	
				-	3.63	-	
				-	3.50	_	1
				_	3.32	_	
				-	3.18	-	
LVR Reference	V	7	2500	_	3.03	_	V
Voltage	V _{LVR}	1	_A =25°C	_	2.87	_	v
				_	2.71	_	
				_	2.56	_	
				_	2.40	_	
				_	2.26	_	
					2.11	_	
				_	1.95	_	
				-	1.79	_	



Parameter	Symbol	С	Min	Тур	Max	Unit		
				-	4.12	-		
			_	3.94	-			
			_	3.80	_			
				_	3.63	_		
				_	3.50	-		
				_	3.32	_		
				_	3.18	-		
LVD Reference	V	~	□	_	3.03	-	v	
Voltage	V LVD	]	_	2.87	_			
					2.71		_	
				_	2.56		_	
				_	2.40	_		
			_	2.26	_	-		
			_	2.11	_			
			_	1.95	_			
						_	1	
LVR Hysteresis Voltage	V _{HYST}	]	Γ _A =25°C	-	±0.1	—	V	
Low Voltage Detection time	t _{LVR}	]	$\Gamma_{A}=25^{\circ}C$	100	—	-	μs	
Dull Up Desistor	D	$\mathbf{V}_{-0}\mathbf{V}$	V _{CC} =5V	_	25	-		
r un-Op Kesistor	ĸpu	V _{IN} -UV	V _{CC} =3V	_	25	_	KO	
Pull-Down	D	V _V	V _{CC} =5V	_	25	_	KΩ	
Resistor R _{PD}		$v_{IN} = v_{CC}$ $V_{CC} = 3V$		_	25	_		



# **3.** Clock Timing $(T_A = -40^{\circ}C \sim +105^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
FRC Frequency	25°C, V _{CC} =5.0V	-1%	18.432	+1%	
	-40°C ~ 105°C, V _{CC} =5.0V	-1.5%	18.432	+1.5%	MHz
	-40°C ~ 105°C, V _{CC} =3.0 ~ 5.0V	-2.5%	18.432	+2.5%	

#### 4. Reset Timing Characteristics ( $T_A = -40^{\circ}C \sim +105^{\circ}C$ )

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC}$ =5V ± 10 %	30	_	_	μs
WDT wake up time	V _{CC} =5V, WDTPSC=11		30		ma
	V _{CC} =3V, WDTPSC=11	_	32	_	1115
CPU start up time	$V_{CC} = 5 V$	_	13.6	_	ms

## 5. ADC Electrical Characteristics ( $T_A = 25^{\circ}C$ , $V_{CC} = 3.0V \sim 5.5V$ , $V_{SS} = 0V$ )

Parameter	Co	Min	Тур	Max	Unit	
Total Accuracy	V _4		±2.5	$\pm 4$	ISD	
Integral Non-Linearity	v _{CC}	$5 v, v_{SS} = 0 v$		±3.2	±5	LSD
	Source impeda	ance (Rs < 10K omh)		-	2	
Max Input Clock (f _{ADC} )	Source impeda	ance (Rs < 20K omh)	-	-	1	$MU_7$
	Source impedance (Rs < 50K omh)		_	_	0.5	MILL
	Source is V _{BC}	-	-	2.3		
Conversion Time	F _{AD}	$_{\rm C} = 1 {\rm MHz}$		21		μs
BandGap Voltage Reference $(V_{BG})$	_	V _{CC} =3V~5.5V -40°C ~105°C	-1.5%	1.18	+1.5%	
ADC Reference Voltage $(V_{ADC})$	ADCVREFS=1 V _{CC} =3V~5.5V 40°C ~105°C		-1.5%	2.5	+1.5%	V
V _{CC} /4 Reference Voltage		V _{CC} =5V, 25°C	-0.8%	1.26	+0.8%	•
(V _{1/4} )	_	V _{CC} =3.6V, 25°C	-0.8%	0.907	+0.8%	
Input Voltage		_	V _{SS}	_	V _{CC}	

#### 6. **EEPROM Characteristics**

Parameter	Conditions	Min	Тур	Max	Unit
Write Voltage V	-40°C ~ 105° Fsys=FRC/1, VCC/47uF	2.9		5.5	
write voltage v _{EEWR}	-40°C ~ 105° Fsys=FRC/2, VCC/47uF	2.5		5.5	v
Read Voltage $V_{EERD}$	-40°C ~ 105° Fsys=FRC/1, VCC/47uF	2.0		5.5	
	VCC=2.5~5.5V, -40°C ~105°C	20K	-	_	
*Write Endurance $N_{EE}$	VCC=3.0~5.5V, -40°C ~105°C	30K		-	cycles
	VCC=2.5~5.5V, -20°C ~ 85°C	30K			
	VCC=5.0V, 25°C, WDT disable		1.5		
Write Time $T_{EEWR}$	VCC=2.5V, 25°C, WDT disable		4		mS
	VCC=3.0V, 105°C, WDT disable		15		
Data Retention Y _{RET}		10			Year

Note: The value of this parameter is based on the characteristics of tested samples.





