

DATA SHEET Rev 0.90

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.80		New Release


CONTENTS

AM	ENDN	MENT HISTORY	2
CO	NTEN	TS	3
FEA	TUR	ES	5
		BLOCK DIAGRAM	
		GNMENT DIAGRAM	
PIN	DES	CRIPTIONS	.11
FUN	ICTIO	ON DESCRIPTION	.12
1	CPU	Core	. 12
	1.1	ROM	.12
		1.1.1 Reset Vector (000h)	.12
		1.1.2 Interrupt Vector (004h)	.12
		1.1.3 Production Information Area and System Configuration (SYSCFG)	
		1.1.4 Emulated EEPROM Area	
		1.1.5 ROM Low Power Mode	
	1.2	RAM and Special Function Registers	
		1.2.1 Bank	
		1.2.2 Directly Addressing and Indirect Addressing	
	1.3	Programming Counter (PC) and Stack	
		1.3.1 Programming Counter	
		1.3.2 Programming Counter Read and Write	
		1.3.3 Stack	
	1.4	ALU and Working (W) Register	
	1.5	STATUS Register (003h/083h/103h/183h)	
	1.6	Table Read	
	1.7	IAP and Emulated EEPROM	
2	Rese	et	
	2.1	Power on Reset (POR)	
	2.2	Low Voltage Reset (LVR)	
	2.3	External Pin Reset (XRST)	.27
	2.4	Watchdog Timer Reset (WDTR)	.28
3	Cloc	k Circuitry and Operation Mode	. 29
4	Inter	rupt	.33
5	I/O I	Port	
	5.1	GPIO (PA0-PA7, PB0-PB6)	
	5.2	OPON / OPO / OP1N / VREXT	.41
6	Perip	pheral Functional Block	.42
	6.1	Watchdog Timer (WDT)	.42
	6.2	Wakeup Timer (WKT)	.44
	6.3	Timer0	.46
	6.4	Timer1	.51
	6.5	T2:15-bit Timer	.54

	6.6 PWM	
	6.7 Analog-to-Digital Converter (ADC)	
	6.8 UART	
	6.9 Battery Charge Module (BCM) - DAC/Comparator/Amplifier	
	6.10 Cyclic Redundancy Check (CRC)	
	6.11 In Circuit Emulation (ICE)	
MEN	IORY MAP	
INST	TRUCTION SET	
ELE	CTRICAL CHARACTERISTICS	
1.	Absolute Maximum Ratings	
2.	DC Characteristics	
3.	Clock Characteristics	
4.	Reset Timing Characteristics	
5.	Wakeup Timer (WKT) Timing Characteristics	
6.	LVR Circuit Characteristics	
7.	LVD Circuit Characteristics	
8.	ADC Characteristics	
9.	VBG Characteristics	
10.	OPA Characteristics	
11.	Comparator Characteristics	
12.	Emulated EEPROM Characteristics	
СНА	RACTERISTICS GRAPHS	
PAC	KAGING INFORMATION	

FEATURES

- 1. ROM: 4K*16 bits Flash with Emulated EEPROM 32*16 bits
- 2. RAM: 256 Bytes
- 3. STACK: 8 Levels
- 4. System Clock type selections:
 - Built-in Fast RC oscillator (FIRC), 18.432 MHz
 - Built-in Slow RC oscillator (SIRC), 37 KHz
- 5. System Clock Prescaler:
 - System Clock can be divided by 1/2/4/8 option
- 6. Power Saving Operation Mode
 - FAST Mode: Slow-clock is enabled, Fast-clock keeps CPU running
 - SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
 - IDLE Mode: Fast-clock and System clock stop. Slow-clock, T2, or Wake-up Timer keep running
 - STOP Mode: All clocks stop, T2 and Wake-up Timer stop

7. 3 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / counter / interrupt / stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / interrupt / stop function
- T2
 - IDLE mode wake-up timer or used as one simple 15-bit time base timer
 - 4 interrupt interval time options
 - Clock source: Slow-clock, Fsys/128, or FIRC/512

8. Interrupt

- Three External Interrupt pins
 - 1 pin is falling edge wake-up triggered & Interrupts
 - 2 pins are rising or falling edge wake-up triggered & Interrupt
- Timer0 / Timer1 / T2 / Wake-up Timer Interrupt
- ADC Interrupt
- PWM Interrupt
- UART Interrupt
- LVD Interrupt

9. Wake-up Timer (WKT)

- Clocked by built-in RC oscillator with 4 adjustable interrupt times
 - 28 ms / 55 ms / 111 ms / 221 ms @V_{CC}=5V

10. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 4 adjustable reset times
 - 221 ms /443 ms /1771 ms /3542 ms @V_{CC}=5V
- Watchdog timer can be disabled / enabled in STOP mode

11. Three 16 bits PWMs

- Independent PWM Duty
- Shared PWM Period
- PWM clock source: System clock (Fsys), FIRC (18.432MHz), FIRC*2 (36.864MHz)
- PWM0 supports complementary output (PWM0P, PWM0N) with non-overlap output option

12. 12-bit ADC with 17 channels External Pin Input and 7 channels Internal Voltage Channel

- Internal voltage channel: VR, OPA2TOADC, V_{TEMP}, LDO1.2V, VSS, V_{CC}/201, V_{CC}/4
- ADC reference voltage: V_{CC}, VR, LDO1.2V

13. BCM

- 14-bit DAC0 and comparator OPA0 are used for constant current control
- 14-bit DAC1 and comparator OPA1 are used for constant voltage control
- OPA2 is 1/10/20/50 times amplifier

14. UART

- Baud rate up to 115200
- Support single-wire mode

15. Reset

- Power On Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (XRST)
- Watchdog Timer Reset (WDTR)

16. Low Voltage Reset (LVR) and Low Voltage Detection (LVD)

- 16-Level Low Voltage Reset: 2.13V ~ 4.26V, can be disabled
- 15-Level Low Voltage Detection: 2.24V~4.20V, can be disabled, with hysteresis option.

17. Operating Voltage: 2.2V~5.5V

*Power-up V_{CC} must exceed POR 2.0V and user selected LVR level, refer to the "Electrical Characteristics Graphs" to avoid entering ROM dead zone.

18. Operating Temperature : -40°C to + 105°C

19. Table Read Instruction: 16-bit ROM data lookup table

20. 16-bit Cyclic Redundancy Check (CRC) function

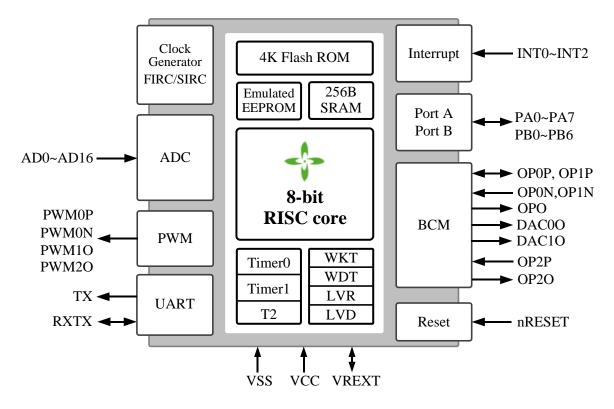
21. Instruction set: 39 Instructions

22. I/O ports:

- 15 GPIO
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up / pull-down resistor option
 - All I/O with High-Sink
 - 1/2 VCC (1/2 bias) Output
 - Support wake up function

23. Programming connectivity support 4-wire (ICP) or 6-wire program

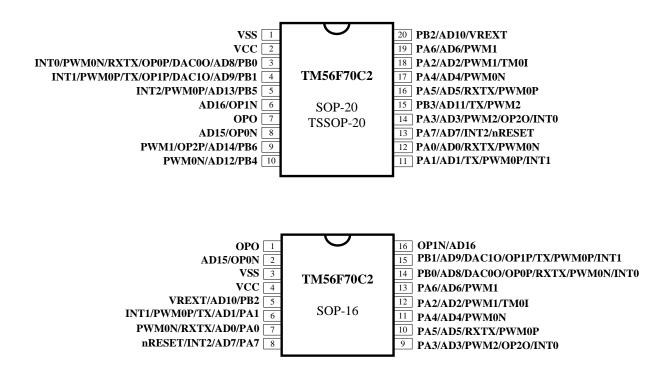
24. Package Types:


- 20-pin SOP (300 mil)
- 20-pin TSSOP (173 mil)
- 20-pin QFN20 (3*3*0.75-0.4mm)
- 16-pin SOP (150 mil)

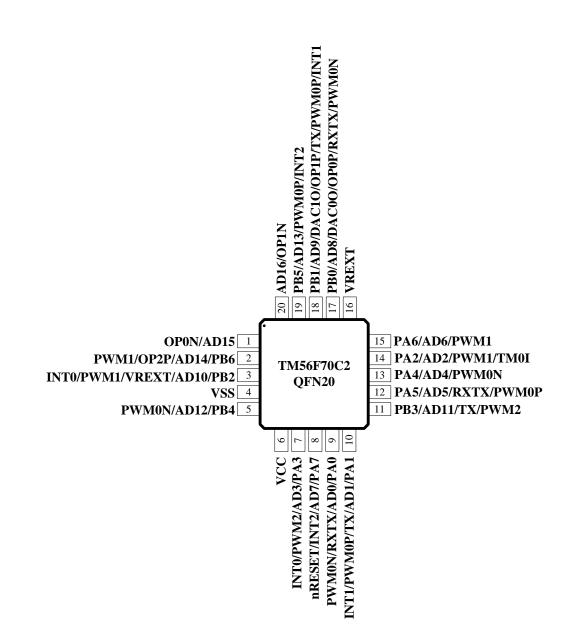
25. On-chip Debug/ICE Interface

• Use 2-wire dedicated ICE pin, no GPIO occupied

SYSTEM BLOCK DIAGRAM



TM56F70C2 Block Diagram



PIN ASSIGNMENT DIAGRAM

If it is a low-power application, all digital I/O (including unpinned or unused pins) should avoid being set to a high-impedance state.

PIN DESCRIPTIONS

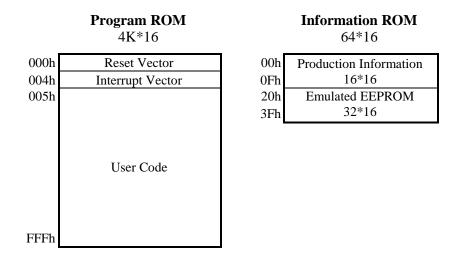
Name	In/Out	Pin Description	
PA0~PA7 PB0~PB6	I/O	GPIO, function include Schmitt trigger input, CMOS push-pull output, open- drain output, $1/2V_{CC}$ output, pull-up/pull-down resistor, pin wake-up, etc.	
nRESET	Ι	External active low reset	
VCC, VSS	Р	Power Voltage input pin and ground	
INT0~INT2	Ι	External interrupt input	
TM0I	Ι	Timer0's input in counter mode	
PWM0P	0	PWM0 positive output	
PWM0N	0	PWM0 negative output	
PWM1	0	PWM1 output	
PWM2	0	PWM2 output	
AD0~16	Ι	ADC channel input	
TX	0	UART serial data output	
RXTX	I/O	UART serial data input, can also be used as output under single-wire mode	
OPO	0	OPA0~OPA1 open drain output	
OP2O	0	OPA2 output	
OP1N	Ι	OPA1 inverting input	
OP0N	Ι	OPA0 inverting input	
OP1P/DAC1O	I/O	OPA1 non-inverting input or DAC1 output	
OP0P/DAC0O	I/O	OPA0 non-inverting input or DAC0 output	
OP2P	Ι	OPA2 non-inverting input	
VREXT	I/O	Internal reference voltage LDO3V output or External reference voltage input	

Programming pins:

6-wire: VCC / VSS / PA0 / PA1 / PA2 / PA4 4-wire: VCC / VSS / PA0 / PA1

*All components of PA0 and PA1 need to be removed from the PCB during In-Circuit Programming.

FUNCTION DESCRIPTION


1 CPU Core

1.1 ROM

The size of the Program ROM is 4K*16, with an additional 64*16 Information ROM.

Under the writer, when the PROTECT bit is set to 0, the PROM and information ROM can be read and written normally. When the PROTECT bit is set to 1, the PROM cannot be read, and only the information ROM is allowed to be read.

The PROTECT bit is only allowed to be cleared after the program ROM has been erased to 0.

1.1.1 Reset Vector (000h)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value.

1.1.2 Interrupt Vector (004h)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004h.

1.1.3 Production Information Area and System Configuration (SYSCFG)

The production information area is placed at the beginning of the information ROM and stores production code, checksum values, trim values and other information. The 16-bit system configuration (SYSCFG) is also placed here, as shown in the table below.

Default Value		0000_0000_0000					
Bi	t	Description					
		PROTECT: Code protection selection					
	15	0	Disable				
		1	Enable				
		WDTE: WatchDog Timer Reset Enable					
	12 12	0X	Disable				
	13-12	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode				
		11	Always Enable				
		LVRS: Low	v Voltage Reset Selection				
		0000	2.13V				
		0001	2.26V				
		0010	2.40V				
		0011	2.54V				
		0100	2.69V				
	11-8	0101	2.83V				
		0110	2.97V				
		0111	3.11V				
		1000	3.26V				
SYSCFG		1001	3.40V				
SISCEG		1010	3.54V				
		1011	3.68V				
		1100	3.84V				
		1101	3.98V				
		1110	4.12V				
		1111	4.26V				
		XRSTE: Ex	xternal Pin (PA7) Reset Enable				
	7	0	Disable (PA7 as I/O pin)				
		1	Enable				
		SOPAN: O	PAN Input Switch Selection				
	6	0	No change				
			Swapping the input of OPAN (OPA0N <-> OPA1N) FIRC prescaler (PWMCLK = FIRC and FIRC*2 are not affected by this bit)				
	5	0	FIRC is 18.432MHz				
	-	1	FIRC is 9.216MHz				
			Power on Reset (POR) Selection				
	4	0	Power on Reset enable 100% duty cycle				
	a c	1	Power on Reset enable 1/16 duty cycle				
	3-0	Reserved					

1.1.4 Emulated EEPROM Area

The Emulated EEPROM area is placed in the second half of the information ROM. Different simulated EEPROM area ranges are defined through the register IAPEN. Users can write data here through IAP and read data through Table Read. For details on the usage of IAP, see the "IAP and Emulated EEPROM" chapter.

1.1.5 ROM Low Power Mode

The default is high speed mode, ROM can reduce power consumption by switching modes. Before changing the ROM mode through the ROMODS register, the user must first write any value to the RDSTP register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. The example is as follows.

Example: Switch to ROM low power mode, system clock < 1MHz.

(These three lines of code must be executed continuously, and no other code can be inserted in between)

; Write any value to RDSTP register MOVWX RDSTP ;Set ROMODS = 00MOVLW 11111100hANDWX PWRCTL2

Example: Switch to ROM medium power mode, system clock < 4MHz.

(These three lines of code must be executed continuously, and no other code can be inserted in between)

; Write any value to RDSTP register MOVWX RDSTP ;Set ROMODS = 01 MOVLW 11111101h ANDWX PWRCTL2

105h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL2	GP	PR2	-	-	-	HSINK	ROM	ODS
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	—	0	1	1	1	1

105h.2 **ROMODS**: ROM mode selection

11: High speed mode

01: Medium power mode, Fsys < 4MHz

00: Low power mode, Fsys < 1MHz

106h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDSTP		RDSTP						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

002h.7~0 RDSTP: Read stop

Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed.

1.2 RAM and Special Function Registers

The table of Special Function Registers (SFR) and RAM is as follows. It is divided into 4 BANKs. Some commonly used registers will be placed in multiple BANKs to reduce the frequency of switching BANKs. The RAM includes 20h~7Fh, A0h~FFh, 120h~17Fh , the size is 256 bytes, of which 0F0h~0FFh, 170h~1FFh, 1F0h~1FFh all point to positions 070~7Fh.

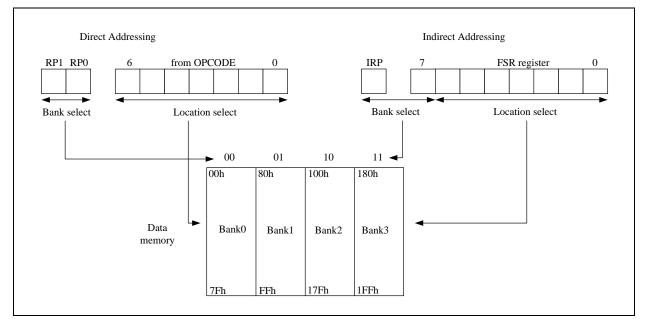
	【BANK0】		[BANK1]		[BANK2]		【BANK3】
	000~07Fh		080h~0FFh		100h~17Fh		180h~1FFh
000h	INDF	080h	INDF	100h	INDF	180h	INDF
001h	TM0	081h	OPTION	101h	TM0	181h	OPTION
002h	PCL	082h	PCL	102h	PCL	182h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS
004h	FSR	084h	FSR	104h	FSR	184h	FSR
005h	PAD	085h	PAMOD10	105h	PWRCTL2	185h	DPL
006h	PBD	086h	PAMOD32	106h	RDSTP	186h	DPH
007h		087h	PAMOD54	107h		187h	CRCDL
008h		088h	PAMOD76	108h		188h	CRCDH
009h		089h	PWMCTL	109h	LVRPD	189h	CRCIN
00Ah	SFR0A	08Ah	SFR0A	10Ah	SFR0A	18Ah	SFR0A
00Bh	INTIE	08Bh	INTIE	10Bh	INTIE	18Bh	INTIE
00Ch	INTIF	08Ch	PBMOD10	10Ch	SFR10C	18Ch	TABR
00Dh	INTIE1	08Dh	PBMOD32	10Dh	CFG07	18Dh	
00Eh	INTIF1	08Eh	PBMOD54	10Eh	BGTRIM	18Eh	
00Fh	CLKCTL	08Fh	PBMOD76	10Fh	IRCF	18Fh	
010h	TMORLD	090h		110h	OP0TRIM	190h	IAPCTL
011h	TM0CTL	091h	OPTION2	111h	OP1TRIM	191h	IAPEN
012h	TM1	092h	PWMPRDH	112h	OP2TRIM	192h	IAPDT
013h	TM1RLD	093h	PWMPRDL	113h	RDCTL	193h	IAPDTH
014h	TM1CTL	094h	PWM0DH	114h	BCMCTL3	194h	
015h	T2CTL	095h	PWM0DL	115h	PWRCTL	195h	SCON
016h	LVCTL	096h	PWM1DH	116h		196h	SBUF
017h	ADCDH	097h	PWM1DL	117h		197h	UARTCTL
018h	ADCTL	098h	PWM2DH	118h		198h	UARTCTL2
019h	ADCTL2	099h	PWM2DL	119h		199h	
01Ah	BCMCTL	09Ah		11Ah		19Ah	
01Bh	BCMCTL2	09Bh		11Bh		19Bh	
01Ch	DAC0DH	09Ch		11Ch		19Ch	
01Dh	DAC0DL	09Dh		11Dh		19Dh	
01Eh	DAC1DH	09Eh		11Eh		19Eh	
01Fh	DAC1DL	09Fh		11Fh		19Fh	
020h		0A0h		120h		1A0h	
							_
	RAM Bank0 area		RAM Bank1 area		RAM Bank2 area		Reserved
	(80 Bytes)		(80 Bytes)		(80 Bytes)		
06Fh		0EFh		16Fh		1EFh	
070h	common area	0F0h	accesses	170h	accesses	1F0h	accesses
	(16 Bytes)		070h~07Fh		070h~07Fh		070h~07Fh
07Fh		0FFh		17Fh		1FFh	

RAM and Special Function Register Table

1.2.1 Bank

The purpose of registers RP1 and RP0 is to switch BANK.

[RP1, RP0] (03h.6~5)	BANK
00	0
01	1
10	2
11	3


Keeping RP0=RP1=0 in the beginning of the F/W code and using the new instruction set.

The advantage of using new instruction is user can ignore the bank location of registers and the code size can be saved. The new instruction is almost the same as the old instruction. By replacing the "F" to "X" in the instruction set can easily use the new instruction without switching the bank. The instruction replacement table is as follows.

BC <mark>F</mark>	TM0IE	→	BCX	TM0IE
DECF	CNT, 1	→	DECX	CNT, 1
INCFSZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMODL	→	MOVWX	PAMODL
RL <mark>F</mark>	RAMA0, 0	→	RLX	RAMA0, 0
SWAP F	ADCTL, 0	→	SWAPX	ADCTL, 0

1.2.2 Directly Addressing and Indirect Addressing

The plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bit may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS[7]). Refer to the figure below.

Direct / Indirect Addressing

♦ Example: read / write register by using direct addressing (force RP0=RP1=0)

CLKCTL TM1 OPTION2 LVRPD IRCF DPL RAM020 RAM0A0	equ equ equ equ equ equ equ	00Fh 012h 091h 109h 10Fh 185h 020h 0A0h	; SFR in Bank0 ; SFR in Bank0 ; SFR in Bank1 ; SFR in Bank2 ; SFR in Bank2 ; SFR in Bank3 ; RAM in Bank0 ; RAM in Bank1
MOVXW	TM1		; read TM1 (Bank0) to W
MOVXW	OPTION2		; read OPTION2 (Bank1) to W
MOVXW	IRCF		; read IRCF (Bank2) to W
MOVXW	DPL		; read DPL (Bank3) to W
MOVLW	16h		; W = 16h
MOVWX	RAM020		; RAM[0x020] = W = 16h
MOVWX	RAM0A0		; RAM[0x0A0] = W = 16h
MOVLW	37h		; W = 37h
MOVWX	LVRPD		; LVRPD = W = 37h, force LVR/POR disable
MOVXW	CLKCTL		; read SFR CLKCTL (00Fh) to W
MOVXW	IRCF		; read SFR IRCF (10Fh) to W
MOVLW	0Bh		; W = 0Bh
MOVWX	CLKCTL		; CLKCTL (00Fh) = W = 0Bh
MOVWX	IRCF		; IRCF (10Fh) = W = 0Bh

♦ Example: read / write register by using indirect addressing (force RP0=RP1=0)

BSX	IRP	; IRP = 1 => Bank2/3
MOVLW	0Fh	; W = 0Fh
MOVWX	FSR	; FSR = W = 0Fh
MOVXW	INDF	; read SFR IRCF (10Fh) to W
BSX MOVLW MOVWX MOVLW MOVWX	FSR 0Bh	; IRP = 1 => Bank2/3 ; W = 0Fh ; FSR = W = 0Fh ; W = 0Bh ; IRCF (10Fh) = W = 0Bh
BCX MOVLW MOVWX MOVXW	FSR	; IRP = 0 => Bank0/1 ; W = 0Fh ; FSR = W = 0Fh ; read SFR CLKCTL (00Fh) to W
BCX	IRP	; IRP = 0 => Bank0/1
MOVLW	OFh	; W = 0Fh
MOVWX	FSR	; FSR = W = 0Fh
MOVLW	OBh	; W = 0Bh
MOVWX	INDF	; CLKCTL (00Fh) = W = 0Bh

1.3 Programming Counter (PC) and Stack

1.3.1 Programming Counter

The program counter has a total of 12 bits and is used to address the 4Kx16 program ROM.

When a program instruction is executed, the program counter will contain the address of the next program instruction to be executed. The program counter usually continues to increment by one unless a reset, interrupt, call, jump, or return instruction is encountered.

The initial setup reset vector (000h) and interrupt vector (004h) are used for program counter initialization and interrupt events. For CALL instructions and GOTO instructions, the program counter loads the lower 11-bit address from the instruction word and the upper 1-bit address from register SFR0A.3. For return (RET/RETL/RETLW) instructions, the program counter retrieves its contents from the top of the stack.

Before executing the CALL/GOTO instruction, if the target address is greater than 2K, SFR0A.3 must be set, otherwise SFR0A.3 remains at 0.

This chip also provides additional new instructions LCALL and LGOTO to replace the CALL and GOTO instructions. When using LCALL and LGOTO, the user does not need to worry about the destination address, just keep SFR0A.3 to 0. The instruction replacement table is as follows.

CALL	TABLE	→	LCALL	TABLE
GOTO	TABLE	→	LGOTO	TABLE

1.3.2 Programming Counter Read and Write

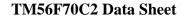
The upper byte of the program counter (PC[11:8]) can be read from the PCH register (10Ch.3~0).

The low byte of the program counter (PC[7:0]) data can be read and written through the PCL register (002h/082h/102h/182h).

Use the PCH_LAT function:

The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT.

Disable the PCH_LAT function:


When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT function can only be disabled when the user uses assembly code. Users of C language cannot disable this function.

Restore PCH_LAT function:

When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.

1.3.3 Stack

The stack is 12 bits wide and 8 levels deep, used to store the address of program instructions. When calling (CALL/LCALL) instructions and interrupt events, they will be pushed into the stack in order. According to the first-in-last-out principle, when the return (RET/RETI/ RETLW) instructions are executed, they will be popped back into the stack in order.

002h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCL				PC	CL			
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

002h.7~0 **PCL:** Programming Counter(PC) data bit 7~0

00Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR0A		G	PR			PCH_	LAT	
R/W	/W R/W				R/	W		
Reset	0	0 0 0 0 0 0 0						0

00Ah.3~0 **PCH_LAT:** Program counter(PC) high byte write buffer When the CPL executes any instruction that will modify PCL the PC[11:8] x

When the CPU executes any instruction that will modify PCL, the PC[11:8] value is provided by the temporary register PCH_LAT. This function can be turned off by register SFR10C.

10Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR10C		SFR10C						
R/W		W				R/	W	
Reset	0	0	0	0	0	0	0	0

10Ch.7~0 SFR10C:

Use the PCH_LAT function:

The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT.

Disable the PCH_LAT function:

When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT function can only be disabled when the user uses assembly code. Users of C language cannot disable this function.

Restore PCH_LAT function:

When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.

10Ch.3~0 PCH: Program counter(PC) data bits 11~8, which are the high 4-bit value of the program counter.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (003h/083h/103h/183h)

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCX, BSX and MOVWX instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Reset Value	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W			
Bit	Description										
7	0 = Bank 0,	er Bank Sele 1 (000h - 0F 3 (100h - 1F	Fh)	for indirect a	addressing)						
6:5	RP1:RP0 : Register Bank Select bits (used for direct addressing) 00 = Bank 0 (000h - 07Fh) 01 = Bank 1 (080h - 0FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) Each bank is 128 bytes										
4	TO : Time Out Flag 0: after Power On Reset or CLRWDT/SLEEP instruction 1: WDT time out occurs										
3				T instruction	L						
2	1: the result	of a logic of of a logic of	peration is ze	ero							
1	DC: Decimal Carry Flag or Decimal / Borrow Flag ADD instruction SUB instruction 0: no carry 0: a borrow from the low nibble bits of the result occurs 1: a carry from the low nibble bits of the result occurs 1: no borrow										
0	ADD instrue 0: no carry	occurs 1: no borrow C: Carry Flag or /Borrow Flag ADD instruction SUB instruction									

♦ Example: Write immediate data into STATUS register.

MOVLW	00h	
MOVWX	STATUS	; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register.

BSX	STATUS, 0	; Set C=1
BCX	STATUS, 0	; Clear C=0

♦ Example: Determine the C flag by BTXSS instruction.

BTXSS	STATUS, 0	; Check the carry flag
LGOTO	LABEL_1	; If C=0, goto LABEL_1
LGOTO	LABEL_2	; If C=1, goto LABEL_2

1.6 Table Read

The device can read the PROM value through the instruction TABRL / TABRH or the register TABR, and the read value will be stored in the register W.

The function needs to be enabled through register IAPEN. When not in use, please disable the function through the register IAPEN.

Example: Find PROM data located at "TABLE1"

	MOVLW	47H	
	MOVWX	IAPEN	
		0.01	
	MOVLW	00h	
	MOVWX	INDEX	; Set lookup address
	MOVLW	1Ch	; Disable PCG_LAT function
	MOVWX	SFR10C	
	MOVXW	INDEX	
	LCALL	TABLE1	; Find data and get W=33h
	Leille	mblli	, The data and got W=55h
	INCX	INDEX, 1	; next address
	LCALL	TABLE1	; Find data and get W=44h
	MOVLW	33H	
	MOVWX	IAPEN	
opg	MOOL		
	X00h		
TABLE1:			
	ADDWX	PCL, 1	; Add W to PCL and return the result to PCL.
	RETLW	33h	; return W=33h
	RETLW	44h	; return W=44h
	RETLW	55h	; return W=55h
ORG TABLE1:	MOVWX X00h ADDWX RETLW RETLW	IAPEN PCL, 1 33h 44h	; return W=33h ; return W=44h

*The chip defines 256 ROM addresses as one page, so the ROM has 16 pages, $000h\sim0FFh$, $100h\sim1FFh$,..., F00h~FFFh. The lookup table must be on the same page to avoid getting wrong data. Therefore, when a lookup table is started at X00h (X = 1, 2, 3, ..., E, F), the lookup table can have up to 255 data. Of course, if there is less data in the lookup table, you don't need to set the starting address to X00h, but just make sure that all the lookup table data is on the same page.

Example: Read PROM data located at "TABLE2"

	MOVLW	47H	
	MOVWX	IAPEN	
	MOVLW	(TABLE2 >>8) & 0xff	
	MOVWX	DPH	
	MOVLW	(TABLE2) & 0xff	
	MOVWX	DPL	; $DPTR = \{DPH, DPL\} = TABLE2$
; Method 1: I	Read the table t	hrough the instruction TAE	BRL / TABRH
	TABRL	-	; Read PROM low byte data to W (W = $86h$)
	TABRH		; Read PROM high byte data to W (W = $19h$)
; Method 2: I	Read the table t	hrough the special function	register TABR
	MOVLW	01h	; TABR = 01h is equivalent to instruction TABRL
	MOVWX	TABR	; Read PROM low byte data to TABR and W
			TABR = W = 86h
	MOVLW	02h	; $TABR = 02h$ is equivalent to instruction TABRH
	MOVWX	TABR	; Read PROM high byte data to TABR and W
			TABR = W = 19h
	MOVLW	33H	
	MOVWX	IAPEN	
TABLE2:			
	.DT	0x1986	; 16-bit ROM data

18Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TABR				ТА	BR				
R/W		R/W							
Reset	0	0							

18Ch.7~0 TABR: Table Read

When the user writes 01h to TABR, the W register will get the lower eight bits of the data in the address pointed to by DPTR.

When the user writes 02h to TABR, the W register will get the upper eight bits of the data in the address pointed to by DPTR.

In Assembly code, user can table read by TABRL/TABRH instruction or writing TABR register. In C code, user can only table read by writing TABR register.

191h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPEN		IAPEN						
R/W		W						
Reset	0	0	0	0	0	0	0	0

191h.7~0 IAPEN: Function selection of Table Read and IAP

Write 47h to enable Main ROM Table Read and IAP functions

Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions Writing 33h will disable Table Read and IAP functions

1.7 IAP and Emulated EEPROM

First, IAPEN must be set. For example, writing 50H to IAPEN can enable the IAP function and treat 20H~3FH of the Information ROM as an area that can be written by IAP and read by Table read, called the Emulated EEPROM area. DPTR represents the address pointed to by writing and reading. 16 bits can be written at a time. The value to be written needs to be placed in the registers IAPDTH and IAPDTL. Fill in IAPDTH first and then IAPDTL. When filling in the value of IAPDTL, the hardware will perform writing.

The value of the Emulated EEPROM area can be read through the register TABR or the instructions TABRH/TABRL.

when not in use, please close IAPEN.

Example: Write 16'hAA55 to Emulated EEPROM and read it ; IAP Write Time-Out selection MOVLW 0000001B MOVWX IAPCTL :Enable the IAP function and treat 20H~3FH of the Information ROM as an area that can be written by IAP and read by Table read, called the Emulated EEPROM area MOVLW 50H MOVWX IAPEN ;Set Write/Read Address = Data pointer register (DPTR) = 30h MOVLW 00H MOVWX DPH 30H MOVLW DPL MOVWX ;Write 0XAA MOVLW MOVWX IAPDTH ;Set data high byte MOVLW 0X55 ;Set data low byte and write MOVWX IAPDT ;delay 1 clock cycle NOP ;Read ;=TABRH instruction MOVLW 02H ;=TABRH instruction MOVWX TABR ;=TABRL instruction MOVLW 01H ;=TABRL instruction MOVWX TABR ;Disable IAP function MOVLW 33H MOVWX **IAPEN**

190h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCTL							IAF	ТЕ
R/W							R/W	R/W
Reset							0	0

190h.1~0 **IAPTE**: IAP Write Time-Out selection 00: Disable, 01: 3.5ms, 10:14ms, 11: 28ms

191h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IAPEN IAPEN R/W W 0 0 0 0 0 0 0 0 Reset

191h.7~0 IAPEN: Function selection of Table Read and IAP
 Write 47h to enable Main ROM Table Read and IAP functions
 Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions
 Writing 33h will disable Table Read and IAP functions

192h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPDTL		IAPDTL						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

192h.7~0 **IAPDTL**: IAP Data low byte

When the user writes to this register, the hardware will automatically write the 16-bit value {IAPDTH, IAPDTL} to the location pointed to by DPTR.

193h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPDTH		IAPDTH						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

193h.7~0 IAPDTH: IAP Data high byte

2 Reset

This device can be RESET in four ways.

Power-On-Reset (POR)

Low Voltage Reset (LVR)

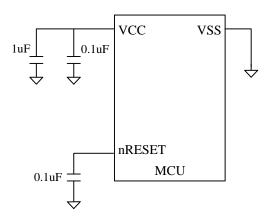
External Pin Reset (XRST)

Watchdog Timer Reset (WDTR)

Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The SYSCFG controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared, and the system starts running from the reset vector 000h place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset (POR)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values.

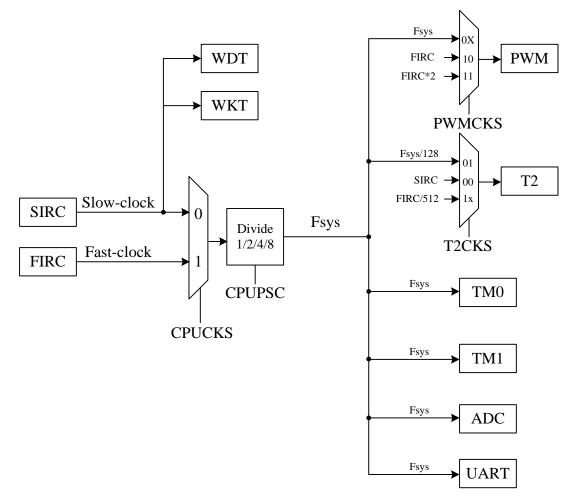

2.2 Low Voltage Reset (LVR)

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are 16 threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG. Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enters dead-band and error occurs.

2.3 External Pin Reset (XRST)

External pin reset can be disabled or enabled through the SYSCFG. It needs to be maintained for at least 2 SIRC clock cycles before it can be detected by the chip and trigger the reset action. XRST will return all control registers to their default resets, while the TO/PD flags are not affected by reset.

The external reset pin is active low, and a good external reset circuit can protect the system from operating under abnormal power conditions.


2.4 Watchdog Timer Reset (WDTR)

The Watchdog Timer reset can be disabled or enabled by SYSCFG. Set WDTPSC to define the period during which WDT reset occurs. WDT reset counter can be cleared by device Reset or CLRWDT instruction. WDT reset also set all the control registers to their default value. The TO/PD flags are not affected by WDT resets.

3 Clock Circuitry and Operation Mode

The device is designed using a dual clock system. The System clock (Fsys) can be selected from Slowclock or Fast-clock. The clock sources of each peripheral are shown in the figure below.

Clock Source Diagram

FAST Mode:

In this mode, the chip is executed using Fast-clock as System clock (Fsys).

If you want to enter SLOW mode, first set SLOWSTP to 0, then set CPUCKS to 0, so that the device will switch to SLOW mode.

Example: Switch FAST mode to SLOW mode

BCX	SLOWSTP	; Slow-clock enable
BCX	CPUCKS	; Fsys = Slow-clock

SLOW Mode:

In this mode, the chip is executed using Slow-clock as System clock (Fsys).

After the device power-on or reset, System clock will enter SLOW mode.

The user can choose to turn the Fast-clock on or off through the FASTSTP bit

If you want to enter Fast mode, first set FASTSTP to 0, then set CPUCKS to 1, so that the device will switch to FAST mode.

Example: Switch SLOW mode to FAST mode

BCX	FASTSTP	; Fast-clock enable
BSX	CPUCKS	; Fsys = Fast-clock

IDLE Mode:

If the device goes to sleep with SLOWSTP=0 or WKTIE=1 or WDTE=3, the Slow-clock will still continue to oscillate during sleep, which is called IDLE mode.

Users can put the deivce to sleep by executing the SLEEP instruction. In the sleep state, Fast-Clock must stop oscillating.

After a fast device wakes up from sleep state, it will return to the mode before waking up.

Example:Switch FAST/SLOW mode to IDLE mode.

BCX	SLOWSTP	;Slow-clock will keep running after executing the
		SLEEP instruction
SLEEP		; executing SLEEP instruction

STOP Mode:

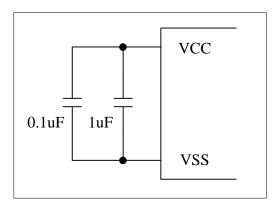
If the device goes to sleep with SLOWSTP=0 and WKTIE=0 and WDTE=0,1,2, Slow-clock will stop oscillating. In this case, the CPU is the most power-saving, which is called STOP mode.

Users can put the deivce to sleep by executing the SLEEP instruction. In the sleep state, Fast-Clock must stop oscillating.

After a fast device wakes up from sleep state, it will return to the mode before waking up.

Example:Switch FAST/SLOW mode to STOP mode.

BSX	SLOWSTP	;Slow-clock will stop after executing the SLEEP
		instruction
MOVLW	0000 <u>0</u> 000b	; close WKT
MOVWX	INTIE	
SLEEP		; executing SLEEP instruction



Mode	System clock (Fsys)	Built-in Fast RC oscillator (FIRC)	Built-in Slow RC oscillator (SIRC)
FAST mode	Fast-clock	V	V
SLOW mode	Slow-clock	by FASTSTP	V
IDLE mode	Х	Х	V
STOP mode	Х	Х	Х

Clock Mode Table

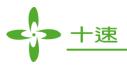
Power Supply Bypass Capacitor:

Since power supply noise will degrade the performance of the internal clock oscillator, it is recommended to place the power supply bypass capacitors 1 uF and 0.1 uF close to the VCC/VSS pin, which can improve the stability of the clock and the entire system.

Power supply bypass capacitor

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

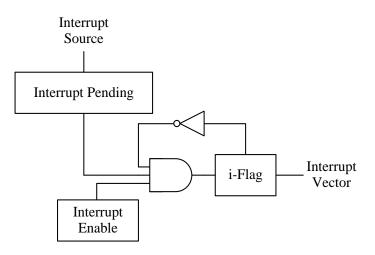
0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable 0: disable


1: enable

DS-TM5670C2_E

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	—	—	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/	W
Reset	-		_	0	1	0	1	1

0Fh.4	SLOWSTP : Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction
	1: Slow-clock stops running after execute SLEEP instruction
0Fh.3	FASTSTP: Fast-clock stop
	0: Fast-clock is running
	1: Fast-clock stops running
0Fh.2	CPUCKS : System clock source selection
	0: Slow-clock
	1: Fast-clock
0Fh.1~0	CPUPSC: System clock source prescaler. System clock source
	00: divided by 8
	01: divided by 4
	10: divided by 2
	11: divided by 1



4 Interrupt

The Chip has 1 level, 1 vector and 11 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit has been set, it would trigger CPU to service the interrupt. CPU accepts interrupt at the end of current executed instruction cycle. In the meanwhile, a "LCALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Interrupt event

♦ Example: Setup INT1 (PA1) interrupt request with rising edge trigger

	ORG	000h	; Reset Vector
	LGOTO	START	; Goto user program address
	LUUIU	51/1((1	, Goto user program address
	ORG	004h	; All interrupt vector
	LGOTO	INT	; If INT1 (PA1) input occurred rising edge
	ORG	005h	
START:			
	MOVLW	<u>0000</u> xxxxb	
	MOVWX	PAMOD10	; Select INT1 Pin Mode as mode 0000b
			; Open drain output low or input with Pull-up
	MOVLW	xxxxxx <u>1</u> xb	
	MOVWX	PAD	; Release INT1, it becomes Schmitt-trigger
			; input with input pull-up resistor
	MOVLW	xx <u>1</u> xxxxxb	,,
	MOVWX	OPTION	; Set INT1 interrupt trigger as rising edge
	MOVLW	1111111 <u>0</u> 1b	, bet not i menupt digger us tising edge
	MOVWX	INTIF	; Clear INT1 interrupt request flag
	MOVWX	000000 <u>1</u> 0b	, clear inter interrupt request hag
	MOVEW	INTIE	; Enable INT1 interrupt
MAIN:	MOVWX		, Enable hvi i merrupi
WIAIN.			
	 LGOTO	MAIN	
	20010		
INT:			
	MOVWX	20h	; Store W data to SRAM 20h
	MOVXW	STATUS	; Get STATUS data
	MOVWX	21h	; Store STATUS data to SRAM 21h
	BTXSC	INT1IF	; Check INT1IF bit
	LCALL	INT1_SUB	; INT1IF = 1, jump to INT1 interrupt service routine
EXIT_INT:			
	MOVXW	21h	; Get SRAM 21h data
	MOVWX	STATUS	; Restore STATUS data
	MOVXW	20h	; Restore W data
	RETI		; Return from interrupt
			, r
INT1_SUB:			; INT1 interrupt service routine
_ `			· •
	MOVLW	111111 0 1b	
	MOVWX	INTIF	; Clear INT1 interrupt request flag
	RET		. 1 1

1: enable

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.7	ADCIE: ADC interrupt enable
	0: disable
	1: enable
0Bh.6	T2IE: T2 interrupt enable
	0: disable
	1: enable
0Bh.5	TM1IE: Timer1 interrupt enable
	0: disable
	1: enable
0Bh.4	TM0IE: Timer0 interrupt enable
	0: disable
	1: enable
0Bh.3	WKTIE: Wakeup Timer interrupt enable and Wakeup Timer enable
	0: disable
	1: enable
0Bh.2	INT2IE: INT2 interrupt enable
	0: disable
	1: enable
0Bh.1	INT1IE: INT1 interrupt enable
	0: disable
	1: enable
0Bh.0	INTOIE: INTO interrupt enable
	0: disable

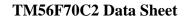
0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.7	ADCIF: ADC interrupt event pending flag
	This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag
0Ch.6	T2IF: T2 interrupt event pending flag
	This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag
0Ch.5	TM1IF: Timer1 interrupt event pending flag
	This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag
0Ch.4	TM0IF: Timer0 interrupt event pending flag
	This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag
0Ch.3	WKTIF: Wakeup Timer interrupt event pending flag
	This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag
0Ch.2	INT2IF: INT2 pin falling interrupt pending flag
	This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag
0Ch.1	INT1IF: INT1 pin falling/rising interrupt pending flag
	This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag
0Ch.0	INTOIF: INTO pin falling/rising interrupt pending flag
	This bit is set by H/W at INT0 pin's falling/rising edge, write 0 to this bit will clear this flag

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	EA	UARTIE	_	_	_	_	PWMIE	LVDIE
R/W	R/W	R/W	—				R/W	R/W
Reset	1	0	_				0	0

0Dh.7	EA: Global interrupt enable
	0: disable
	1: enable
0Dh.6	UARTIE: UART interrupt enable
	0: disable
	1: enable
0Dh.1	PWMIE: PWM interrupt enable
	0: disable
	1: enable
0Dh.0	LVDIE: LVD interrupt enable
	0: disable
	1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	—	UARTIF	—	_	—	—	PWMIF	LVDIF
R/W	-	R					R/W	R/W
Reset		0	_			_	0	0


0Eh.6 **UARTIF:** UART interrupt event pending flag

This bit is set by H/W when UART transmission/reception is completed, write 0 to TI/RI flag will clear this flag

0Eh.1 **PWMIF:** PWM interrupt event pending flag

This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag0Eh.0LVDIF: LVD interrupt event pending flag

This bit is set by H/W after $V_{CC} < V_{LVD}$, write 0 to this bit will clear this flag

5 I/O Port

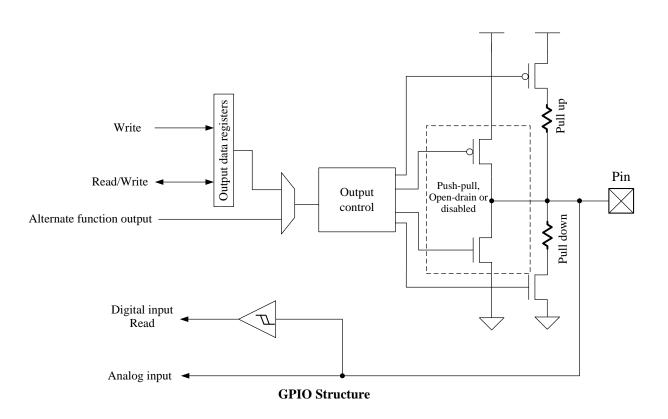
5.1 GPIO (PA0-PA7, PB0-PB6)

The chip has various pin modes and their functions are shown in the table below. In this table, Pin Mode is defined by PAMODx, PBMODx, Pin Data is defined by PAD, PBD.