#### 7. Characteristic Graphs









·速







# **Package and Dice Information**

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

#### **Ordering information**

Ordering number	Package
TM52F50243T	TSSOP20 (173 mil)
TM52F50244E	SSOP 24-pin (150 mil)
TM52F50243E	SSOP 20-pin (150 mil)
TM52F50243S1	SOP 20-pin(300 mil)
TM52F50242S	SOP 16-pin (150 mil)
TM52F50244Q	QFN 24-pin (3x3x0.75 mm) (L=0.3mm)
TM52F50243Q	QFN 20-pin (3x3x0.75 mm) (L=0.25mm)



### **Package Information**

## SSOP-24 (150mil) Package Dimension









SYMDOL	DI	MENSION IN M	1M	DIN	MENSION IN IN	ЮН
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	1.35	1.55	1.75	0.053	0.061	0.069
A1	0.10	0.18	0.25	0.004	0.007	0.010
A2	-	-	1.50	-	-	0.059
В	0.20	0.25	0.30	0.008	0.010	0.012
С	0.18	0.22	0.25	0.007	0.009	0.010
D	8.56	8.65	8.74	0.337	0.341	0.344
Е	5.79	6.00	6.20	0.228	0.236	0.244
E1	3.81	3.90	3.99	0.150	0.154	0.157
е		0.635 BSC			0.025 BSC	•
L	0.41	0.84	1.27	0.016	0.033	0.050
θ	0°	4°	8°	0°	4°	8°
JEDEC		M0-137 (AE)				

 * NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GAT BURRS.
MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.



#### QFN-24 ( 3x3x0.75 mm ) (L=0.3mm) Package Dimension







#### SOP-20 (300mil) Package Dimension



SYMDOL	DI	MENSION IN M	1M	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
е		1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		MS-013 (AC)					

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM ( 0.006 INCH ) PER SIDE.



#### TSSOP-20 (173mil) Package Dimension









010 0001	D	DIMENSION IN M		DE	MENSION IN I	NCH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А			1.2	()		0.047
Al	0.05	0.10	0.15	0.002	0.004	0,006
A2	0.8	0.93	1.05	0.031	0.036	0.041
В	0.19	-	0.3	0.007	14	0.012
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.55	0.246	0.252	0.258
E1	4.3	4.4	4.5	0.169	0.173	0,177
e		0.65 BSC			0.026 BSC	
L	0.45	0,60	0.75	0.018	0.024	0.030
θ	0 °		8 °	0 *		8 "
JEDEC			MO-153 /	AC REV.F	22	

Notes :

1.DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. 2.DIMENSION "EI" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR

PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.



### SSOP-20 (150mil) Package Dimension

## TOP VIEW





<u>SIDE VIEW</u>



Dimensions/mm										
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX							
Α	-	-	1.75							
A1	0.05	-	0.08							
A2	1.35	1.45	1.55							
AЗ	0.60	0.65	0.70							
b	0.23	-	0.31							
с	0.19	-	0.25							
D	8.50	8.60	8.70							
Е	3.80	3.90	4.00							
E1	5.80	6.00	6.20							
e	(	0.635 BS	С							
h	0.30	-	0.50							
L	0.40	0.80								
θ	0*	-	8*							



## QFN-20 (3x3x0.75 mm) (L=0.25mm) Package Dimension



202 (50)	D	MENSION IN M	M	DI	MENSION IN IN	СН
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.00	0.001	0.002
A3		0,203 REF			0.008 REF	34 
В	0.15	0.20	0.25	0.006	0.008	0.010
D		3 BSC		0.118 BSC		
E		3 BSC			0.118 BSC	
D2	1.80	1.90	2.00	0.071	0.075	0.079
E2	1.80	1.90	2.00	0.071	0.075	0.079
e	20 V	0,40 BSC			0.016 BSC	
L	0.15	0.25	0.35	0.006	0.010	0.014
К		0.30 REF 0.012 REF			0.012 REF	
JEDEC		MO-220				





## SOP-16 (150mil) Package Dimension



SYMDOL	DI	MENSION IN M	ÍM	DIN	MENSION IN IN	ICH
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e		1.27 BSC			0.050 BSC	
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	$4^{\circ}$	$8^{\circ}$	0°	4°	8°
JEDEC			MS-01	2 (AC)		

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM ( 0.006 INCH ) PER SIDE.