Pin Mode	Pin Data	Description	Digtal Output	Digital Input	Pin Wakeup
0000Ь	0	Digital Open drain low	ON	OFF	OFF
00000	1	Digital Input with Pull-up resistor	OFF	ON	OFF
0001b	0	Digital Open drain low	ON	OFF	OFF
00010	1	Digital Input or Analog signal	OFF	ON	OFF
0010b	0	Digital Output Low	ON	OFF	OFF
00100	1	Digital Output High	ON	OFF	OFF
0011b	Х	Analog signal ADC / OP0P / OP1P / OP2P / VREXT / VBGO	OFF	OFF	OFF
0100b	0	Digital Open drain low	ON	OFF	OFF
01000	1	Digital Input with Pull-down resistor	OFF	ON	OFF
0101b	0	Digital Open drain low	ON	OFF	OFF
01010	1	Digital Input	OFF	ON	OFF
0110b	0	Digital Output Low	ON	OFF	OFF
01100	1	Digital Output High	ON	OFF	OFF
0111b	Х	PWM output	ON	OFF	OFF
1000b	0	Digital Open drain low	ON	OFF	OFF
10000	1	Digital Input with Pull-up resistor	OFF	ON	ON
1001b	0	Digital Open drain low	ON	OFF	OFF
10010	1	Digital Input	OFF	ON	ON
1010b	0	Digital Output Low	ON	OFF	OFF
10100	1	Digital Output High	ON	OFF	OFF
1011b	Х	Reserved	OFF	OFF	OFF-
1100b	0	Digital Open drain low	ON	OFF	OFF
11000	1	Digital Input with Pull-down resistor	OFF	ON	ON
11011	0	Digital Open drain low	ON	OFF	OFF
1101b	1	Digital Input	OFF	ON	ON
11106	0	Digital Output Low	ON	OFF	OFF
1110b	1	Digital Output High	ON	OFF	OFF
1111b	Х	Analog output 1/2 V _{CC} (1/2 bias)	OFF	OFF	OFF

GPIO Function Table

Mode 1 turns off the digital output and enables the digital input. Mode 3 turns off the digital output and turns off the digital input. Both Mode 1 and Mode 3 can be used for analog signals. However, because mode 1 enables digital input, it may consume more power when used with analog signals. It is recommended that analog signals such as ADC / OPOP / OP1P / OP2P / VREXT / VBGO use Mode 3.


The default setting of all general IO (GPIO) is mode 1. PB0~PB2 are not high impedance because they have analog signal output inside by default. PB0 defaults to output 60mV of DAC0, PB1 defaults to

output 2.4V of DAC1, and the PB2 default output is VR voltage value (3V). Please pay attention to whether there is any conflict with the external circuit when using it. If PB0~PB2 are to be used for analog signals, it is recommended to switch to mode 3 after power-on to save power consumption.

	P	AxMOD / PBxMOD	
Pin Name	0011b (Analog in/out)	0111b (Digital output)	1111b (Analog output)
PA0	ADC0	PWM0N	1/2 bias
PA1	ADC1	PWM0P	1/2 bias
PA2	ADC2	PWM1	1/2 bias
PA3	ADC3/OP2O	PWM2	1/2 bias
PA4	ADC4	PWM0N	1/2 bias
PA5	ADC5	PWM0P	1/2 bias
PA6	ADC6	PWM1	1/2 bias
PA7	ADC7	PWM2	1/2 bias
PB0	ADC8/OP0P/DAC0O	PWM0N	1/2 bias
PB1	ADC9/OP1P/DAC1O	PWM0P	1/2 bias
PB2	ADC10/VREXT	PWM1	1/2 bias
PB3	ADC11	PWM2	1/2 bias
PB4	ADC12	PWM0N	1/2 bias
PB5	ADC13	PWM0P	1/2 bias
PB6	ADC14/OP2P	PWM1	1/2 bias

GPIO Special Function Table

85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMOD10		PA11	MOD	•	PA0MOD					
R/W		R/	W			R/	W			
Reset	0	0	0	1	0	0	0	1		
-										
86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMOD32		PA31	MOD			PA2I	MOD			
R/W	R/W					R/	W			
Reset	0	0	0	1	0	0	0	1		
-		n	n	1	1	1	1			
87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMOD54		PA51	MOD		PA4MOD					
R/W		R/	W			R/	W			
Reset	0	0	0	1	0	0	0	1		
0.01	D:+ 7	D:+ 6	D:+ 5	Dit 1	D:+ 2	D:+ 2	D:+ 1	D:+ 0		
88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMOD76		PA7MOD				PA61	MOD			
R/W		R/	W		R/W					
Reset	0	0	0	0	0	0	0	1		

88h.7~4 **PA7MOD ~ PA0MOD**: PA7~PA0 Pin Mode Control

- 88h.3~0 0000: Open drain or digital input with pull-up
- 87h.7~4 0001: Open drain or digital input
- 87h.3~0 0010: CMOS Push-pull
- 86h.7~4 0011: Analog input/output
- 86h.3~0 0100: Open drain or digital input with pull-down
- 85h.7~4 0101: Open drain or digital input
- 85h.3~0 0110: CMOS Push-pull
 - 0111: Alternate function output
 - 1000: Open drain or digital input with pull-up and pin-changed wakeup

1001: Open drain or digital input and pin-changed wakeup

1010: CMOS Push-pull

- 1011: Reserved
- 1100: Open drain or digital input with pull-down and pin-changed wakeup
- 1101: Open drain or digital input and pin-changed wakeup
- 1110: CMOS Push-pull
- 1111: 1/2 V_{CC} (1/2 bias)

8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMOD10		PB1	MOD		PB0MOD					
R/W		R	W		R/W					
Reset	0	0	0	1	0	0	0	1		
8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMOD32		PB3	MOD			PB2N	MOD			
R/W	R/W					R/	W			
Reset	0	0	0	1	0	0	0	1		
8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMOD54		PB51	MOD		PB4MOD					
R/W		R/	W			R/	W			
Reset	0	0	0	1	0	0	0	1		
				1	1					
8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMOD76		-				PB61	MOD			
R/W		R	W			R/	W			
Reset	0	0	0	1	0	0	0	1		

8Fh.3~0 **PB6MOD ~ PB0MOD**: PB6~PB0 Pin Mode Control

- 8Eh.7~4 0000: Open drain or digital input with pull-up
- 8Eh.3~0 0001: Open drain or digital input
- 8Dh.7~4 0010: CMOS Push-pull
- 8Dh.3~0 0011: Analog input
- 8Ch.7~4 0100: Open drain or digital input with pull-down
- 8Ch.3~0 0101: Open drain or digital input
 - 0110: CMOS Push-pull
 - 0111: Alternate function output
 - 1000: Open drain or digital input with pull-up and pin-changed wakeup
 - 1001: Open drain or digital input and pin-changed wakeup
 - 1010: CMOS Push-pull
 - 1011: Reserved
 - 1100: Open drain or digital input with pull-down and pin-changed wakeup
 - 1101: Open drain or digital input and pin-changed wakeup
 - 1110: CMOS Push-pull
 - 1111: 1/2 V_{CC} (1/2 bias)

05h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAD		PAD							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

05h.7~0 PAD: PA7~PA0 pin data

06h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD	-				PBD			
R/W								
Reset	1	1	1	1	1	1	1	1

06h.6~0 **PBD**: PB6~PB0 pin data

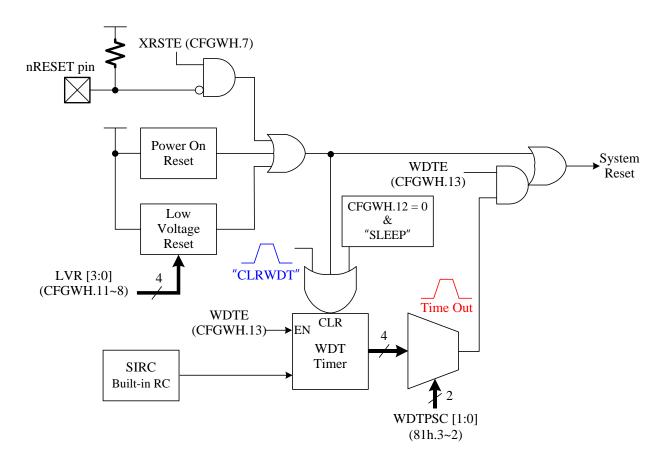
105h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL2	GF	R2	—	_	_	HSINK	ROM	ODS
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	—	0	1	1	1	1

105h.2 HSINK: All GPIO high sink current selection0: low sink current1: high sink current

5.2 OP0N / OPO / OP1N / VREXT

The function is fixed as analog signal, so no pin mode setting is required.

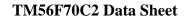
Pin Name	Analog Signal
OP0N	OP0N/ADC15
OPO	OPO
OP1N	OP1N/ADC16
VREXT	VR



6 Peripheral Functional Block

6.1 Watchdog Timer (WDT)

The watchdog (WDT) uses the internal SIRC oscillator and has a separate counter. The overflow period of the WDT can be selected by the prescaler WDTPSC.


The WDT timer is cleared by the CLRWDT instruction. If the watchdog is enabled and the watchdog counter overflows, the WDT will generate a chip reset signal.

WDT Block Diagram

The WDT's behavior in different Mode is shown as below table.

Mode	SYSCFO WDTE[1]	WDT	
	0	0	Stop
Normal Mode	0	1	Stop
Normal Wode	1	0	Run
	1	1	Run
Dama dama	0	0	Stop
Power-down Mode	0	1	Stop
(SLEEP)	1	0	Stop
(SLEET)	1	1	Run

Watchdog clear is controlled by CLRWDT instruction.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN:	 CLRWDT		; Execute program. ; Execute CLRWDT instruction.
	 LGOTO	MAIN	

◇ Example: Setup WDT time.

MOVLW	0000 <u>01</u> 11b	
MOVWX	OPTION	; Select WDT reset period

03h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

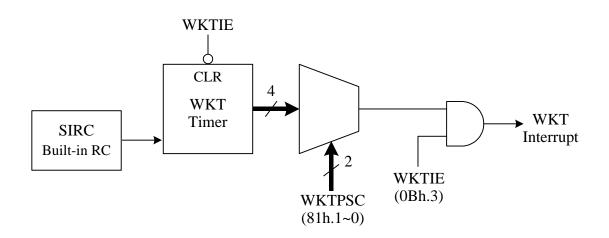
03h.4 **TO:** WDT time out flag, read-only 0: after Power On Reset or CLRWDT / SLEEP instructions 1: WDT time out occurs

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	—	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	—	R/W		R/	W
Reset	0	0	0	_	1	1	1	1

81h.3~2 **WDTPSC:** WDT period (@ $V_{CC}=5V$)

00: 221 ms 01: 443 ms

10: 1771 ms


10: 1771 ms 11: 3542 ms

6.2 Wakeup Timer (WKT)

The wakeup timer (WKT) uses the internal SIRC oscillator and has a separate counter. The overflow period of WKT can be selected by the prescaler WKTPSC.

The WKT timer is an interval timer, and a WKT interrupt flag (WKTIF) will be generated when the WKT timer times out. The WKT timer is cleared/stopped by WKTIE=0. When WKTIE=1 is set, the WKT timer will keep counting regardless of the CPU operation mode.

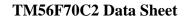
WKT Block Diagram

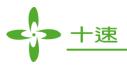
◇ Example: Set WKT period and interrupt function.

000001 <u>10</u> b	
OPTION	; Select WKT period
1111 <u>0</u> 111b	; Clear WKT interrupt flag by using byte operation
INTIF	; Don't use bit operation "BCX WKTIF" to clear
WKTIE	; Enable WKT interrupt function
	OPTION 1111 <u>0</u> 111b INTIF

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

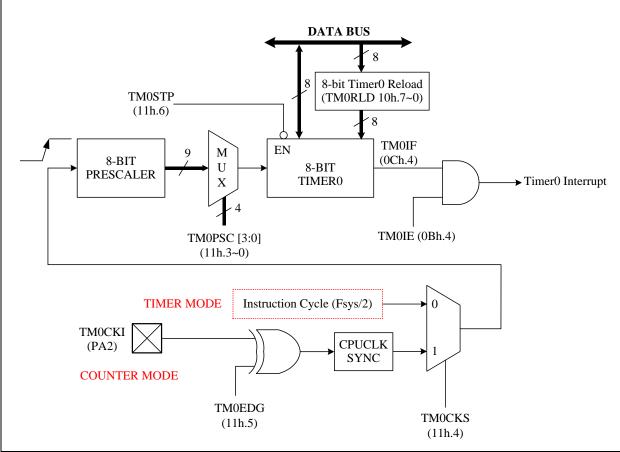
0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag


0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0


0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable 0: disable 1: enable

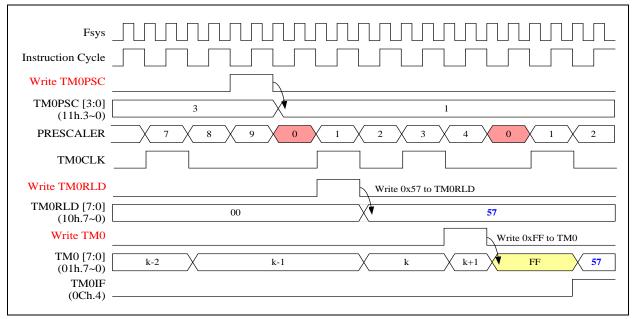
81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	_	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	-	R/W		R/	W
Reset	0	0	0	_	1	1	1	1

81h.1~0 WKTPSC: WKT period (@ $V_{CC}=5V$)


- 00: 28 ms
- 01: 55 ms
- 10: 111 ms
- 11: 221 ms

6.3 Timer0

The TM0 (01h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM0RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 or TM0I (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF (0Ch.4) when its count rolls over. It generates Timer0 Interrupt if TM0IE (0Bh.4) is set. Timer0 can be stopped counting if the TM0STP (11h.6) bit is set.



Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

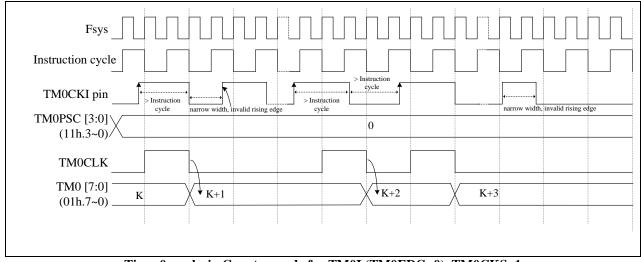
Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time = Fsys / 2 / TM0PSC / (256-TM0RLD)

 \bigcirc Example: Setup Timer0 work in Timer mode, if Fsys = 8 MHz

; Setup Time	er0 clock source	e and divider	
	MOVLW	00x <u>00101</u> b	; TM0CKS = 0, Timer0 clock is instruction cycle
	MOVWX	TM0CTL	; TM0PSC = $0101b$, divided by 32
; Setup Time	er0 reload data		
	MOVLW	80h	
	MOVWX	TMORLD	; Set Timer0 reload data = 128
; Setup Time	er0		
	BSX	TM0STP	; Timer0 stops counting
	CLRX	TM0	; Clear Timer0 content
; Enable Tim	er0 and interru	pt function	
	MOVLW	111 <u>0</u> 1111b	
	MOVWX	INTIF	; Clear Timer0 request interrupt flag
	BSX	TM0IE	; Enable Timer0 interrupt function
	BCX	TM0STP	; Enable Timer0 counting
Т	imer0 interrupt	frequency = Fsys / 2 / TM	0PSC / (256-TM0RLD),
	MOVLW MOVWX BSX BCX	111 <u>0</u> 1111b INTIF TM0IE TM0STP	; Enable Timer0 interrupt function ; Enable Timer0 counting


Fsys = 8 MHz, TM0PSC = div 32, TM0RLD = 128

Timer0 interrupt frequency = 8 MHz / 2 / 32 / (256-128) = 0.976 KHz

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0I pin. TM0I signal is synchronized by instruction cycle (Fsys/2) that means the high/low time durations of TM0I must be longer than one instruction cycle time (Fsys/2) to guarantee each TM0I's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0I (TM0EDG=0), TM0CKS=1

- ♦ Example: Setup TM0 work in Counter mode and clock source from TM0I pin (PA2)
 - ; Setup Timer0 clock source and divider

/ I			
	MOVLW	00 <u>110000</u> B	; TM0EDG = 1, counting edge is falling edge
	MOVWX	TM0CTL	; TM0CKS = 1, Timer0 clock is TM0I
			; TM0PSC = 0000b, divided by 1
; Setup Tim	er0		
	BSX	TM0STP	; Timer0 stops counting
	CLRX	TM0	; Clear Timer0 content
; Enable Tir	mer0 and read T	imer0 counter	
	BCX	TM0STP	; Enable Timer0 counting
	BSX	TM0STP	; Timer0 stops counting
	MOVXW	TM0	; Read Timer0 content

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM0	TM0										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

01h.7~0 **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

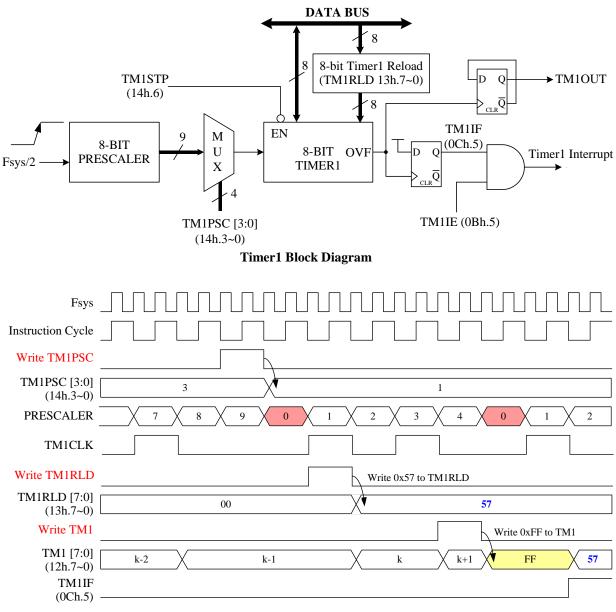
This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM0RLD		TM0RLD									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

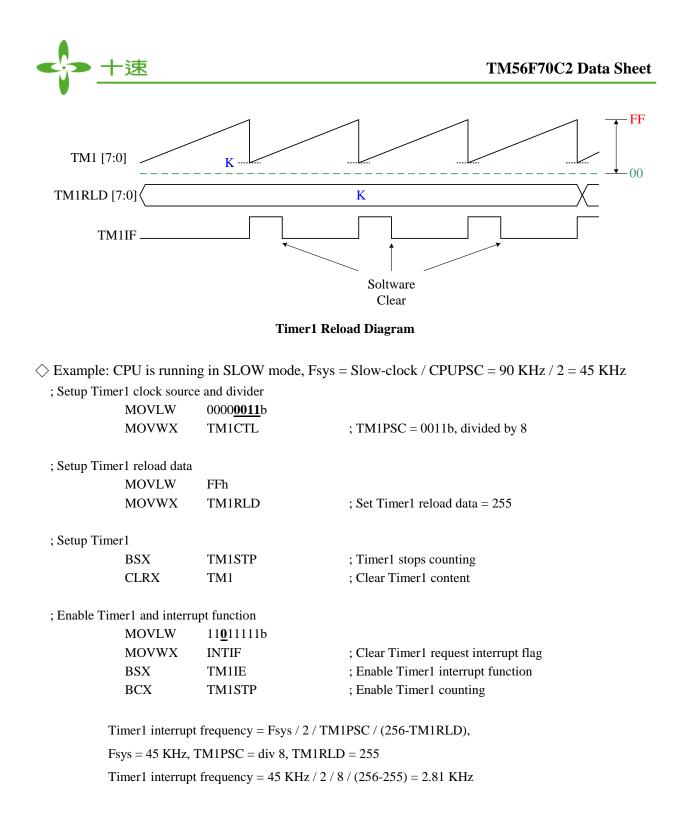
10h.7~0 **TM0RLD:** Timer0 reload data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0CTL	_	TM0STP	TM0EDG	TM0CKS	TM0PSC				
R/W		R/W	R/W	R/W	R/W				
Reset		0	0	0	0	0	0	0	

11h.6 **TM0STP:** Stop Timer0


Intobili Stop Innero	
0: Timer0 runs	
1: Timer0 stops	

	1. I miero stoj	55		
11h.5	TM0EDG: Tin	ner0 prescaler counting	edge for TM0I pin	
	0: rising edge			
	1: falling edge			
11h.4	TM0CKS: Tin	ner0 prescaler clock sou	irce	
	0: Fsys/2	-		
	1: TM0I pin (PA2 pin)		
11h.3~0	TM0PSC: Tim	er0 prescaler. Timer0 p	rescaler clock source d	livided by
	0000: 1	0001: 2	0010: 4	0011:8
	0100: 16	0101: 32	0110: 64	0111: 128
	1xxx: 256			



6.4 Timer1

The TM1 (12h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock (Fsys/2). The Timer1 increase rate is determined by TM1PSC register. It generates Timer1 interrupt if the TM1IE bit is set. Timer1 can be stopped counting if the TM1STP bit is set. TM1OUT is an output signal that toggles when Timer1 overflow.

Timer1 Timing Diagram

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable 0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 **TM1IF:** Timer1 interrupt event pending flag This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM1	TM1										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

12h.7~0 **TM1:** Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM1RLD	TM1RLD										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

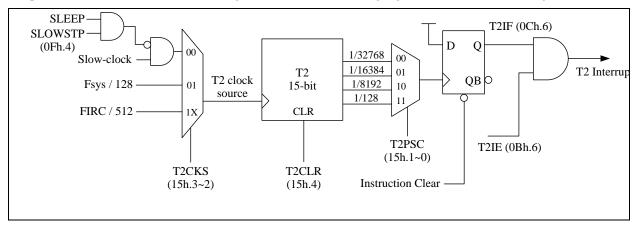
13h.7~0 TM1RLD: Timer1 reload data

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	TM1STP	—	—	TM1PSC			
R/W	_	R/W	—	—	R/W			
Reset		0	_		0	0	0	0

14h.6	TM1STP:	Stop 7	Timer1
1411.0	INIDII.	Stop 1	Inneri

0: Timer1 runs

1: Timer1 stops


14h.3~0 **TM1PSC:** Timer1 prescaler. Timer1 prescaler clock source divided by

0000: 1	0001:2	0010: 4	0011:8
0100: 16	0101: 32	0110: 64	0111: 128
1xxx: 256			

6.5 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from Slow-clock, Fsys/128, or FIRC/512. It is used to generate time base interrupt and T2 counter block clock. The T2 content cannot be read by instructions. It generates interrupt flag T2IF (0Ch.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (15h.1~0) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

Example: CPU is running at FAST mode, Fsys = 9.216 MHz

; Setup T2 clock source and divider

MOVLW	0000 <u>0101</u> ь
MOVWX	T2CTL
BSX	T2CLR

; T2CKS(15h.3~2) = 1, T2 clock source is Fsys/128 ; T2PSC(15h.1~0) = 1, divided by 16384 ; T2CLR = 1, clear T2 counter

; Enable T2 interrupt function

MOVLW	1 <u>0</u> 111111b
MOVWX	INTIF
BSX	T2IE
BCX	T2CLR

; Clear T2 request interrupt flag ; Enable T2 interrupt function ; T2CLR = 0, Enable T2 counting

T2 clock source is Fsys / 128 = 9.216 MHz / 128 = 72000 Hz, T2PSC = 16384

T2 frequency = 72000 Hz / 16384 = 4.395 Hz

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TMOIE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable

0: disable

1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event pending flag This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SCKTYP	FCKTYPE	—	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stops running after execute SLEEP instruction

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL	_	-		T2CLR	T20	CKS	T2H	PSC
R/W	_	_	_	R/W	R/	W	R/	W
Reset	—	—	—	0	0	0	0	0

15h.4 **T2CLR:** Clear and stop T2

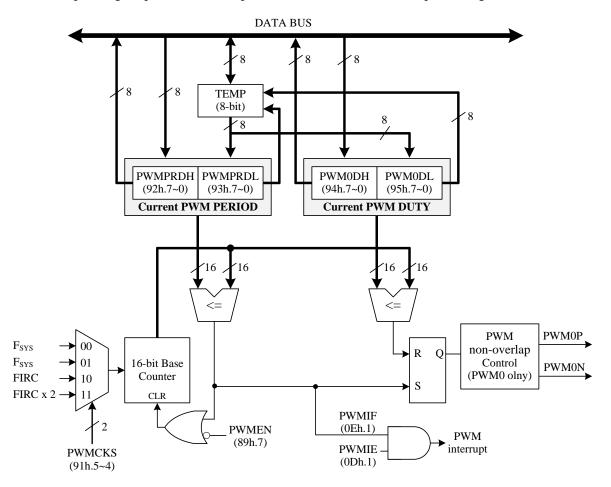
0: T2 runs
1: T2 clear and stops

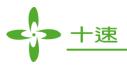
15h.3~2 **T2CKS:** T2 clock source selection

00: Slow-clock
01: Fsys/128
1x: FIRC/512

15h.1~0 **T2PSC:** T2 prescaler. T2 clock source divided by

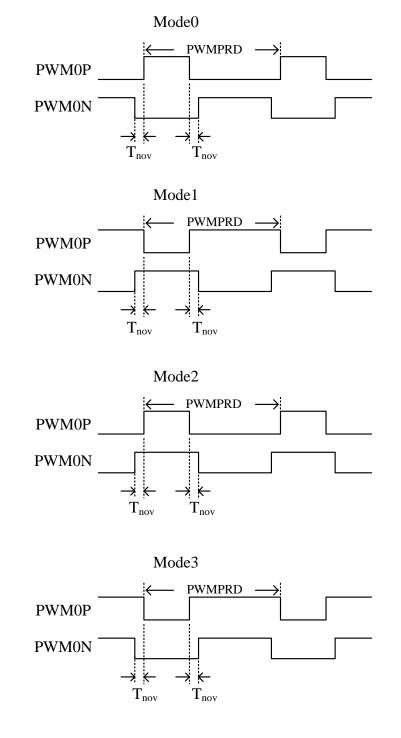
00: 32768
01: 16384
10: 8192
11: 128


6.6 PWM


There are 3 PWMs in this chip. PWM0~PWM2 have independent 16-bit duty control register, and share a set of 16-bit period register. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select Fsys, FIRC (18.432 MHz), or FIRC*2 (36.864MHz) as its clock source, the FIRC and FIRC*2 frequencies used here will not be affected by FRCPSC (SYSCFG.5). The following takes PWM0 as an example for description.

The 16-bit PWMPRD, PWM0D registers both have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking, write low byte first and then high byte; read high byte first and then low byte*.

If PWMEN is cleared, the PWM0~2 will be cleared and stopped, otherwise the PWM0~2 remain running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWMPRDH and PWMPRDL registers. After writing the PWM0DH or PWMPRDH register, H/W will update PWM period and duty immediately. PWM0~2 share an interrupt flag, and an interrupt flag is generated at the end of the period.


Only PWM0 has dead-zone control, and is divided into PWM0P and PWM0N outputs, and the remaining PWM1~PWM2 have no non-overlap control. User can use pin mode setting to output PWM to the corresponding IO pin, refer to Chapter 5 for more information on pin settings.

PWM0 Block Diagram

Only PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 16 different time non-overlap clocks intervals (Tnov). The width of Tnov can be selected by PWM0DZ (89h.3~0) within 0~15 PWM clock. The default output form is Mode0. The waveforms of the four output modes are shown below.

PWM0 Waveform Modes

\diamondsuit Example:

; Setup Pin	mode		
	MOVLW	<u>01110111</u> b	;
	MOVWX	PAMOD54	; PA4 引脚作为 PWM0N
			; PA5 引脚作为 PWM0P
; Setup PW	M0 clock source	e select	
	MOVLW	xx <u>10</u> xxxxb	;
	MOVWX	OPTION2	; FIRC 18.432 MHz as PWM clock source
; Setup PW	M0 period and o	luty setting	
	MOVLW	FFh	
	MOVWX	PWMPRDL	; write sequence: PWMPRDL then PWMPRDH
	MOVLW	7Fh	
	MOVWX	PWMPRDH	; Set PWM period = 7FFFh
	MOVLW	00h	
	MOVWX	PWM0DL	; write sequence: PWM0DL then PWM0DH
	MOVLW	40h	
	MOVWX	PWM0DH	; Set PWM0 duty = $4000h$
; Setup PW	M0 enable and	dead zone control	
	MOVLW	<u>1</u> 0 <u>000000</u> b	; 89h.7 = 1, PWM0 enable
	MOVWX	PWMCTL	; 89h.5~4 = 0, PWM0 Mode0 output

; $89h.3 \sim 0 = 0$, PWM0 dead zone output disable

Example:

PWM0 clock source = FIRC 18.432 MHz, PWM period = 7FFFh, PWM duty = 4000h PWM0 output frequency = 18.432 MHz / (period+1) = 18.432MHz / 32768 = 563 Hz. PWM0 output duty = duty / (period+1) = 50 %.

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	EA	UARTIE	—	_	_	_	PWMIE	LVDIE
R/W	R/W	R/W	—	_	_	_	R/W	R/W
Reset	1	0	—	_	_	_	0	0

0Dh.1 **PWMIE:** PWM interrupt enable

0: disable

1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	-	UARTIF	—	—	—	—	PWMIF	LVDIF
R/W	-	R	—	_	—	—	R/W	R/W
Reset	-	0			—	—	0	0

0Eh.1 **PWMIF:** PWM interrupt event pending flag

This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag

89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMCTL	PWMEN	_	PWM0OM		PWM0DZ				
R/W	R/W	—	R/	W	R/W				
Reset	0	—	0	0	0	0	0	0	

- 89h.7 **PWMEN:** PWM0~2 enable
 - 0: disable
 - 1: enable

89h.5~4 **PWM0OM:** PWM0 output mode selection 00: Mode0

- 01: Mode1
- 10: Mode2
- 11: Mode3
- 89h.3~0 **PWM0DZ:** PWM0 non-overlap control 0000: no non-overlap
 - 0001: non-overlap width are 1 PWM clock cycle
 - 0010: non-overlap width are 2 PWM clock cycles
 - 1111: non-overlap width are 15 PWM clock cycles

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION2	—	—	PWMCKS		—	INT2SEL	INT1SEL	INTOSEL
R/W	-		R/	R/W		R/W	R/W	R/W
Reset		_	0 0		_	0	0	0

91h.5~4 **PWMCKS:** PWM clock source selection

00: Fsys

01: Fsys

10: FIRC (18.432 MHz)

11: FIRC x 2 (36.864 MHz)

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRDH		PWMPRDH								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

92h.7~0 **PWMPRDH:** PWM0~2 period high byte write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRDL		PWMPRDL								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

93h.7~0 **PWMPRDL:** PWM0~2 period low byte write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH		PWM0DH								
R/W		R/W								
Reset	1	0	0	0	0	0	0	0		

94h.7~0 **PWM0DH:** PWM0 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DL		PWM0DL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

95h.7~0 **PWM0DL:** PWM0 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DH		PWM1DH									
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

96h.7~0 **PWM1DH:** PWM1 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DL		PWM1DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

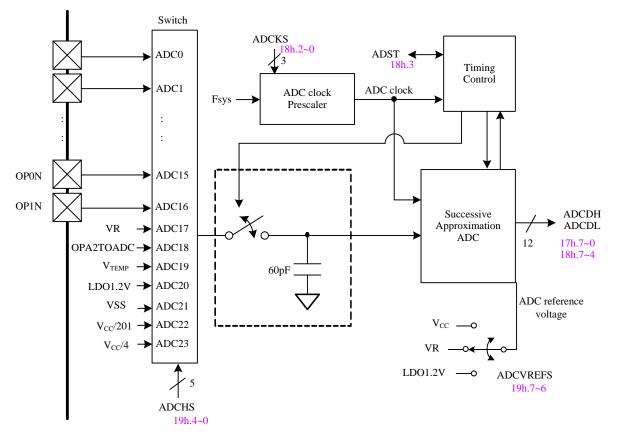
97h.7~0 **PWM1DL:** PWM1 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DH				PWN	12DH						
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

98h.7~0 **PWM2DH:** PWM2 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DL		PWM2DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

99h.7~0 **PWM2DL:** PWM2 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL


6.7 Analog-to-Digital Converter (ADC)

This 12-bit ADC (analog-to-digital converter) consists of an analog input multiplexer with 17 external channels, control registers, clock generator, 12-bit successive approximation register, and output data register.

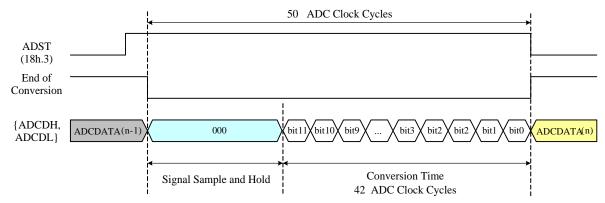
The user needs to set ADCHS to select the input channel of the ADC, and set ADCKS to select a suitable ADC clock frequency. When the ADC uses a low-voltage reference voltage source, for example, when ADCVREF is set to LDO1.2V, the ADC clock frequency must be less than 0.5MHz. Please refer to the "Electrical Characteristics" section for further information on ADC clock frequency.

The ADC reference voltage source can be configured as V_{CC} , VR or LDO1.2V through ADVREFS. When the reference voltage source switches to VR or LDO1.2V, an internal preparation stabilization time of 200us is required.

The user starts ADC conversion by setting the ADST control bit. ADST remains 1 during conversion. After the conversion is completed, H/W will automatically clear the ADST bit. When the ADC conversion is completed, ADST will return to 0, so the user can know whether the ADC conversion has been completed by reading ADST.

When using GPIOs such as ADC0~ADC14 as the input pins of the ADC, the corresponding pin mode should be set to 0011b. When using ADC15 and ADC16, they are connected to OP0N and OP1N respectively, and there is no need to set the pin mode.

The input pin of the ADC can also select an internal reference voltage. This device has a variety of internal reference voltages to choose from, including VR, OPA2TOADC, V_{TEMP} , LDO1.2V...etc. The V_{TEMP} voltage is used for temperature sensing, and the control items are the registers SVBIAS and SBFIN. OPA2TOADC is the output of OPA2. The VR voltage source is determined by the LDO3VPD register. When LDO3VPD is 0, the source of VR is the LDO3V voltage. When LDO3VPD is 1, the


source of VR is the VRXT PAD external voltage. For more information about VR, LDO3V, LDO1.2V and OPA2 please refer to the "Battery Charging Module" chapter.

The following are the relevant usage restrictions:

When the ADC uses VR and LDO3VPD is 0, the VREXT PAD must be connected to a capacitor to stabilize the voltage.

When the ADC uses VR and LDO3VPD is 1, the ADC cannot use LDO1.2V at this time.

When the ADC uses LDO1.2V, LDO3VPD must be 0 at this time.

Example:

[Fsys = FIRC/2 = 9.216 MHz]

ADC clock frequency = 1.152 MHz, ADC channel = ADC2 (PA2).

	MOVLW	xxxx 0011 b	; ADC2 (PA2) as ADC input
	MOVWX	PAMOD32	
	MOVLW	00000 <u>100</u> b	; ADCKS = Fsys/16, ADC clock = 1.152 MHz
	MOVWX	ADCTL	
	MOVLW	<u>01</u> x <u>00010</u> b	; ADC reference voltage select VR
	MOVWX	ADCTL2	; ADC input channel select ADC2
	DOM	1 D OT	
	BSX	ADST	; 18h.3 (ADST), ADC start conversion.
	BSX	ADST	; 18h.3 (ADST), ADC start conversion.
WAIT_ADC		ADST	; 18h.3 (ADST), ADC start conversion.
WAIT_ADC		ADST	; 18h.3 (ADST), ADC start conversion. ; Wait ADC conversion finish.
WAIT_ADC	.		
WAIT_ADC	E: BTXSC	ADST	
WAIT_ADC	E: BTXSC	ADST	

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TMOIE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.7 **ADCIE:** ADC interrupt enable 0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.7 ADCIF: ADC interrupt event pending flag

This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCDH		ADCDH									
R/W		R									
Reset	-	—	—	—				—			

17h.7~0 **ADCDH:** ADC output data bit 11~4

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		ADO	CDL		ADST	ADCKS		
R/W		ŀ	ર		R/W		R/W	
Reset	_	_	_	_	0	0	0	0

18h.7~4 **ADCDL:** ADC output data bit 3~0

18h.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

18h.2~0ADCKS: ADC clock frequency selection:000: Fsys/256100: Fsys/16

001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4

011: Fsys/32 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL2	ADV	REFS	—			ADCHS		
R/W	R/	R/W		R/W				
Reset	0	1	—	1	1	1	1	1

19h.7~6 **ADVREFS:** ADC reference voltage selection.

00: ADC reference voltage is V_{CC}

01: ADC reference voltage is VR

10: ADC reference voltage is LDO1.2V

11: Reserved

19h.3~0 **ADCHS:** ADC channel selection

00000: ADC0 (PA0)	01000: ADC8 (PB0)	10000:ADC16 (OP1N)
00001: ADC1 (PA1)	01001: ADC9 (PB1)	10001:VR
00010: ADC2 (PA2)	01010: ADC10 (PB2)	10010:OPA2TOADC
00011: ADC3 (PA3)	01011: ADC11 (PB3)	10011:V _{TEMP}
00100: ADC4 (PA4)	01100: ADC12 (PB4)	10100:LDO1.2V
00101: ADC5 (PA5)	01101: ADC13 (PB5)	10101:VSS
00110: ADC6 (PA6)	01110: ADC14 (PB6)	10110:V _{CC} /201
00111: ADC7 (PA7)	01111: ADC15 (OP0N)	10111:V _{CC} /4

115h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	SVBIAS	SBI	FIN	SVBGT	VBGTOE	LDO3VPD		
R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Reset	0	1	1	0	0	0	-	-				
115h.7		SVBIAS: Reference voltage of VT0 selection 0:V _{CC} 1:VR										
115h.6~5		VT0 (diode VT1 (BJT t VBG1.2V	type)									

6.8 UART

The device has a full-duplex or half-duplex (single-wire mode) asynchronous serial interface. The user can choose 8 or 9-bit data transmission. The UART baud rate is set by the user and can support up to 115200. When the UART data transmission is completed or the reception is completed, the UART interrupt can be triggered

When the UART1W bit is set to 1, the UART will operate in single-wire mode. In single-wire mode, only a single RXTX pin is used to transmit and receive data. When the RXEN bit is set to 0, the RXTX pin is used as a transmit pin, and when the RXEN bit is set to 1, the RXTX pin is used as a receive pin.

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	UARTIF	_	_	_	_	PWMIF	LVDIF
R/W	_	R	_	_	_	_	R/W	R/W
Reset		0	—	—	—	—	0	0

0Eh.6 **UARTIF:** UART interrupt event pending flag This bit is set by H/W when UART transmission/reception is completed, write 0 to TI/RI flag will clear this flag

195h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	UART9	—	RIMASK	RXEN	TX8	RX8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

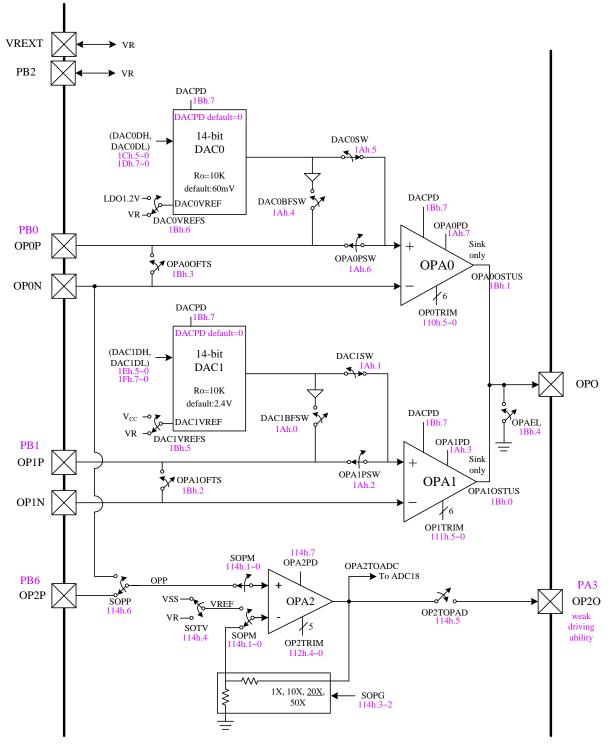
 0: 8-bit data transfer 9-bit data transfer 195h.5 RIMASK: Receive flag mask control If this bit is set, receive flag function is disable when RX8 is 0. 195h.4 RXEN: Receive function enable. 0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1: When UART1W is set low, the RXTX pin is used as the RX pin.
If this bit is set, receive flag function is disable when RX8 is 0. 195h.4 RXEN: Receive function enable. 0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1:
 195h.4 RXEN: Receive function enable. 0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1:
0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1:
When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1:
When UART1W is set high, the RXTX pin is used as the TX pin. 1:
1:
When UART1W is set low, the RXTX pin is used as the RX pin.
When UART1W is set high, the RXTX pin is used as the RX pin.
195h.3 TX8: (This bit is only valid when UART9=1)
This bit is the 9th value to be transmitted by TX pin.
195h.2 RX8: (This bit is only valid when UART9=1)
This bit is the 9th value received by RX pin.
195h.1 TI: Transmit flag.
Set by H/W when transmission is completed. SW needs to write 0 to clear it, writing 1 does nothing.
When TI=1 or RI=1, UARTIF will be set.
195h.0 RI: Receive flag.
Set by H/W when reception is completed. SW needs to write 0 to clear it, writing 1 does nothing.
When TI=1 or RI=1, UARTIF will be set.

196h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF	SBUF										
R/W		R/W									
Reset	-	—	-	-	-	_	_	—			

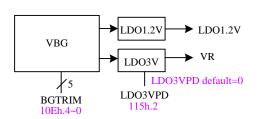
196h.7~0 **SBUF:** Serial UART transmit/receive data.

197h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
UARTCTL		UARTBRP									
R/W		R/W									
Reset	-	_	_		_		-	—			

197h.7~0 **UARTBRP:** UART Baud Rate Prescaler. UART Baud Rate = Fsys/16/UARTBRP


198h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTCTL2	UART1W	—	TXS2	TXS1	TXS0	RXTXS2	RXTXS1	RXTXS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

198h.7	UART1W: Single-wire mode enable
	0: full-duplex communication
	1: half-duplex communication (single-wire mode)
198h.5	TXS2: TX pin selection 2
	0:disable 1:PB3 is used as TX pin
198h.4	TXS1: TX pin selection 1
	0:disable 1:PB1 is used as TX pin
198h.3	TXS0: TX pin selection 0
	0:disable 1:PA1 is used as TX pin
198h.2	RXTXS2: RXTX pin selection 2.
	0: disable
	1: If UART1W is set low, PB0 is used as RX pin.
	If UART1W is set high and RXEN is set low, PB0 is used as TX pin.
	If UART1W is set high and RXEN is set high, PB0 is used as RX pin.
198h.1	RXTXS1: RXTX pin selection 1.
	0: disable
	1: If UART1W is set low, PA5 is used as RX pin.
	If UART1W is set high and RXEN is set low, PA5 is used as TX pin.
	If UART1W is set high and RXEN is set high, PA5 is used as RX pin.
198h.0	RXTXS0: RXTX pin selection 0.
	0: disable
	1: If UART1W is set low, PA0 is used as RX pin.
	If UART1W is set high and RXEN is set low, PA0 is used as TX pin.
	If UART1W is set high and RXEN is set high, PA0 is used as RX pin.


6.9 Battery Charge Module (BCM) - DAC/Comparator/Amplifier

This chip has a battery charging module, which consists of two DACs, two comparators, and an amplifier. Among them, DAC0~1 provides the comparison reference value to the comparator OPA0~1. OPA0 is used for battery charging constant current, OPA1 is used for battery charging constant voltage, and OPA2 is used to amplify the battery charging current. The details are as shown below.

Internal Reference Voltage Module

Only one of PB2 and VREXT will be selected during packaging to provide an external interface for the chip's VR voltage.

When the LDO3VPD register is 0, the internal reference voltage LDO3V is enabled, and the VR voltage value is provided by the internal LDO3V. When the LDO3VPD register is 1, the internal reference voltage LDO3V is turned off, and the VR voltage value is provided by the outside of the chip (that is, PB2 or VREXT). The LDO3V output, internal VR signal, PB2 and VREXT PAD are connected to each other as shown in the block diagram. The VR signal is also provided to the ADC module for use. When the BCM module and the ADC module need to use VR at the same time, PB2 or VREXT must choose an external capacitor to stabilize the voltage.

After power-on, the default LDO3VPD register is 0, and LDO3V outputs a 3V reference voltage. At this time, the internal VR signal is equal to the LDO3V voltage value. The user will obtain the voltage value from PB2 or VREXT. When LDO3VPD is 1, the LDO3V output is floating, and the VR voltage value is input from PB2 or VREXT.

The two comparators OPA1 and OPA0 have the same structure, and the only difference is that the initial values of the DACs are different. The following description takes OPA0 as an example. The non-inverting input terminal is the fixed input voltage to be measured by OP0N PAD. The inverting input terminal is provided by DAC0 to provide the voltage comparison reference value to OPA0. When DAC0BFSW=1, DAC0 can be obtained from OP0P PAD. The output voltage and driving capacity are about 2mA. Due to load and process drift, the accuracy of the absolute value of the DAC0 output voltage obtained by OP0P PAD cannot be guaranteed. Alternatively, the user can also input the precise voltage value from OP0P PAD to provide the comparison reference value to OPA0.

The DAC output formula taking into account the internal voltage drop is: DACO = 20mV + DACVREF * (DACD / 16384), where $DACD=\{DACDH, DACDL\}$.

The output characteristics of OPA0 and OPA1 are CMOS open drain output. Both are output to the OPO PAD. When the output of OP00 or OP10 is 0, the OPO will output 0, which means that battery overvoltage or battery overcurrent occurs at this time. event. In addition, the output values of OP00 and OP10 are stored in registers OPA0OSTUS and OPA0OSTUS respectively for users to read.

After power-on, the default output DAC0 voltage of PB0 is about 60mV, and the output DAC1 voltage of PB1 is about 2.4V.

For the compatibility requirements of different package wiring, when the SOPAN (SYSCFG.6) bit is set to 1, the OPON and OP1N functions are exchanged.

The OPA2 input can be OP2P PAD or OP0N PAD. By default, OPA2 is used as a 20x amplifier. The gain of the amplifier can be adjusted by the register. The OPA2 output can be sent internally to the ADC for calculation, and can also be output to PAD. OP2O PAD has poor driving ability. When SOPM is set to 3, OPA2 is used as a voltage detector. The comparison voltage of this voltage detector can be VR or VSS.

Finally, there is a description of the IC's own power consumption and related register control. When OPA0PD is 1, turn off OPA0. When OPA1PD is 1, turn off OPA1. When DACPD is 1, the driving source including DAC0~1 and OPA0~1 will be turned off. When LDOC3VPD is 1, the LDOC3V

function is turned off. Including ADC, the LDO1P2V function will be automatically turned off when no module uses LDO1P2V. Including ADC, LVD and LVR, the VBG function will be automatically turned off when no module uses VBG.

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL	OPA0PD	OPA0PSW	DAC0SW	DAC0BFSW	OPA1PD	OPA1PSW	DAC1SW	DAC1BFSW
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	0	1	1	0

1Ah.7	OPA0PD: OPA0 Power Down
1Ah.6	OPA0PSW: Turn on the switch for the path from OPA0P to OPA0 non-inverting input(V+) 0:switch off 1:switch on
1Ah.5	DAC0SW: Turn on the switch for the path from DAC0 to OPA0 non-inverting input(V+) 0:switch off 1:switch on
1Ah.4	DAC0BFSW: Turn on the switch for DAC0 output Buffer 0:switch off 1:switch on
1Ah.3	OPA1PD: OPA1 Power Down
1Ah.2	OPA1PSW: Turn on the switch for the path from OPA1P to OPA1 non-inverting input(V+) 0:switch off 1:switch on
1Ah.1	DAC1SW: Turn on the switch for the path from DAC1 to OPA1 non-inverting input(V+) 0:switch off 1:switch on

¹Ah.0 **DAC1BFSW:** Turn on the switch for DAC1 output Buffer 0:switch off 1:switch on

1Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL2	DACPD	DAC0VREFS	DAC1VREFS	OPAEL	OPA0OFTS	OPA1OFTS	OPA0OSTUS	OPA1OSTUS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Reset	0	1	1	0	0	0	-	-

1Bh.7 **DACPD:**DAC0,DAC1,OPA0,OPA1 bias Power Down

1Bh.6 **DACOVREFS:** DAC0 reference voltage selection

0:LDO1.2V 1:VR

- 1Bh.5 **DAC1VREFS:** DAC1 reference voltage selection
- $0:V_{CC} \quad 1:VR$

1Bh.4 **OPAEL:** Force OPO output low.

1Ah.3 **OPA00FTS:** OPA0 non-inverting input(V+) is connected to inverting input(V-) for OPA0 trim

1Bh.2 **OPA10FTS:** OPA1 non-inverting input(V+) is connected to inverting input(V-) for OPA1 trim

1Bh.1 **OPA0OSTUS:** OPA0 comparator output status

1Bh.0 **OPA1OSTUS:** OPA1 comparator output status

1Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DAC0DH			DAC0DH							
R/W			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

1Ch.5~0 **DAC0DH:** DAC0 Data bit13~bit8

1Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAC0DL		DACODL						
R/W				R/	W			
Reset	1	1	0	1	1	0	1	0

1Dh.7~0 **DAC0DL:** DAC0 Data bit7~bit0 Write DAC0DL first, then DAC0DH

1Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAC1DH	—	—			DAC	1DH		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	1	1	0	0	1	1

1Eh.5~0 **DAC1DH:** DAC1 Data bit13~bit8

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAC1DL				DAC	1DL		-	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	1	1	0	1	0

1Fh.7~0 **DAC1DL:** DAC1 Data bit7~bit0 Write DAC1DL first, then DAC1DH

110h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP0TRIM					OP07	RIM		
R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	-	-	-	-	—

110h.5~0 **OP0TRIM:** 6-bit OPA0 trim value

111h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP1TRIM					OP17	RIM		
R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	—	—	—	—	—	—	-

111h.5~0 **OP1TRIM:** 6-bit OPA1 trim value

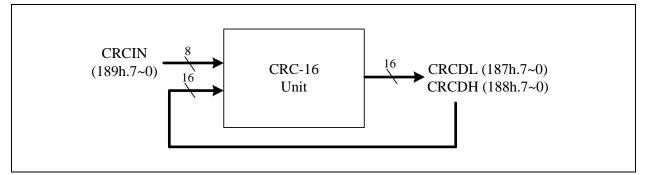
112h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP2TRIM			-		-	OP2TRIM		
R/W				R/W	R/W	R/W	R/W	R/W
Reset	-	—	-	—	-	—	—	-

112h.4~0 **OP2TRIM:** 5-bit OPA2 trim value

114h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL3	3 OPA2PD SOPP OP2TOPAD SOTV SOPG SOPM							PM
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	0	0
114h.7	.7 OPA2PD: OPA2 Power Down							
114h.6	SOPP: OPA 0:OP2P (PI			PAN=0) or Ol	P1N (if SOPA	AN=1)		
114h.5	0:OP2P (PB6) 1:OP0N (if SOPAN=0) or OP1N (if SOPAN=1) OP2TOPAD: OPA2 to iopad output enable. (weak driving capability) 0:switch off 1:switch on							
114h.4	SOTV: OPA 0: VSS	2 VREF sel 1: VR	ection when (OPA2 as comp	parator			
114h.3~2		U	eedback gain 0X 11: 50X					
114h.1~0	00: opa wit non-inv 01: compar non-inv 10: opa wit non-inv output v 11: compar	h negative for verting input vator for OPA verting input h negative for verting input voltage = off ator as volta	mode selection eedback (non- (V+) = OPP A2 trim, OPP A2 trim, OPP (V+) = VREF eedback for O (V+) = VSS+6 set*gain, gain ge level detect ((V+) = OPP),	inverting amplies disconnected +offset, invertion PA2 trim, OF offset, invertion =50 ctor	ed, ting input(V PP is disconn ng input(V-)	ected, = VSS		

115h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	SVBIAS	SBI	FIN	SVBGT	VBGTOE	LDO3VPD		
R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	1	1	0	0	0	-	-

(only for testing) (only for testing)


115h.4	SVBGT: VBGT(PA3) output selection
11,511,4	0:VBGT=V _{TEMP} 1:VBGT=DACLDO1P2V
115h.3	VBGTOE: VBGT(PA3) output enable.
11511.5	0:disable 1:enable
	LDOV3VPD: LDO3V power down.
115h.2	0: LDO3V enable
	1: LDO3V power down

72

6.10 Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes an 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC16 Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there is only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

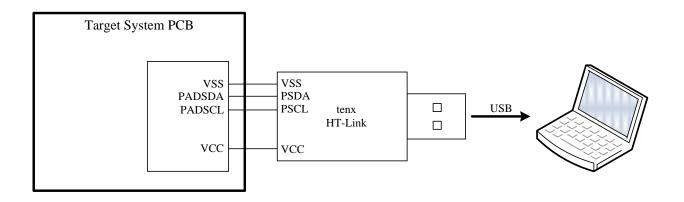
CRC-16-IBM (Modbus) Polynomial representation: $X^{16} + X^{15} + X^2 + 1$

187h	Bit 7	Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 3									
CRCDL		CRCDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

187h.7~0	CRCDL: 16-bit CRC checksum data bit 7~0
10/11/0	

188h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCDH		CRCDH									
R/W		R/W									
Reset	1	1 1 1 1 1 1 1 1									

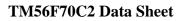
188h.7~0 CRCDH: 16-bit CRC checksum data bit 15~8


189h	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit									
CRCIN		CRCIN									
W		W									
Reset		—	_				—	—			

189h.7~0 CRCIN: CRC data input, write this register to start CRC calculation

6.11 In Circuit Emulation (ICE)

The device supports in-circuit emulation, to use ICE mode, the user needs to set the PROT bit low and connect the ICE dedicated pins (PADSDA, PADSCL) to the tenx proprietary EV module. The benefit of this is that the user can emulate the entire system without changing the onboard target device.



MEMORY MAP

Name	Address	R/W	Rst	Description
INDF (00h/80				Function related to: RAM W/R
```				Not a physical register, addressing INDF actually point to the register
INDF	00.7~0	R/W	-	whose address is contained in the FSR register
TM0 (01h/10	1h)			Function related to: Timer0
TM0	01.7~0	R/W	00	Timer0 content
PCL (02h/82h	n/102h/182	h)		Function related to: Programming Counter (PC)
PCL	02.7~0	R/W	00	Programming Counter data bit 7~0
STATUS (03h	n/83h/103h	/183h)		Function related to: STATUS
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)
RP1	03.6	R/W	0	Register Bank Select bit 1 for direct addressing
RP0	03.5	R/W	0	Register Bank Select bit 0 for direct addressing
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Ζ	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
С	03.0	R/W	0	Carry flag
FSR (04h/84h	n/104h/184	h)		Function related to: RAM W/R
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer
PAD (05h)				Function related to: Port
PAD	05.7~0	R/W	FF	Port A data
<b>PBD</b> (06h)				Function related to: Port
PBD	06.7~0	R/W	FF	Port B data
SFR0A (0Ah/	8Ah/10Ah	/18Ah)		Function related to: Programming Counter (PC)
GPR	0A.7~4	R/W	0	General Purpose Register
PCH_LAT	0A.3~0	R/W	0	Program counter high byte write buffer When the CPU executes any instruction that will modify PCL, PC[11:8] value is provided by register PCH_LAT. This function can be disabled by register SFR10C.
INTIE (0Bh/8	Bh/10Bh/1	8Bh)		Function related to: Interrupt Enable
ADCIE	0B.7	R/W	0	ADC interrupt enable 0: disable 1: enable
T2IE	0B.6	R/W	0	T2 interrupt enable 0: disable 1: enable
TM1IE	0B.5	R/W	0	Timer1 interrupt enable 0: disable 1: enable
TM0IE	0B.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable
WKTIE	0B.3	R/W	0	Wakeup Timer interrupt enable and Wakeup Timer enable 0: disable 1: enable
INT2IE	0B.2	R/W	0	INT2 pin (PA7 or PB5) interrupt enable 0: disable 1: enable





INTOIE1: cnableINTO0B.0R/W00: disable 1: enableINTO00: disable 1: enable1: enableINTIF (0Ch)0ADC interrupt flag, set by H/W after ADC end of conversion. write 0: clear this flag; write 1: no actionT2IF0C.6R/W0T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTMIIF0C.5R/W0Timer1 interrupt event pending flag, set by H/W while Timer1 overflows write 0: clear this flag; write 1: no actionTMIIF0C.4R/W0Timer1 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMOIF0C.4R/W0WT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF0C.2R/W0WT interrupt event pending flag, set by H/W at INT2 pin's falling edge write 0: clear this flag; write 1: no actionINT0IF0C.0R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT2 pin's falling edge. write 0: clear this flag; write 1: no actionINT0IF0C.0R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling edge. write 0: clear this flag; write 1: no actionINT0IF0D.7R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling edge write 0: clear this flag; write 1: no actionINT0F0D.7R/W0O00: disable 1: cnable <td< th=""><th>Name</th><th>Address</th><th>R/W</th><th>Rst</th><th>Description</th></td<>	Name	Address	R/W	Rst	Description
INTOIE1: cnableINTO0B.0R/W00: disable 1: enableINTO00: disable 1: enable1: enableINTIF (0Ch)0ADC interrupt flag, set by H/W after ADC end of conversion. write 0: clear this flag; write 1: no actionT2IF0C.6R/W0T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTMIIF0C.5R/W0Timer1 interrupt event pending flag, set by H/W while Timer1 overflows write 0: clear this flag; write 1: no actionTMIIF0C.4R/W0Timer1 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMOIF0C.4R/W0WT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF0C.2R/W0WT interrupt event pending flag, set by H/W at INT2 pin's falling edge write 0: clear this flag; write 1: no actionINT0IF0C.0R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT2 pin's falling edge. write 0: clear this flag; write 1: no actionINT0IF0C.0R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling edge. write 0: clear this flag; write 1: no actionINT0IF0D.7R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling edge write 0: clear this flag; write 1: no actionINT0F0D.7R/W0O00: disable 1: cnable <td< td=""><td></td><td></td><td></td><td></td><td>INT1 pin (PA1 or PB1) interrupt enable</td></td<>					INT1 pin (PA1 or PB1) interrupt enable
INTOLE0B.0R/W0INTO pin (PA3 or PB2) interrupt enable 0: disable 1: enableINTTF0C.17R/W0Function related to: Interrupt Flag 1: enableADCIF0C.7R/W0ADCIF 0Interrupt enable write 0: clear this flag; write 1: no actionT2IF0C.6R/W0T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTMIF0C.5R/W0Timeri interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMIF0C.4R/W0WKT interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMIF0C.3R/W0WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF0C.2R/W0INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT2 pin's falling edge write 0: clear this flag; write 1: no actionINT0IF0C.1R/W0INT1 (PA1 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT1F0C.1R/W0pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT1F0D.7R/W1Global interrupt enable 0: disable 1: enableEA0D.7R/W1Global interrupt enable 0: disable 1: enableINT1F0D.1R/W00O0.0200 <td>INT1IE</td> <td>0B.1</td> <td>R/W</td> <td>0</td> <td>0: disable</td>	INT1IE	0B.1	R/W	0	0: disable
INTOIE $0B.0$ $R/W$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Intribution     I: enable       ADCIF     0C.7     R/W     0     ADC interrupt flag, set by H/W after ADC end of conversion. write 0: clear this flag; write 1: no action       T2IF     0C.6     R/W     0     Timerupt enable gets by H/W while T2 overflows write 0: clear this flag; write 1: no action       TMI IF     0C.5     R/W     0     Timerupt event pending flag, set by H/W while Timerol overflows write 0: clear this flag; write 1: no action       TMOIF     0C.4     R/W     0     Timerol interrupt event pending flag, set by H/W while Timerol overflows write 0: clear this flag; write 1: no action       TMOIF     0C.3     R/W     0     WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no action       WKTIF     0C.2     R/W     0     WKT interrupt event pending flag, set by H/W at INT2       INT2I     0C.2     R/W     0     WKT interrupt event pending flag, set by H/W at INT1       INT2I     0C.1     R/W     0     INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT1       INT0 (PA3 or PB2)     Interrupt event pending flag, set by H/W at INT0     INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0       INTEI (0Dh)     Interrupt enable     0     Interrupt enable     0       INTEI (0Dh)     Interrupt enable     0     0     Global interrupt enable       UART interrupt enable					
INTLF (00Ch)         Function related to: Interrupt Flag           ADCIF         0C.7         R/W         0         ADC interrupt flag, set by H/W after ADC end of conversion.           T2IF         0C.6         R/W         0         T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no action           TM1IF         0C.5         R/W         0         Timer 1 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no action           TM0IF         0C.4         R/W         0         Timer 1 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no action           WKTIF         0C.3         R/W         0         WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no action           INT2IF         0C.2         R/W         0         WKT interrupt POED bit interrupt event pending flag, set by H/W at INT2           INT1IF         0C.1         R/W         0         INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1           INT0IF         0C.0         R/W         0         INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0           INT0IF         0C.0         R/W         0         INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT0           INT0IF         0C.0         <	INTOIE	0B.0	R/W	0	
ADCIF $0C.7$ $R/W$ $0$ ADC interrupt flag, set by H/W after ADC end of conversion. write 0: clear this flag; write 1: no actionT2IF $0C.6$ $R/W$ $0$ T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTMIIF $0C.5$ $R/W$ $0$ Timeror interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMOIF $0C.4$ $R/W$ $0$ Timero interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionWKTIF $0C.3$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W at INT2 prin's falling edge write 0: clear this flag; write 1: no actionINT1IF $0C.1$ $R/W$ $0$ INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 prin's falling rising edge. write 0: clear this flag; write 1: no actionINT0IF $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 prin's falling rising edge. write 0: clear this flag; write 1: no actionINT1E1 (0Dh) <b>Tometoin related to: Interrupt Enable</b> 1: enableInterrupt enable 1: enableEA $0D.7$ $R/W$ $0$ $0$ $0.0$ $R/W$ $0$ $0$ $0.0$ $0$ $0$ $0.0$ $0$ $0$ $0.0$ $R/W$ $0$ $0.0$ $0$ $0$ <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
ADCLPUC.7R/WUwrite 0: clear this flag; write 1: no actionT2IFOC.6R/W0T2 interrupt event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTMIFOC.5R/W0Timer1 interrupt event pending flag, set by H/W while Timer1 overflows write 0: clear this flag; write 1: no actionTMOIFOC.4R/W0Timer0 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTMOIFOC.3R/W0Timer0 interrupt event pending flag, set by H/W while WKT time out, write 0: clear this flag; write 1: no actionWKTIFOC.3R/W0WKT interrupt event pending flag, set by H/W while WKT time out, write 0: clear this flag; write 1: no actionINT2IFOC.2R/W0INT1 (PA1 or PB5) interrupt event pending flag, set by H/W at INT2 ins's falling edge write 0: clear this flag; write 1: no actionINT0IFOC.1R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0IFOC.0R/W0O: disable 1: enableEAOD.7R/W1O: disable 1: enableIVARTIEOD.6R/W0O: disable 1: enableIVDIEOD.6R/W0O: disable 1: enableIVDIEOD.0R/W0O: disable 1: enableIVDIEOD.0R/W0INTERUPT event pending flag, set by H/W when UART transmision/reception is comp	INTIF (0Ch)	1	1		
T2IFOC.6R/WOTimetrup event pending flag, set by H/W while T2 overflows write 0: clear this flag; write 1: no actionTM1IFOC.5R/W0Timerup event pending flag, set by H/W while Timer1 overflows write 0: clear this flag; write 1: no actionTM0IFOC.4R/W0Timer0 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionTM0IFOC.3R/W0Timer0 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionWKTIFOC.2R/W0WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IFOC.2R/W0INT1 (PA1 or PB5) interrupt event pending flag, set by H/W at INT2 pin's falling/rising edge write 0: clear this flag; write 1: no actionINT0IFOC.1R/W0INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0IFOC.0R/W0INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0IFOD.7R/W10: disable 1: enableEA0D.7R/W10: disable 1: enableINT1F0D.6R/W00: disable 1: enablePWMIE0D.0R/W00: disable 1: enableINT1F0E.6R00UART interrupt event pending flag, set by H/W when UART <br< td=""><td>ADCIF</td><td>0C.7</td><td>R/W</td><td>0</td><td></td></br<>	ADCIF	0C.7	R/W	0	
121r       0C.0       R/W       0       write 0: clear this flag; write 1: no action         TM1IF       0C.5       R/W       0       Timer1 interrupt event pending flag, set by H/W while Timer1 overflows write 0: clear this flag; write 1: no action         TM0IF       0C.4       R/W       0       Write 0: clear this flag; write 1: no action         WKTIF       0C.3       R/W       0       WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no action         INT2IF       0C.2       R/W       0       WKT interrupt event pending flag, set by H/W at INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT1 intro (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 intro (PB1) interrupt event pending flag, set by H/W at INT1 intro (PB1) interrupt event pending flag, set by H/W at INT0 intro (PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or PB2) interrupt event pending flag, set by H/W at INT0 intro (PA or Global interrupt enable         UARTIE       0D.6       R/W       0       ci disable       i enable       i enable </td <td></td> <td></td> <td></td> <td></td> <td></td>					
TM11F $0C.5$ $R/W$ $0$ Timer1 interrupt event pending flag, set by H/W while Timer1 overflows write 0. clear this flag; write 1. no actionTM01F $0C.4$ $R/W$ $0$ Timer0 interrupt event pending flag, set by H/W while Timer0 overflows write 0. clear this flag; write 1. no actionWKT1F $0C.3$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0. clear this flag; write 1. no actionINT21F $0C.2$ $R/W$ $0$ INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT2 in's falling edge write 0. clear this flag; write 1. no actionINT11F $0C.1$ $R/W$ $0$ INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 ipi's falling/rising edge. write 0. clear this flag; write 1. no actionINT01F $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 ipi's falling/rising edge. write 0. clear this flag; write 1: no actionINTE1 (0Dh) <b>DD</b> INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 ipi's falling/rising edge. write 0. clear this flag; write 1: no actionUARTIE $0D.7$ $R/W$ $1$ Global interrupt enableUARTIE $0D.6$ $R/W$ $0$ o: disable 1: enableUARTIE $0D.6$ $R/W$ $0$ o: disable 1: enableUVDIE $0D.6$ $R/W$ $0$ o: disable 1: enableINTEF1 (0Eh) <b>DDD</b> UARTIF1 (0Eh) <b>DD</b> UARTI Herupt event pending flag, set by H/W when UART transmision/reception is comple	T2IF	0C.6	R/W	0	
IMTP $0.C.5$ $RW$ $0$ write 0: clear this flag; write 1: no actionTMOIF $0.C.4$ $R/W$ $0$ Timerol interrupt event pending flag, set by H/W while TimerO overflows write 0: clear this flag; write 1: no actionWKTIF $0C.3$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT1F $0C.1$ $R/W$ $0$ INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT2 pin's falling/rising edge write 0: clear this flag; write 1: no actionINT0F $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0F $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. $0$ EA $0D.7$ $R/W$ $1$ O: disable $1: enableEA0D.7R/W1O: disable1: enableUARTIE0D.6R/W0O: disable1: enableLVDIE0D.0R/W0O: disable1: enableLVDIE0D.0R/W0O: disable1: enableLVDIF0E.6R00VMIF0E.6R0VMIF0E.0R/W0VDIF0E.0R/W0$					
TMOIF $0C.4$ $R/W$ $0$ Timer0 interrupt event pending flag, set by H/W while Timer0 overflows write 0: clear this flag; write 1: no actionWKTIF $0C.3$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT2 pin's falling/rising edge write 0: clear this flag; write 1: no actionINT1IF $0C.1$ $R/W$ $0$ INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0IF $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT1IE (0DhFunction related to: Interrupt EnableEA $0D.7$ $R/W$ $1$ $0.0$ $R/W$ $0$ $1$ : enableUARTIE $0D.6$ $R/W$ $0$ $0$ : disable $1$ : enable $1$ $0.0$ $R/W$ $0$ $0$ : disable $1$ $1$ : enable $1$ $0.0$ $R/W$ $0$ $0$ : disable $1$ $1$ : enable $1$ $0.0$ $R/W$ $0$ $0$ : disable $1$ $1$ : enable $1$ $0.0$ $R/W$ $0$ $0$ $0$ : disa	TM1IF	0C.5	R/W	0	
IMOIP $0C.4$ $RW$ $0$ write 0: clear this flag; write 1: no actionWKTIF $0C.3$ $R/W$ $0$ WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT2 pin's falling dge write 0: clear this flag; write 1: no actionINT2IF $0C.2$ $R/W$ $0$ INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge write 0: clear this flag; write 1: no actionINT0F $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge.INT0IF $0C.0$ $R/W$ $0$ INT0 (PA3 or PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge.EA $0D.7$ $R/W$ $1$ $0$ citable citableEA $0D.7$ $R/W$ $1$ $0$ citable citableLARTIE $0D.6$ $R/W$ $0$ $0$ citable citableUARTIE $0D.6$ $R/W$ $0$ $0$ citable citableLVDIF $0D.0$ $R/W$ $0$ $0$ citable citableLVDIF $0E.6$ $R$ $0$ $0$ citable citableLVDIF $0E.0$ $R/W$ $0$ $0$ citable citableLVDIF $0E.0$ $R/W$ $0$ $0$ citable citableLVDIF $0E.0$ $R/W$ $0$ $0$ citable citableLVDIF $0E.0$ <					
WKTIF0C.3 $R/W$ 0WKT interrupt event pending flag, set by H/W while WKT time out. write 0: clear this flag; write 1: no actionINT2IF0C.2 $R/W$ 0INT2 (PA 7 PB5) interrupt event pending flag, set by H/W at INT2 pin's falling edge write 0: clear this flag; write 1: no actionINT1IF0C.1 $R/W$ 0INT1 (PA 10 PB1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge write 0: clear this flag; write 1: no actionINT0IF0C.0 $R/W$ 0INT0 (PA 30 PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT0IF0C.0 $R/W$ 0INT0 (PA 30 PB2) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge. write 0: clear this flag; write 1: no actionINTIE1 (0Dh)Function related to: Interrupt EnableEA0D.7 $R/W$ 1Clobal interrupt enable 0: disable 1: enableUARTIE0D.6 $R/W$ 00: disable 1: enable0: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableUART interrupt enable 0: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableUART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1 $R/W$ 000: disable 1: enableLVDIF0E.0 $R/W$ 00UART interrupt event pending flag, set by H/W while $V_{CC} $	TM0IF	0C.4	R/W	0	
WK11P $0C.3$ R/W $0$ write 0: clear this flag; write 1: no actionINT21F $0C.2$ R/W0INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT2INT21F $0C.2$ R/W0pin's falling edgeINT1F $0C.1$ R/W0INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1INT01F $0C.1$ R/W0INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT0INT01F $0C.0$ R/W0pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT01F $0C.0$ R/W0pin's falling/rising edge. write 0: clear this flag; write 1: no actionINT01F $0C.0$ R/W0Global interrupt enableEA $0D.7$ R/W1Global interrupt enableUART1E $0D.6$ R/W00: disable 1: enablePWMIE $0D.1$ R/W00: disable 1: enableLVDIE $0D.0$ R/W00: disable 1: enableINT1F1 (0EhFunction related to: Interrupt FlagUART1F0E.6R0VMIF0E.1R/W0VMIF0E.1R/W0VIDIF0E.0R/W0UART10F.0VID interrupt event pending flag, set by H/W while V _{CC} < V _{1ND} write 0: clear this flag; write 1: no actionUVDIF0E.0R/W0VIDIF0E.0R/W0VIDIF0E.0R/W0Stop Slow-clock after execute SL					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WKTIF	0C.3	R/W	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
INT1IF     OC.1     R/W     0     INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge       INT0     R/W     0     pin's falling/rising edge.     write 0: clear this flag; write 1: no action       INT0F     OC.0     R/W     0     pin's falling/rising edge.     write 0: clear this flag; write 1: no action       INT0F     OC.0     R/W     0     pin's falling/rising edge.     write 0: clear this flag; write 1: no action       INT1F1 (0Db)     Function related to: Interrupt event pending flag, set by H/W at INT0     pin's falling/rising edge.       EA     0D.7     R/W     1     0: disable       I: enable     1     0: disable     1       UARTIE     0D.6     R/W     0     0: disable       I: enable     1     0: disable     1     1       PWMIE     0D.1     R/W     0     0: disable       I: enable     IVD interrupt enable     IVD interrupt enable       LVDIE     0D.0     R/W     0     0: disable       I: enable     IVD interrupt enable     IVD interrupt enable       IVDIF     0E.6     R     0     IVD interrupt enable       VDIF     0E.6     R     0     IVD interrupt event pending flag, set by H/W when UART       VDIF     0E.0     R/W </td <td>INT2IF</td> <td>0C.2</td> <td>R/W</td> <td>0</td> <td></td>	INT2IF	0C.2	R/W	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
INTOIFOC.0R/WINTO (PA3 or PB2) interrupt event pending flag, set by H/W at INTO pin's falling/rising edge. write 0: clear this flag; write 1: no actionINTIE1 (0Dh)Function related to: Interrupt EnableEAOD.7R/WIGlobal interrupt enable 0: disable 1: enableUARTIEOD.6R/W0O: disable 0: disable 1: enableWIIEOD.1R/W0O: disable 0: disable 1: enableIVDIEOD.0R/W0O: disable 0: disable 1: enableIVTIF1 (0Eh)Function related to: Interrupt PlagIVTIF1 (0Eh)Function related to: Interrupt FlagIVTIF1 (0Eh)Function related to: Interrupt FlagIVDIFOE.1R/W0IVDIFOE.1R/W0IVDIFOE.0R/W0SLOWSTPOF.4R/W0SLOWSTPOF.4R/W0IVDIFOF.3R/W1IVDIFOF.3R/W1IVDIFOF.3R/W1IVDIFOF.3R/W0IVDIFOF.4R/W0IVDIFOF.4R/W0IVDIFOF.4R/W0IVDIFOF.4Stop Slow-clock after execute SLEEP instruction 1: Slow					INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1
INTOIFOC.0 $R/W$ 0INTO (PA3 or PB2) interrupt event pending flag, set by H/W at INTO pin's falling/rising edge. write 0: clear this flag; write 1: no actionINTIE1 (0Dh)Function related to: Interrupt EnableEAOD.7 $R/W$ 1Global interrupt enable 0: disable 1: enableUARTIEOD.6 $R/W$ 0O: disable 0: disable 1: enableWMIEOD.1 $R/W$ 0O: disable 0: disable 1: enableLVDIEOD.0 $R/W$ 0O: disable 0: disable 1: enableLVDIEOD.0 $R/W$ 0O: disable 0: disable 1: enableLVDIEOD.0 $R/W$ 0O: disable 0: disable 1: enableUARTIFOE.6R0O: disable 0: disable 1: enableUARTIFOE.6R0PWM interrupt enable 0: disable 1: enableUARTIFOE.6R0O: disable 0: disable 1: enableUARTIFOE.6R0PWM interrupt event pending flag, set by H/W when UART transission/reception is completed. write 0: to TI/RI flag will clear this flag.PWMIFOE.1 $R/W$ 0IVD interrupt event pending flag, set by H/W after PWM period counter write 0: clear this flag; write 1: no actionLVDIFOE.0 $R/W$ 0IVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIFOE.0 $R/W$ 0Stop Slow-clock after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Sl	INT1IF	0C.1	R/W	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
write 0: clear this flag; write 1: no actionINTIE1 (0DhFunction related to: Interrupt EnableEAOD.7R/W1Global interrupt enableEAOD.7R/W1IGlobal interrupt enableUARTIEOD.6R/W00: disable 1: enableUARTIEOD.6R/W00: disable 1: enablePWMIEOD.1R/W00: disable 1: enableLVDIEOD.0R/W00: disable 1: enableLVDIEOD.0R/W00: disable 1: enableINTIF1 (0EhFunction related to: Interrupt FlagUARTIF0E.6R0WMIF0E.6R0WMIF0E.1R/W0VDIF0E.0R/W0UVDIF0E.0R/W0SLOWSTP0F.4R/W0SLOWSTP0F.4R/W0KATSTP0F.3R/W1OC. Fast-clockstruning					
INTIE1 (0Dh)Function related to: Interrupt EnableEA0D.7R/W1Global interrupt enableEA0D.7R/W10: disable 1: enableUARTIE0D.6R/W00: disable 1: enableUARTIE0D.6R/W00: disable 1: enablePWMIE0D.1R/W00: disable 1: enablePWMIE0D.1R/W00: disable 1: enableLVDIE0D.0R/W00: disable 1: enableLVDIE0D.0R/W00: disable 1: enableINTIF1 (0EhFunction related to: Interrupt FlagUARTIF0E.6R0VMIF0E.1R/W0VDIF0E.0R/W0VDIF0F.1R/W0VDIF0F.3R/W0SLOWSTP0F.4R/W0FASTSTP0F.3R/W100.7Stop Fast-clockFASTSTP0F.3R/W100.7Stop Fast-clock00.7Stop Fast-clock	INT0IF	0C.0	R/W	0	
EA0D.7 $R/W$ 1Global interrupt enable 0: disable 1: enableUARTIE0D.6 $R/W$ 00: disable 1: enableUARTIE0D.6 $R/W$ 00: disable 1: enablePWMIE0D.1 $R/W$ 00: disable 1: enablePWMIE0D.1 $R/W$ 00: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableUARTIF0E.6 $R$ 0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1 $R/W$ 0WM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0 $R/W$ 0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIF0E.0 $R/W$ 0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock keeps running after execute SLEEP instruction <td></td> <td></td> <td></td> <td></td> <td></td>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INTIE1 (0Dh)	)			
UARTIEOD.6 $R/W$ O1: enableUARTIEOD.6 $R/W$ 00: disable 1: enablePWMIEOD.1 $R/W$ 00: disable 1: enablePWMIEOD.1 $R/W$ 00: disable 1: enableLVDIEOD.0 $R/W$ 00: disable 1: enableLVDIEOD.0 $R/W$ 00: disable 1: enableLVDIEOD.0 $R/W$ 00: disable 1: enableLVDIEOD.0 $R/W$ 00: disable 1: enableINTIF1 (OEh)Function related to: Interrupt FlagUARTIFOE.6 $R$ 0VMIFOE.1 $R/W$ 0VUDIFOE.1 $R/W$ 0LVDIFOE.0 $R/W$ 0LVDIFOE.0 $R/W$ 0SLOWSTPOF.4 $R/W$ 0SLOWSTPOF.4 $R/W$ 0Stop Fast-clockStop Fast-clockFASTSTP0F.3 $R/W$ 1		00.7	DAV	1	-
UARTIE0D.6 $R/W$ 0UART interrupt enable 0: disable 1: enablePWMIE0D.1 $R/W$ 00disable 1: enablePWMIE0D.1 $R/W$ 00disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableUARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1 $R/W$ 0UART interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0 $R/W$ 0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIF0E.0 $R/W$ 0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIF0E.0 $R/W$ 0Stop Slow-clock after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction	EA	0D.7	R/W	I	
UARTIE0D.6 $R/W$ 00: disable 1: enablePWMIE0D.1 $R/W$ 00: disable 1: enablePWMIE0D.1 $R/W$ 00: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableLVDIE0D.0 $R/W$ 00: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1 $R/W$ 0UVDIF0E.0 $R/W$ 0LVDIF0E.0 $R/W$ 0LVDIF0F.4 $R/W$ 0SLOWSTP0F.4 $R/W$ 0SLOWSTP0F.4 $R/W$ 1OF.3 $R/W$					
PWMIEOD.1R/W0PWM interrupt enable 0: disable 1: enablePWMIEOD.0R/W00: disable 1: enableLVDIEOD.0R/W00: disable 0: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt Flag UARTIFUART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIFOE.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIFOE.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIFOE.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIFOE.0R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock kis runningSLOWSTPOF.3R/W1O: Fast-clock 0: Fast-clock is running	UARTIE	0D 6	D/W	0	-
PWMIE0D.1 $R/W$ 0PWM interrupt enable 0: disable 1: enableLVDIE0D.0 $R/W$ 00disable 1: enableLVDIE0D.0 $R/W$ 00disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningSLOWSTP0F.3R/W1Stop Fast-clock 0: Fast-clock is running	UARTIE	0D.0	IX/ W	0	
PWMIE0D.1R/W00: disable 1: enableLVDIE0D.0R/W00: disable 1: enableLVDIE0D.0R/W00: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIF0E.6R0VMIF0E.1R/W0VDIF0E.0R/W0VDIF0E.0R/W0VOIF0E.0R/W0VOIF0E.0R/W0VOIF0E.0R/W0VOIF0E.0R/W0SLOWSTP0F.4R/W0VIATStop Slow-clock after execute SLEEP instruction 1: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock kiep running after execute SLEEP instructionFASTSTP0F.3R/W10F.3R/W10: Fast-clock					
LVDIEOD.0R/W01: enableLVDIEOD.0R/W00: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIFOE.6R0VARTIFOE.6R0VMIFOE.1R/W0VDIFOE.0R/W0VDIFOE.0R/W0VDIFOE.0R/W0SLOWSTPOF.4R/W0VARTStop Slow-clock after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is running	PWMIE	0D.1	R/W	0	1
LVDIE0D.0R/W00: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIF0F.4R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningSLOWSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running					
LVDIE0D.0R/W00: disable 1: enableINTIF1 (0Eh)Function related to: Interrupt FlagUARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIF0F.4R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningSLOWSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running					LVD interrupt enable
INTIF1 (0Eh)Function related to: Interrupt FlagUARTIF $0E.6$ R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF $0E.1$ R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF $0E.0$ R/W0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionLVDIF $0E.0$ R/W0LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionSLOWSTP $0F.4$ R/W0Stop Slow-clock after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instructionFASTSTP $0F.3$ R/W1O: Fast-clock 0: Fast-clock is running	LVDIE	0D.0	R/W	0	
UARTIF0E.6R0UART interrupt event pending flag, set by H/W when UART transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP0F.4R/W0Stop Slow-clock after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningFASTSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running					1: enable
UARTIF0E.6R0transmission/reception is completed. write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP0F.4R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningFASTSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running	INTIF1 (0Eh)				
write 0 to TI/RI flag will clear this flag.PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP0F.4R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is prunning after execute SLEEP instructionFASTSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running					
PWMIF0E.1R/W0PWM interrupt event pending flag, set by H/W after PWM period counter roll over. write 0: clear this flag; write 1: no actionLVDIF0E.0R/W0LVD interrupt event pending flag, set by H/W while V _{CC} < V _{LVD} write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP0F.4R/W0Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 0: Slow-clock is runningFASTSTP0F.3R/W1O: Fast-clock 0: Fast-clock is running	UARTIF	0E.6	R	0	
PWMIF $0E.1$ $R/W$ $0$ roll over. write 0: clear this flag; write 1: no actionLVDIF $0E.0$ $R/W$ $0$ LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no action <b>CLKCTL (0Fh)</b> Function related to: ClockSLOWSTP $0F.4$ $R/W$ $0$ Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction 1: Slow-clock is runningFASTSTP $0F.3$ $R/W$ $1$ Stop Fast-clock 0: Fast-clock is running					
Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemLVDIF $0E.0$ $R/W$ $0$ $0$ $UVD$ interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP $0F.4$ $R/W$ $0$ $0$ Stop Slow-clock after execute SLEEP instruction $1:$ Slow-clock stop running after execute SLEEP instruction $1:$ Slow-clock stop running after execute SLEEP instruction $1:$ Slow-clock stop running after execute SLEEP instructionFASTSTP $0F.3$ $R/W$ $1$ OF.3 $R/W$ $1$ $0:$ Fast-clock $0:$ Fast-clock is running		05.1	DAV	0	
LVDIF $0E.0$ $R/W$ $0$ LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$ write 0: clear this flag; write 1: no actionCLKCTL (0Fh)Function related to: ClockSLOWSTP $0F.4$ $R/W$ $0$ Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instructionFASTSTP $0F.3$ $R/W$ $1$ Stop Fast-clock 0: Fast-clock is running	PWMIF	0E.1	K/W	0	
LVDIF       0E.0       R/W       0       write 0: clear this flag; write 1: no action         CLKCTL (0Fh)       Function related to: Clock         SLOWSTP       0F.4       R/W       0       Stop Slow-clock after execute SLEEP instruction         SLOWSTP       0F.4       R/W       0       Stop Slow-clock keeps running after execute SLEEP instruction         FASTSTP       0F.3       R/W       1       Stop Fast-clock					
Function related to: Clock         SLOWSTP       0F.4       R/W       0       Stop Slow-clock after execute SLEEP instruction         SLOWSTP       0F.4       R/W       0       Stop Slow-clock after execute SLEEP instruction         SLOWSTP       0F.4       R/W       0       Stop Slow-clock keeps running after execute SLEEP instruction         FASTSTP       0F.3       R/W       1       Stop Fast-clock	LVDIF	0E.0	R/W	0	
SLOWSTP     0F.4     R/W     0     Stop Slow-clock after execute SLEEP instruction       0: Slow-clock keeps running after execute SLEEP instruction     0: Slow-clock keeps running after execute SLEEP instruction       FASTSTP     0F.3     R/W     1       Stop Fast-clock     0: Fast-clock is running	CLKCTL (0F	h)			
SLOWSTP     0F.4     R/W     0     0: Slow-clock keeps running after execute SLEEP instruction 1: Slow-clock stop running after execute SLEEP instruction       FASTSTP     0F.3     R/W     1     Stop Fast-clock 0: Fast-clock is running					
FASTSTP     0F.3     R/W     1     1: Slow-clock stop running after execute SLEEP instruction	SLOWSTP	0F.4	R/W	0	
FASTSTP     0F.3     R/W     1     Stop Fast-clock	520 11 511	~		U U	
FASTSTP 0F.3 R/W 1 0: Fast-clock is running					
	FASTSTP	0F.3	R/W	1	
					1: Fast-clock stops running



Name	Address	R/W	Rst	Description
				System clock(Fsys) source selection
CPUCKS	0F.2	R/W	0	0: Slow-clock
				1: Fast-clock
CPUPSC	0F.1~0	R/W	3	System clock(Fsys) source prescaler. System clock source
		10/ 10	5	00: div 8 01: div 4 10: div 2 11: div 1
TMORLD (10		-		Function related to: Timer0
TMORLD	10.7~0	R/W	00	Timer0 reload data
TM0CTL (11	h)			Function related to: Timer0
TM0STP	11.6	R/W	0	Stop Timer0 0: Timer0 runs
1100511	11.0	K/ W	0	1: Timer0 stops
				TM0I (PA2) edge
TM0EDG	11.5	R/W	0	0: rising edge
11110220	1110	10	Ŭ	1: falling edge
	1			Timer0 prescaler clock source
TM0CKS	11.4	R/W	0	0: Fsys/2
				1: TM0I (PA2)
				Timer0 prescaler. Timer0 prescaler clock source divided by
TM0PSC	ГМ0РSC 11.3~0 R	R/W	0	0000: 1 0011: 8 0110: 64
	10, 11	0	0001: 2 0100: 16 0111: 128	
				0010: 4 0101: 32 1xxx: 256
TM1 (12h)	125.0	D av	0.0	Function related to: Timer1
TM1	12.7~0	R/W	00	Timer1 content
TM1RLD (13		DAV	00	Function related to: Timer1
TM1RLD	13.7~0	R/W	00	Timer1 reload data
TM1CTL (14	<b>n</b> )			Function related to: Timer1 Stop Timer1
TM1STP	14.6	R/W	0	0: Timer1 runs
11011511	14.0	10/ 10	0	1: Timer1 stops
				Timer1 prescaler. Timer1 clock source (Fsys/2) divided by
	14.2.0	DAV	0	0000: 1 0011: 8 0110: 64
TM1PSC	14.3~0	R/W	0	0001: 2 0100: 16 0111: 128
				0010: 4 0101: 32 1xxx: 256
<b>T2CTL</b> (15h)				Function related to: T2
				Clear and stop T2
T2CLR	15.4	R/W	0	0: T2 runs
				1: T2 clear and stops
T2CKS	15.3~2	R/W	0	T2 clock source selection
				00: Slow-clock 11: Fsys/128 1x: FIRC/512 (9.216MHz/512)
T2PSC	15.1~0	R/W	0	T2 prescaler. T2 clock source divided by 00: 32768 01: 16384 10: 8192 11: 128
LVCTL (16h)				00: 32768 01: 16384 10: 8192 11: 128 Function related to: LVD / LVR
				Low voltage detection flag
1		D	0	5
LVDF	16.7	R	0	$0. V_{CC} > V_{UVD}$ $1. V_{CC} < V_{UVD}$
				$0: V_{CC} > V_{LVD} \qquad 1: V_{CC} < V_{LVD}$ LVD Hysteresis
LVDF LVDHYS	16.7 16.6	R R/W	0	LVD Hysteresis
LVDHYS	16.6	R/W	0	LVD Hysteresis       0: disable       1: enable
				LVD Hysteresis         0: disable       1: enable         POR/LVR will be disabled during IDLE/STOP mode to reduce power
LVDHYS	16.6	R/W	0	LVD Hysteresis       0: disable       1: enable



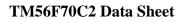

Name	Address	R/W	Rst	Description
				LVD voltage $(V_{IVD})$ selection
				0000: disable 0100 : 2.65V 1000: 3.22V 1100: 3.78V
LVDS	16.3~0	R/W	0	0001: 2.24V 0101: 2.79V 1001: 3.36V 1101: 3.92V
				0010: 2.37V 0110: 2.93V 1010: 3.50V 1110: 4.06V
				0011: 2.51V 0111: 3.07V 1011: 3.64V 1111: 4.20V
ADCDH (17h)				Function related to: ADC
ADCDH	17.7~0	R	-	ADC output data bit 11~4
ADCTL (18h)		r		Function related to: ADC
ADCDL	18.7~4	R	-	ADC output data bit 3~0
ADST	18.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion
ADCKS	18.2~0	R/W	0	ADC clock frequency selection. 1MHz(Typ.) 000: Fsys/256 010: Fsys/64 100: Fsys/16 110: Fsys/4 001: Fsys/128 011: Fsys/32 101: Fsys/8 111: Fsys/2
ADCTL2 (19h	)			Function related to: ADC
				ADC reference voltage selection
				00: ADC reference voltage is $V_{CC}$
ADVREFS	19.7~6	R/W	01	01: ADC reference voltage is VR
				10: ADC reference voltage is LDO1.2V
				11: Reserved
				ADC channel selection
				00000: ADC0 (PA0) 01000: ADC8 (PB0) 10000: ADC16 (OP1N)
				00001: ADC1 (PA1) 01001: ADC9 (PB1) 10001:VR
		R/W	1F	00010: ADC2 (PA2) 01010: ADC10 (PB2) 10010: OPA2TOADC
ADCHS	19.4~0			00011: ADC3 (PA3) 01011: ADC11 (PB3) 10011:V _{TEMP}
				00100: ADC4 (PA4) 01100: ADC12 (PB4) 10100:LDO1.2V
				00101: ADC5 (PA5) 01101: ADC13 (PB5) 10101:VSS
				00110: ADC6 (PA6) 01110: ADC14 (PB6) 10110:V _{CC} /201
				00111: ADC7 (PA7) 01111: ADC15 (OP0N) 10111:V _{CC} /4
BCMCTL (1A				Function related to: BCM
OPA0PD	1A.7	R/W	0	OPA0 Power Down
0.0.1.0.0.0		<b>D</b>		Turn on the switch for the path from OPA0P to OPA0 non-inverting
OPA0PSW	1A.6	R/W	1	input(V+)
				0:switch off 1:switch on
DACOSW	1 1 5	R/W	1	Turn on the switch for the path from DAC0 to OPA0 non-inverting $input(V+)$
DAC0SW	1A.5	K/W	1	0:switch off 1:switch on
				Turn on the switch for DAC0 output Buffer
DAC0BFSW	1A.4	R/W	0	0:switch off 1:switch on
OPA1PD	1A.3	R/W	0	OPA1 Power Down
		,,	~	Turn on the switch for the path from OPA1P to OPA1 non-inverting
OPA1PSW	1A.2	R/W	1	input(V+)
				0:switch off 1:switch on
				Turn on the switch for the path from DAC1 to OPA1 non-inverting
DAC1SW	1A.1	R/W	1	input(V+)
				0:switch off 1:switch on
DAC1BFSW	1A.0	R/W	0	Turn on the switch for DAC1 output Buffer
				0:switch off 1:switch on
BCMCTL2 (1)		DAV	0	Function related to: BCM
DACPD	1B.7	R/W	0	DAC0,DAC1,OPA0,OPA1 bias voltage Power Down
DACOVREFS	1B.6	R/W	1	DAC0 reference voltage selection 0:LD01.2V 1:VR
DAC1VREFS	1B.5	R/W	1	DAC1 reference voltage selection



Name	Address	R/W	Rst	Description
				0:V _{CC} 1:VR
OPAEL	1B.4	R/W	0	Force OPO output low.
OPA00FTS	1B.3	R/W	0	OPA0 non-inverting input (V+) is connected to the inverting input (V-) for OPA0 trim
OPA10FTS	1B.2	R/W	0	OPA1 non-inverting input (V+) is connected to the inverting input (V-) for OPA1 trim
<b>OPA0OSTUS</b>	1B.1	R	-	OPA0 comparator output status
<b>OPA1OSTUS</b>	1B.0	R	-	OPA1 comparator output status
DAC0DH (1C	h)			Function related to: BCM
DAC0DH	1C.7~0	R/W	00	DAC0 Data bit13~bit8
DAC0DL (1Dh	n)			Function related to: BCM
DAC0DL	1D.7~0	R/W	DA	DAC0 Data bit7~bit0 Write DAC0DL first, then DAC0DH
DAC1DH (1E	h)			Function related to: BCM
DAC1DH	1E.7~0	R/W	33	DAC1 Data bit13~bit8
DAC1DL (1F	h)			Function related to: BCM
DAC1DL	1F.7~0	R/W	9A	DAC1 Data bit7~bit0 Write DAC1DL first, then DAC1DH
User Data Mer	mory			
RAM	20~6F	R/W	-	RAM Bank0 area (80 Bytes)
RAM	70~7F	R/W	-	RAM common area (16 Bytes)



Name	Address	R/W	Rst	Description
<b>OPTION</b> (81h				Function related to: STATUS / INT / WDT / WKT
HWAUTO	81.7	R/W	0	Enter/Exit interrupt subroutine, HW auto Save/Restore WREG, FSR, TABR, PCH_LAT, DPL, DPH, and STATUS w/o TO, PD 0:disable 1: enable
INT0EDG	81.6	R/W	0	INT0 pin edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
INT1EDG	81.5	R/W	0	INT1 pin edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
WDTPSC	81.3~2	R/W	3	WDT period selections: 00: 221ms 01: 443ms 10: 1771ms 11:3542ms @Vcc=5V
WKTPSC	81.1~0	R/W	3	WKT period selections:           00: 28ms         01: 55ms         10: 111ms         11: 221ms         @Vcc=5V
PAMOD10 (8	/		-	Function related to: Port
PA1MOD	85.7~4	R/W	1	PA1 I/O mode control
PA0MOD	85.3~0	R/W	1	PA0 I/O mode control
<b>PAMOD32</b> (8)	,			Function related to: Port
PA3MOD	86.7~4	R/W	1	PA3 I/O mode control
PA2MOD	86.3~0	R/W	1	PA2 I/O mode control
<b>PAMOD54</b> (8'	7h)			Function related to: Port
PA5MOD	87.7~4	R/W	1	PA5 I/O mode control
PA4MOD	87.3~0	R/W	1	PA4 I/O mode control
<b>PAMOD76</b> (8)	8h)			Function related to: Port
PA7MOD	88.7~4	R/W	0	PA7 I/O mode control
PA6MOD	88.3~0	R/W	1	PA6 I/O mode control
PWMCTL (89	h)			Function related to: PWM
PWMEN	89.7	R/W	0	PWM Clock Enable         0: PWM Clock Disable         1: PWM Clock Enable
PWM0OM	89.5~4	R/W	0	PWM0 output mode00: Mode010: Mode201: Mode111: Mode3
PWM0DZ	89.3~0	R/W	0	PWM0 non-overlap control 0000: no non-overlap 0001: non-overlap width are 1 PWM clock cycle 0010: non-overlap width are 2 PWM clock cycles  1111: non-overlap width are 15 PWM clock cycles
PBMOD10 (8		-	-	Function related to: Port
PB1MOD	8C.7~4	R/W	1	PB1 I/O mode control
PB0MOD	8C.3~0	R/W	1	PB0 I/O mode control
<b>PBMOD32</b> (8)				Function related to: Port
PB3MOD	8D.7~4	R/W	1	PB3 I/O mode control
PB2MOD	8D.3~0	R/W	1	PB2 I/O mode control
<b>PBMOD54</b> (8)	,			Function related to: Port
PB5MOD	8E.7~4	R/W	1	PB5 I/O mode control
PB4MOD	8E.3~0	R/W	1	PB4 I/O mode control
<b>PBMOD76 (8</b> )	Fh)			Function related to: Port
-	8F.7~4	R/W	1	Reserved
PB6MOD	8F.3~0	R/W	1	PB6 I/O mode control
OPTION2 (91	h)			Function related to: PWM0/INT2/INT1/INT0
PWMCKS	91.5~4	R/W	00	PWM Clock Source selection 0x: Fsys
i				•






Name	Address	R/W	Rst	Description
				10: FIRC (18.432 MHz)
				11: FIRC*2 (36.864 MHz)
INT2SEL	91.2	R/W	0	INT2 pin selection
	>1.2	10	Ŭ	0: PA7 1: PB5
INT1SEL	91.1	R/W	0	INT1 pin selection
				0: PA1 1: PB1 INT0 pin selection
INTOSEL	91.0	R/W	0	0: PA3 = 1: PB0
<b>PWMPRDH</b> (	92h)			Function related to: PWM
PWMPRDH	92.7~0	R/W	FF	PWM Period bit 15~8
<b>PWMPRDL</b> (9	93h)			Function related to: PWM
PWMPRDL	93.7~0	R/W	FF	PWM Period bit 7~0
PWM0DH (94	lh)			Function related to: PWM
PWM0DH	94.7~0	R/W	80	PWM0 Duty bit 15~8
PWM0DL (95	h)			Function related to: PWM
PWM0DL	95.7~0	R/W	00	PWM0 Duty bit 7~0
PWM1DH (96	óh)			Function related to: PWM
PWM1DH	96.7~0	R/W	80	PWM1 Duty bit 15~8
<b>PWM1DL (97</b>	h)			Function related to: PWM
PWM1DL	97.7~0	R/W	00	PWM1 Duty bit 7~0
PWM2DH (98	Sh)			Function related to: PWM
PWM2DH	98.7~0	R/W	80	PWM2 Duty bit 15~8
<b>PWM2DL (99</b>	h)			Function related to: PWM
PWM2DL	99.7~0	R/W	00	PWM2 Duty bit 7~0
User Data Mer	nory			
RAM	A0~EF	R/W	-	RAM Bank1 area (80 Bytes)



Name	Address	R/W	Rst	Description
PWRCTL2 (10	05h)			Function related to: ROM mode
GPR2	105.7~6	R/W	0	General purpose register
-	105.5	R	-	Reserved
-	105.4	R/W	0	Reserved
-	105.3	R/W	1	Reserved
HSINK	105.2	R/W	1	All GPIO high sink current selection0: low sink current1: high sink current
ROMODS	105.1~0	R/W	11	ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz
RDSTP (106h)				Function related to: ROM mode
RDSTP	106.7~0	W	-	Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed.
LVRPD (109h	)			Function related to: LVR/POR
LVRPD	109.7~0	w	-	LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option
PORPDF	109.1	R	0	<ul><li>POR disable option flag</li><li>0: POR has not been set by the LVRPD register</li><li>1: POR has been set to force disabled by LVRPD register</li></ul>
LVRPDF	109.0	R	0	LVR disable option flag 0: LVR has not been set by the LVRPD register 1: LVR has been set to force disabled by LVRPD register
<b>SFR10C</b> (10C	h)			Function related to: Programming Counter (PC)
SFR10C	10C.7~0	W	_	Use the PCH_LAT function: The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT. Disable PCH_LAT function: When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT feature can only be disabled if the user is using assembly code. Restore PCH_LAT function: When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.
РСН	10C.3~0	R	0	Program counter(PC) data bits 11~8, which are the high 4-bit value of the program counter.
<b>CFG07</b> (10Dh	)			Function related to: ADC / BCM
CFG07	10D.4~0	R/W	CFG	Store 5-bit VBG trim value of LDO1.2V if user want to accurate VBG for LDO1.2V, please write the CFG07 value to BGTRIM (10Eh).
<b>BGTRIM</b> (10)	Eh)			Function related to: ADC / BCM





Name	Address	R/W	Rst	Description
BGTRIM	10E.4~0	R/W	CFG	5-bit VBG trim value (default use VBG trim value for LDO3V)
IRCF (10Fh)	•			Function related to: Clock
IRCF	10F.6~0	R/W	CFG	7-bit FIRC trim value
<b>OP0TRIM</b> (11	l <b>0h</b> )			Function related to: BCM
OP0TRIM	110.5~0	R/W	CFG	6-bit OPA0 trim value
<b>OP1TRIM</b> (11	l <b>1h</b> )			Function related to: BCM
OP1TRIM	111.5~0	R/W	CFG	6-bit OPA1 trim value
<b>OP2TRIM</b> (11	l <b>2h</b> )			Function related to: BCM
OP2TRIM	112.4~0	R/W	CFG	5-bit OPA2 trim value
RDCTL (113h	l)			Function related to: BCM
RDCTL	113.1~0	R/W	01	Select the delay time for ROM reading. 00:4ns 01:8ns 10:12ns 11: 16ns
BCMCTL3 (1	14h)			Function related to: BCM
OPA2PD	114.7	R/W	0	OPA2 Power Down
SOPP	114.6	R/W	0	OPA2 non-inverting input(V+) selection. 0:OP2P (PB6) 1:OP0N (if SOPAN=0) or OP1N (if SOPAN=1)
OP2TOPAD	114.5	R/W	0	OPA2 to iopad output enable. (weak driving capability) 0:switch off 1:switch on
SOTV	114.4	R/W	0	OPA2 VREF selection when OPA2 as comparator. 0: VSS 1: VR
SOPG	114.3~2	R/W	10	OPA2 negative feedback gain selection. 00: 1X 01: 10X 10: 20X 11: 50X
SOPM	114.1~0	R/W	00	<ul> <li>OPA2 operating mode selection.</li> <li>00: opa with negative feedback (non-inverting amplifier) non-inverting input(V+) = OPP</li> <li>01: comparator for OPA2 trim, OPP is disconnected, non-inverting input(V+) = VREF+offset inverting input(V-) = VREF</li> <li>10: opa with negative feedback for OPA2 trim, OPP is disconnected, non-inverting input(V+) = VSS+offset inverting input(V-) = VSS output voltage = offset*gain, gain=50</li> <li>11: comparator as voltage level detector non-inverting input(V+) = OPP inverting input(V-) = VREF</li> </ul>
<b>PWRCTL</b> (11)	5h)			Function related to: ADC / BCM
SVBIAS	115.7	R/W	0	Reference voltage of VT0 selection $0:V_{CC}$ 1:VR
SBFIN	115.6~5	R/W	11	ADC $V_{TEMP}$ selection for temperature sensing $00:V_{TEMP} = VT0$ (Diode type) $01:V_{TEMP} = VT1$ (BJT type) $10:V_{TEMP} = VBG1.2V$ $11:V_{TEMP}$ is disabled
SVBGT	115.4	R/W	0	VBGT(PA3) output selection (only for testing) 0:VBGT=V _{TEMP} 1:VBGT=LDO1P2V
VBGTOE	115.3	R/W	0	VBGT(PA3) output enable. (only for testing)
LDO3VPD	115.2	R/W	0	LDO3V power down. 0: LDO3V enable 1: LDO3V power down



Name	Address	R/W	Rst	Description
User Data Memory				
RAM	120~16F	R/W	-	RAM Bank2 area (80 Bytes)



Name	Address	R/W	Rst	Description	
DPL (185h)				Function related to: IAP / Table Read	
DPL	185.7~0	R/W	00	TBL Data Pointer bit 7~0, DPTR={DPH,DPL}	
DPH (186h)				Function related to: IAP / Table Read	
DPH	186.3~0	R/W	00	TBL Data Pointer bit 11~8, DPTR={DPH,DPL}	
CRCDL (187h	ı)			Function related to: CRC16	
CRCDL	187.7~0	R/W	FF	16-bit CRC checksum data bit 7~0	
CRCDH (188	h)			Function related to: CRC16	
CRCDH	188.7~0	R/W	FF	16-bit CRC checksum data bit 15~8	
CRCIN (189h	)			Function related to: CRC16	
CRCIN	189.7~0	W	0	CRC data input, write this register to start CRC calculation	
TABR (18Ch)				Function related to: Table Read	
				When the user writes 01h to TABR, the W register will get the lower eight bits of the data in the address pointed to by DPTR.	
TABR	18C.7~0	R/W	0	When the user writes 02h to TABR, the W register will get the upper eight bits of the data in the address pointed to by DPTR.	
				in Assembly code, user can table read by TABRL/TABRH instruction or writing TABR register.	
				in C code, user can only table read by writing TABR register.	
IAPCTL (190	h)			Function related to: IAP	
IAPTE	190.1~0	R/W	00	IAP Write Time-Out function selection 00: Disable, 01: 3.5ms, 10: 14ms, 11: 28ms	
IAPEN (191h)				Function related to: IAP	
IAPEN	191.7~0	W	0	Function selection of Table Read and IAP. Write 47h to enable Main ROM Table Read and IAP functions. Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions. Writing 33h will disable Table Read and IAP functions.	
IAPDTL (192	h)			Function related to: IAP	
IAPDTL	192.7~0	R/W	0	IAP Data Low byte When the user writes to this register, the hardware will automatically write the 16-bit value {IAPDTH, IAPDTL} to the location pointed to by DPTR.	
<b>IAPDTH (193</b>	h)			Function related to: IAP	
IAPDTH	193.7~0	R/W	0	IAP Data High byte	
SCON (195h)				Function related to: UART	
UART9	195.7	R/W	0	Number of data transfer bits select 0: 8-bit data transfer 1: 9-bit data transfer	
RIMASK	195.5	R/W	0	Receive flag mask control. If this bit is set, the receive flag function will be disabled when RX8 is 0	
RXEN	195.4	R/W	0	Receive function enable. 0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1: When UART1W is set low, the RXTX pin is used as the RX pin. When UART1W is set high, the RXTX pin is used as the RX pin.	
TX8	195.3	R/W	0	(This bit is only valid when UART9=1)	



Name	Address	R/W	Rst	Description
				This bit is the 9th value to be transmitted by TX pin.
RX8	195.2	R/W	0	(This bit is only valid when UART9=1) This bit is the 9th value received by RX pin.
TI	195.1	R/W	0	Transmit flag. Set by H/W when transmission is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set to 1.
RI	195.0	R/W	0	Receive flag. Set by H/W when reception is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set to 1.
<b>SBUF (196h)</b>				Function related to: UART
SBUF	196.7~0	R/W	-	UART transmit/receive data.
<b>UARTCTL</b> (1	97h)			Function related to: UART
UARTBRP	197.7~0	R/W	0	Define UART Baud Rate Prescaler UART Baud Rate = Fsys/16/UARTBRP
UARTCTL2 (	( <b>198h</b> )			Function related to: UART
UART1W	198.7	R/W	0	Single-wire mode select 0: full-duplex communication 1: half-duplex communication (single-wire mode)
-	198.6	R/W	0	Reserved
TXS2	198.5	R/W	0	TX pin selection 2 0:disable 1:PB3 is used as TX pin
TXS1	198.4	R/W	0	TX pin selection 1 0:disable 1:PB1 is used as TX pin
TXS0	198.3	R/W	0	TX pin selection 0 0:disable 1:PA1 is used as TX pin
RXTXS2	198.2	R/W	0	<ul> <li>RXTX pin selection 2.</li> <li>0: disable</li> <li>1: If UART1W is set low, PB0 is used as RX pin.</li> <li>If UART1W is set high and RXEN is set low, PB0 is used as TX pin.</li> <li>If UART1W is set high and RXEN is set high, PB0 is used as RX pin.</li> </ul>
RXTXS1	198.1	R/W	0	<ul> <li>RXTX pin selection 1.</li> <li>0: disable</li> <li>1: If UART1W is set low, PA5 is used as RX pin.</li> <li>If UART1W is set high and RXEN is set low, PA5 is used as TX pin.</li> <li>If UART1W is set high and RXEN is set high, PA5 is used as RX pin.</li> </ul>
RXTXS0	198.0	R/W	0	<ul> <li>RXTX pin selection 0.</li> <li>0: disable</li> <li>1: If UART1W is set low, PA0 is used as RX pin.</li> <li>If UART1W is set high and RXEN is set low, PA0 is used as TX pin.</li> <li>If UART1W is set high and RXEN is set high, PA0 is used as RX pin.</li> </ul>



## **INSTRUCTION SET**

Each instruction is a 16-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
А	After
$\leftarrow$	Assign direction



Mnemonic		Op Code	Cycle	Flag Affect	Description
		-	Ţ	ister Instructio	-
ADDWX	f, d	ff00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWX	f, d	ff00 0101 dfff ffff	1	Z	AND W with "f"
CLRX	f	ff00 0001 1fff ffff	1	Z	Clear "f"
CLRW		0000 0001 0100 0000	1	Z	Clear W
COMX	f, d	ff00 1001 dfff ffff	1	Z	Complement "f"
DECX	f, d	ff00 0011 dfff ffff	1	Z	Decrement "f"
DECXSZ	f, d	ff00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCX	f, d	ff00 1010 dfff ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 Offf ffff	1	Z	Move "f" to W
MOVWX	f	ff00 0000 1fff ffff	1	-	Move W to "f"
RLX	f, d	ff00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRX	f, d	ff00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAP <mark>X</mark>	f, d	ff00 1110 dfff ffff	1	-	Swap nibbles in "f"
TST <mark>X</mark>	f	ff00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWX	f, d	ff00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	1
BCX	f, b	ff11 00bb bfff ffff	1	-	Clear "b" bit of "f"
BSX	f, b	ff11 01bb bfff ffff	1	-	Set "b" bit of "f"
BT <mark>X</mark> SC	f, b	ff11 10bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BT <mark>X</mark> SS	f, b	ff11 11bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	0001 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk kkkk	1	Z	AND Literal "k" with W
LCALL	k	kk10 0kkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		0001 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
LGOTO	k	kk10 1kkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	0001 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		0000 0000 0000 0000	1	-	No operation
RET		0000 0000 0100 0000	2	-	Return from subroutine
RETI		0000 0000 0110 0000	2	-	Return from interrupt
RETLW	k	0001 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk kkkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		0000 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	0001 1101 kkkk kkkk	1	Z	XOR Literal "k" with W



ADDLW	Add Literal "k" and	W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	0001 1100 kkkk kkkk	
Description	The contents of the W replaced in the W register.	egister are added to the eight-bit literal 'k' and the result is
Cycle	1	
Example	ADDLW 0x15	B: W = 0x10
		A : W =0x25

_____

ADDWX	Add W and "f"	
Syntax	ADDWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	ff00 0111 dfff ffff	
Description	Add the contents of the W	register with register 'f'. If 'd' is 0, the result is stored in
	the W register. If 'd' is 1, the	ne result is stored back in register 'f'.
Cycle	1	
Example	ADDWX FSR, 0	B: W = 0x17, FSR $= 0xC2$
		A: W = 0xD9, FSR $= 0xC2$

ANDLW	Logical AND Literal	"k" with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	0001 1011 kkkk kkkk	
Description	The contents of W regist placed in the W register.	ter are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	B: W = 0xA3
-		A : W =0x03

ANDWX	AND W with "f"	
Syntax	ANDWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) AND$	) (f)
Status Affected	Z	
OP-Code	ff00 0101 dfff ffff	
Description	•	h register 'f'. If 'd' is 0, the result is stored in the W ilt is stored back in register 'f'.
Cycle	1	-
Example	ANDWX FSR, 1	B : W =0x17, FSR =0xC2 A : W =0x17, FSR =0x02



BCX	Clear "b" bit of "f"	
Syntax	BCX f [,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 0$	
Status Affected	-	
OP-Code	ff11 00bb bfff ffff	
Description	Bit 'b' in register 'f' is cleared.	
Cycle	I DCV ELAC DEC 7	D. ELAC DEC 0-C7
Example	BCX FLAG_REG, 7	B : FLAG_REG =0xC7 A : FLAG_REG =0x47
		$A \cdot I LAO_REG = 0.47$
BSX	Set "b" bit of "f"	
Syntax	BSX f[,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 1$	
Status Affected	-	
OP-Code	ff11 01bb bfff ffff	
Description	Bit 'b' in register 'f' is set.	
Cycle	1	
Example	BSX FLAG_REG, 7	$B : FLAG_REG = 0x0A$
		$A : FLAG_REG = 0x8A$
BTXSC	Test !!!!! hit of !!f!! akin if.	
	Test "b" bit of "f", skip if o	
Syntax	BTXSC f [,b] f : 000h ~ 1FFh, b : 0 ~ 7	
Operands Operation	Skip next instruction if (f.b) =0	
Status Affected	Skip liext instruction if $(1.0) = 0$	
OP-Code	ff11 10bb bfff ffff	
Description		the next instruction is executed. If bit 'b' in register
Desemption		on is discarded, and a NOP is executed instead,
	making this a 2nd cycle instruct	
Cycle	1 or 2	
Example	LABEL1 BTXSC FLAG, 1	B : PC = LABEL1
-	TRUE LGOTO SUB1	A : if FLAG.1 =0, PC =FALSE
	FALSE	if FLAG.1 =1, PC =TRUE
DINIGG		
BTXSS	Test "b" bit of "f", skip if s	set(1)
Syntax	BTXSS f [,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 1$	
Status Affected		
OP-Code	ff11 11bb bfff ffff If hit 'b' in register 'f' is 0, then	the next instruction is executed. If hit 'h' is a sister
Description		the next instruction is executed. If bit 'b' in register
	1 is 1, men the next instructi	on is discarded, and a NOP is executed instead,

____

	i is i, then the next instruction	on is discarded, and a root is exe
	making this a 2nd cycle instruct	tion.
Cycle	1 or 2	
Example	LABEL1 BTXSS FLAG, 1	B : PC = LABEL1
	TRUE LGOTO SUB1	A : if FLAG.1 =0, PC =TRUE
	FALSE	if FLAG.1 =1, PC =FALSE



CLRX	Clear ''f''		
Syntax	CLRX f		
Operands	f : 000h ~ 1FFh	f : 000h ~ 1FFh	
Operation	(f) $\leftarrow$ 00h, Z $\leftarrow$ 1		
Status Affected	Z		
OP-Code	ff00 0001 1fff ffff		
Description	The contents of register 'f' are cleared and the Z bit is set.		
Cycle	1		
Example	CLRX FLAG_REG	B : FLAG_REG =0x5A A : FLAG_REG =0x00, Z =1	

_____

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	(W) $\leftarrow$ 00h, Z $\leftarrow$ 1	
Status Affected	Z	
OP-Code	0000 0001 0100 0000	
Description	W register is cleared a	nd Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A : W =0x00, Z =1

CLRWDT	Clear Watchdog Ti	mer
Syntax	CLRWDT	
Operands	-	
Operation	WDT Timer ← 00h	
Status Affected	TO, PD	
OP-Code	0001 1110 0000 0100	
Description	CLRWDT instruction clears the Watchdog Timer	
Cycle	1	
Example	CLRWDT	B : WDT counter =?
*		A : WDT counter $=0x00$

COMX	Complement "f"	
Syntax	COMX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow (\bar{f})$	
Status Affected	Ž	
OP-Code	ff00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
-	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	-
Example	COMX REG1, 0	B : REG1 = 0x13
-		A : REG1 = $0x13$ , W = $0xEC$



DECX	Decrement "f"	
Syntax	DECX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow$ (f) - 1	
Status Affected	Z	
OP-Code	ff00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, result is stored back in register 'f	the result is stored in the W register. If 'd' is 1, the ".
Cycle	1	
Example	DECX CNT, 1	B : CNT = 0x01, Z = 0
-		A : CNT =0x00, Z =1
DECXSZ	Decrement ''f'', Skip if 0	
Syntax	DECXSZ f [,d]	
Operands	$f: 000h \sim 1FFh, d: 0, 1$	
Operation	(destination) $\leftarrow$ (f) - 1, skip next	t instruction if result is 0
Status Affected	-	
OP-Code	ff00 1011 dfff ffff	
Description	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2 cycle instruction.	
Cycle	1 or 2	
Example	LABEL1 DECXSZ CNT, 1	B : PC = LABEL1
	LADLET DECASE CIVI, I	D.IC-LADELI

INCX	Increment "f"	
Syntax	INCX f [,d]	
Operands	f : 000h ~ 1FFh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	ff00 1010 dfff ffff	
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	un is placed back in register 1.
Example	INCX CNT, 1	B : CNT = 0xFF, Z = 0
		A : CNT =0x00, Z =1

if CNT =0, PC =CONTINUE if CNT ≠0, PC =LABEL1 + 1

CONTINUE



INCXSZ	Increment ''f'', Skip if 0	
Syntax	INCXSZ f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (f) + 1$ , skip nez	xt instruction if result is 0
Status Affected	-	
OP-Code	ff00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is p	ncremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1 INCXSZ CNT, 1	B : PC = LABEL1
-	LGOTO LOOP CONTINUE	A : CNT =CNT + 1 if CNT =0, PC =CONTINUE if CNT ≠0, PC =LABEL1 + 1

IORLW	<b>Inclusive OR Literal</b>	with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	0001 1010 kkkk kkkk	
Description	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.	
Cycle	1	
Example	IORLW 0x35	B: W = 0x9A
-		A: W = 0xBF, Z = 0

Inclusive OR W with "f	<b>1</b>
IORWF f [,d]	
f : 000h ~ 1FFh, d : 0, 1	
$(destination) \leftarrow (W) OR k$	
Z	
ff00 0100 dfff ffff	
Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the	
W register. If 'd' is 1, the result is placed back in register 'f'.	
1	· •
IORWX RESULT, 0	B : RESULT =0x13, W =0x91
	A : RESULT =0x13, W =0x93, Z =0
	f: 000h ~ 1FFh, d: 0, 1 (destination) $\leftarrow$ (W) OR k Z ff00 0100 dfff ffff Inclusive OR the W register W register. If 'd' is 1, the res 1



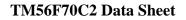
LCALL	Call subroutine "k"	
Syntax	LCALL k	
Operands	k : 0000h ~ 1FFFh	
Operation	Operation: TOS $\leftarrow$ (PC) + 1, PC.12 $\sim$ 0 $\leftarrow$ k	
Status Affected	-	
OP-Code	kk10 0kkk kkkk kkkk	
Description	LCALL Subroutine. First, return address (PC+1) is pushed onto the stack. The 13-bit immediate address is loaded into PC bits <12:0>. LCALL is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 LCALL SUB1 B : PC =LABEL1 A : PC =SUB1, TOS =LABEL1 + 1	

LGOTO	<b>Unconditional Branch</b>	
Syntax	LGOTO k	
Operands	k : 0000h ~ 1FFFh	
Operation	$PC.12\sim0 \leftarrow k$	
Status Affected	-	
OP-Code	kk10 1kkk kkkk kkkk	
Description	LGOTO is an unconditional branch. The 13-bit immediate value is loaded into PC	
	bits <12:0>. LGOTO is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 LGOTO SUB1	B : PC = LABEL1
		A : PC = SUB1

MOVX	Move f	
Syntax	MOVX f[,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (f)$	
Status Affected	Z	
OP-Code	ff00 1000 dfff ffff	
Description	The contents of register 'f' are moved to a destination dependent upon the status of	
	d. If d=0, destination is W register. If d=1, the destination is file register f itself.	
	d=1 is useful to test a file register, since status flag Z is affected.	
Cycle	1	
Example	MOVX FSR,0	B : FSR = 0xC2, W = ?
		A : FSR = $0xC2$ , W = $0xC2$

MOVXW	Move "f" to W		
Syntax	MOVXW f		
Operands	f : 000h ~ 1FFh		
Operation	$(W) \leftarrow (f)$		
Status Affected	Z		
OP-Code	ff00 1000 Offf ffff		
Description	The contents of register 'f' are moved to W register.		
Cycle	1	-	
Example	MOVXW FSR	B : FSR = 0xC2, W = ?	
		A : FSR = 0xC2, W = 0xC2	




MOVLW	Move Literal to W			
Syntax	MOVLW k			
Operands	k : 00h ~ FFh	k : 00h ~ FFh		
Operation	$(W) \leftarrow k$			
Status Affected	-			
OP-Code	0001 1001 kkkk kkkk			
Description	The eight-bit literal 'k' is 0's.	s loaded into W register. The don't cares will assemble as		
Cycle	1			
Example	MOVLW 0x5A	B : W =?		
-		A: W = 0x5A		

MOVWX	Move W to "f"		
Syntax	MOVWX f		
Operands	f : 000h ~ 1FFh		
Operation	$(f) \leftarrow (W)$		
Status Affected	-		
OP-Code	ff00 0000 1fff ffff		
Description	Move data from W register to register 'f'.		
Cycle	1		
Example	MOVWX REG1	B : REG1 = 0xFF, W = 0x4F	
-		A : REG1 =0x4F, W =0x4F	

NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	-
OP-Code	0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
RET	Return from Subroutine
	RET
Syntax	KE I
Operands	
Operation	$PC \leftarrow TOS$
Status Affected	-
OP-Code	0000 0000 0100 0000

Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. Description 2

Cycle Example RET A : PC =TOS





RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$	
Status Affected	-	
OP-Code	0000 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the	
	PC. Interrupts are enabled. This is a two-cycle instruction.	
Cycle	2	
Example	RETI A : PC =TOS, GIE =1	

____

RETLW	Return with Literal in W			
Syntax	RETLW k			
Operands	k : 00h ~ FFh			
Operation	$PC \leftarrow TOS, (W) \leftarrow k$			
Status Affected	-			
OP-Code	0001 1000 kkkk kkkk			
Description	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.			
Cycle	2			
Example	LCALL TABLE	B : W = 0x07		
•	:	A: W = value of k8		
	TABLE ADDWX PCL, 1			
	RETLW k1			
	RETLW k2			
	:			
	RETLW kn			

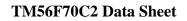
RLX	Rotate Left "f" through Carry
Syntax	RLX f [,d]
Operands	f : 000h ~ 1FFh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	ff00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLX REG1, 0 B : REG1 =1110 0110, C =0
-	A : REG1 =1110 0110
	W =1100 1100, C =1



DDV			
RRX	Rotate Right "f" through Carry		
Syntax	RRX f [,d]		
Operands	$f: 000h \sim 1FFh, d: 0, 1$		
Operation	C Register f		
Status Affected	С		
OP-Code	ff00 1100 dfff ffff		
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		
Cycle	1		
Example	RRX REG1, 0 B : REG1 =1110 0110, C =0		
-	A : REG1 =1110 0110		
	W =0111 0011, C =0		
SLEEP Syntax Operands Operation Status Affected OP-Code Description Cycle Example	Go into Power-down mode, Clock oscillation stops SLEEP - TO, PD 001 1110 0000 0011 Go into Power-down mode with the oscillator stops. 1 SLEEP -		
SUBLW	Subtract W from Literal		
Syntax	SUBLW k		
Operands	k : 00h ~ FFh		
Operation			
Operation Status Affected	$(W) \leftarrow k - (W)$		
1			
Status Affected	$(W) \leftarrow k - (W)$ C, DC, Z		

The W register is subtracted (2's complement method) from the eight-bit literal "k". The result is placed in the W register.

	1	U
Cycle	1	
Example	SUBLW 0x15	B : W =0x25
-		A: W = 0xF0




SUBWX	Subtract W from ''f''			
Syntax	SUBWX f [,d]			
Operands	f : 000h ~ 1FFh, d : 0, 1			
Operation	$(destination) \leftarrow (f) - (W)$			
Status Affected	C, DC, Z			
OP-Code	ff00 0010 dfff ffff			
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
Cycle	1			
Example	SUBWX REG1, 1	B : REG1 =0x03, W =0x02, C =?, Z =?		
		A : REG1 =0x01, W =0x02, C =1, Z =0		
	SUBWX REG1, 1	B : REG1 =0x02, W =0x02, C =?, Z =?		
		A : REG1 =0x00, W =0x02, C =1, Z =1		
	SUBWX REG1, 1	B : REG1 =0x01, W =0x02, C =?, Z =?		
		A : REG1 =0xFF, W =0x02, C =0, Z =0		

_____

SWAPX	Swap Nibbles in ''f''		
Syntax	SWAPX f [,d]		
Operands	f : 000h ~ 1FFh, d : 0, 1		
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0), (destination. 3\sim 0) \leftarrow (f.7\sim 4)$		
Status Affected	-		
OP-Code	ff00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPX REG1, 0	B : REG1 =0xA5 A : REG1 =0xA5, W =0x5A	

TABRH	Return DPTR high byte to W		
Syntax	TABRH		
Operands	-		
Operation	(W) $\leftarrow$ ROM[DPTR] high byte content, Where DPTR = {DPH[max:8], DPL[7:0]}		
Status Affected	-		
OP-Code	0000 0000 0101 1000		
Description	The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle instruction.		
Cycle	2		
Example	MOVLW	(TAB1&0xFF)	
-	MOVWX	DPL	;Where DPL is register
	MOVLW	(TAB1>>8)&0xFF	
	MOVWX	DPH	;Where DPH is register
	TABRL		;W =0x89
	TABRH		;W =0x37
	<b>T</b> + <b>D</b> 1	ORG 0234H	
	TAB1: DT	0x3789, 0x2277	;ROM data 16 bits





TABRL	<b>Return D</b>	PTR low byte to W	
Syntax	TABRL		
Operands	-		
Operation	$(W) \leftarrow ROM$	M[DPTR] low byte conte	nt, Where $DPTR = \{DPH[max:8], DPL[7:0]\}$
Status Affected	-		
OP-Code	0000 0000 (	0101 0000	
Description	The W reg instruction.	ister is loaded with low	v byte of ROM[DPTR]. This is a two-cycle
Cycle	2		
Example	MOVLW	(TAB1&0xFF)	
-	MOVWX	DPL	;Where DPL is register
	MOVLW	(TAB1>>8)&0xFF	
	MOVWX	DPH	;Where DPH is register
	TABRL		;W =0x89
	TABRH		;W =0x37
		ORG 0234H	
	TAB1: DT	0x3789, 0x2277	;ROM data 16 bits

TSTX	Test if "f" is zero		
Syntax	TSTX f		
Operands	f : 000h ~ 1FFh		
Operation	Set Z flag if (f) is 0		
Status Affected	Z		
OP-Code	ff00 1000 1fff ffff		
Description	If the content of register	'f' is 0, Zero flag is set to 1.	
Cycle	1		
Example	TSTX REG1	B : REG1 =0, Z =?	
		A : REG1 =0, Z =1	

XORLW	<b>Exclusive OR Literal</b>	with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	0001 1101 kkkk kkkk	
Description	The contents of the W reg	gister are XOR'ed with the eight-bit literal 'k'. The result
	is placed in the W registe	r.
Cycle	1	
Example	XORLW 0xAF	B: W = 0xB5
-		A: W = 0x1A



XORWX	Exclusive OR W with '	'f''
Syntax	XORWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) XOR$	(f)
Status Affected	Z	
OP-Code	ff00 0110 dfff ffff	
Description		of the W register with register 'f'. If 'd' is 0, the result is 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWX REG1, 1	B : REG1 =0xAF, W =0xB5 A : REG1 =0x1A, W =0xB5

_____



# **ELECTRICAL CHARACTERISTICS**

## **1.** Absolute Maximum Ratings $(T_A = 25 \degree C)$

Parameter	Rating	Unit
Supply voltage	$V_{SS}$ -0.3 to $V_{SS}$ +5.5	
Input voltage	$V_{SS}$ -0.3 to $V_{CC}$ +0.3	V
Output voltage	$V_{SS}$ -0.3 to $V_{CC}$ +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +105	ംറ
Storage temperature	-65 to +150	- C

# 2. DC Characteristics ( $T_A = 25$ °C, $V_{CC} = 5.0$ V, unless otherwise specified)

Parameter	Symbol	Cond	litions	Min.	Typ.	Max.	Unit
Operating Voltage	V	Fsys = 18	.432 MHz	2.2	_	5.5	V
Operating Voltage	V _{cc}	Fsys = 9.	216 MHz	2.0	_	5.5	
Input High Voltage	V _{IH}	All Input	$V_{CC} = 3.0 \sim 5.0 V$	$0.6V_{CC}$	_	V _{CC}	V
Input Low Voltage	V _{IL}	All Input	$V_{CC} = 3.0 \sim 5.0 V$	V _{ss}	-	$0.2V_{CC}$	V
I/O port	т	All I/O nin	$V_{CC} = 5.0V,$ $V_{OH} = 4.5V$	6	12	-	mA
Source Current	I _{OH}	All I/O pin	$V_{CC} = 3.0V,$ $V_{OH} = 2.7V$	2.5	5	-	ША
I/O port	I _{OL} –	All I/O pin (HSINK=1)	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	38	75	_	mA
			$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	18	35	-	
Sink Current		All I/O pin	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	22	43	-	mA
		(HSINK=0)	$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	10	19	_	ША
Input Leakage Current (pin high)	I _{ILH}	All Input	$V_{\rm IN} = V_{\rm CC}$	-	_	1	μΑ
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{\rm IN} = 0V$	-	_	-1	μΑ
I/O pull up register	р	$V_{IN} = 0 V$	$V_{CC} = 5.0V$		35.8		KΩ
I/O pull-up resister	R _{UP}	Ports A, B	$V_{CC} = 3.0V$		36.4		K32



Parameter	Symbol	Cond	itions	Min.	Typ.	Max.	Unit
		FAST mode	$V_{\rm CC} = 5.0 V$	-	TBD	-	
		FIRC18.432 MHz	$V_{\rm CC} = 3.0 V$	-	TBD	-	1
		FAST mode	$V_{CC} = 5.0V$	-	2.5	-	
		FIRC 9.216 MHz	$V_{CC} = 3.0V$	-	1.5	-	mA
		FAST mode	$V_{CC} = 5.0 V$	-	1.9	-	1112 1
		FIRC 4.608 MHz	$V_{\rm CC} = 3.0 V$	-	1.2	_	
		FAST mode	$V_{CC} = 5.0V$	_	1.6	_	
		FIRC 2.304 MHz	$V_{CC} = 3.0V$	-	1.0	—	
		SLOW mode FIRC disable ROMODS=00	$V_{CC} = 5.0 V$	_	140	_	
Operating Current		LDO3V disable LDO1.2V disable POR/LVR enable LVD enable	$V_{CC} = 3.0 V$	_	95	-	-
	I _{DD}	SLOW mode FIRC disable ROMODS=00 LDO3V disable	$V_{CC} = 5.0 V$	_	95	-	
		LDO3 V disable LDO1.2V disable POR/LVR disable LVD enable SLOW mode FIRC disabled ROMODS=00 LDO3V disable LDO1.2V disable POR/LVR disable LVD disable	$V_{CC} = 3.0V$	_	60	-	
			$V_{CC} = 5.0 V$	_	18	-	μΑ
			$V_{CC} = 3.0V$	_	9	_	-
		IDLE mode	$V_{\rm CC} = 5.0 V$	-	80	_	
		POR/LVR disable LVD enable	$V_{CC} = 3.0V$	_	50	—	
		IDLE mode	$V_{\rm CC} = 5.0 V$	_	6.5	_	
		POR/LVR disable LVD disable	$V_{\rm CC} = 3.0 \text{V}$	_	2.0	_	
		STOP mode POR/LVR disable	$V_{\rm CC} = 5.0 \text{V}$	_	_	0.1	
		LVD disable	$V_{\rm CC} = 3.0 V$	_	_	0.1	



### 3. Clock Characteristics

Parameter	Condition	Min.	Тур.	Max.	Unit
	$T_A = -40^{\circ}C \sim 105^{\circ}C  V_{CC} = 3$	.0 ~ 5.5V -2%	18.432	+6%	
FIRC Frequency (*)	$T_A = -40^{\circ}C \sim 105^{\circ}C  V_{CC} = 50^{\circ}C$	.0 V -1.5%	18.432	+1%	MHz
	$T_A = 25^{\circ}C$ $V_{CC} = 5$	.0 V -0.5%	18.432	+6%	

*System clock( $F_{sys}$ ) can be divided by 1/2/4/8.

Parameter		Condition	Min.	Typ.	Max.	Unit
	$T_A = 25 ^{\circ}C$	$V_{CC} = 5.0 \text{ V}$	-	37	-	KHz
SIRC Frequency (*)	$T_A = 25 ^{\circ}C$	$V_{CC} = 3.0 V$	-	33	-	КПZ

*System clock( $F_{sys}$ ) can be divided by 1/2/4/8.

## 4. Reset Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min.	Тур.	Max.	Unit
RESET Input Low width	Input $V_{CC} = 5.0 \text{ V} \pm 10 \text{ \%}$	-	30	-	μs
CDU / / /	$V_{CC} = 5.0 \text{ V}$	-	51	-	
CPU start up time	$V_{CC} = 3.0 V$	-	57	-	ms
WDT time	$V_{CC} = 5.0 \text{ V}, \text{WDTPSC} = 11b$		3542		
WDT time	$V_{CC} = 3.0 \text{ V}, \text{WDTPSC} = 11 \text{b}$	-	3972	_	ms

## **5.** Wakeup Timer (WKT) Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min.	Тур.	Max.	Unit
	$V_{CC} = 5.0 \text{ V}, \text{WKTPSC} = 11 \text{b}$	-	221	-	
WKT time	$V_{CC} = 3.0 \text{ V}, \text{WKTPSC} = 11 \text{b}$	-	248	-	ms



## 6. LVR Circuit Characteristics ( $T_A = 25 \degree C$ )

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	SYSCFG.11~8 = 0000b	-	2.13	_		
		SYSCFG.11~8 = 0001b	_	2.26	_	
	LVR _{th}	SYSCFG.11~8 = 0010b	-	2.40	-	
		SYSCFG.11~8 = 0011b	_	2.54	-	
		SYSCFG.11~8 = 0100b	-	2.69		
		SYSCFG.11~8 = 0101b	_	2.83		
		SYSCFG.11~8 = 0110b	_	2.97		v
	LVD	SYSCFG.11~8 = 0111b	_	3.11		
LVR Voltage	$LVK_{th}$	SYSCFG.11~8 = 1000b	_	3.26		
		SYSCFG.11~8 = 1001b	_	3.40	_	
		SYSCFG.11~8 = 1010b	_	3.54		
		SYSCFG.11~8 = 1011b	_	3.68	_	
		SYSCFG.11~8 = 1100b	-	3.84	_	
		SYSCFG.11~8 = 1101b	_	3.98	_	
		SYSCFG.11~8 = 1110b	_	4.12	_	
		SYSCFG.11~8 = 1111b	_	4.26	_	
LVR Hysteresis Window	V _{HYS_LVR}	-	_	20	_	mV
Low Voltage Detection time	T _{LVR}	-	100	_	-	μs

# **7. LVD Circuit Characteristics** $(T_A = 25 \degree C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		LVDS = 0001b	-	2.24	-	
		LVDS = 0010b	-	2.37	-	
		LVDS = 0011b	-	2.51	_	
		LVDS = 0100b	-	2.65	_	
		LVDS = 0101b	-	2.79	_	
		LVDS = 0110b	-	2.93	_	
		LVDS = 0111b	_	3.07	_	
LVD Voltage	LVD _{th}	LVDS = 1000b	-	3.22	-	V
		LVDS = 1001b	-	3.36	-	
		LVDS = 1010b	-	3.50	-	
		LVDS = 1011b	-	3.64	-	
		LVDS = 1100b	-	3.78	-	
		LVDS = 1101b	-	3.92	-	
		LVDS = 1110b	-	4.06	-	
		LVDS = 1111b	-	4.20	-	
		LVDHYS = 0	-	20	-	
LVD Hysteresis Window	$V_{HYS_LVD}$	LVDHYS = 1 (LVDS=0001b)		40	_	mV
		LVDHYS = 1 (LVDS=1111b)		80		
Low Voltage Detection time	$T_{LVD}$	-	100	_	_	μs



### 8. ADC Characteristics ( $T_A = 25$ °C, $V_{CC} = 3.0$ V to 5.5V, $V_{SS} = 0$ V)

Parameter	Conditions	Min.	Typ.	Max.	Units
Total Accuracy		-	±3	±13	
Integral Non-Linearity	$V_{CC} = 5.0V, V_{SS} = 0V, F_{ADC} = 1 \text{ MHz}$	-	±3.2	±15	LSB
Differential Non-Linearity		-	±1	±4	
	Source impedance (Rs<10K ohm)	-	-	4	
May Insut Cleak frag. (E.	Source impedance (Rs<20K ohm)	-	-	2	MHz
Max Input Clock freq. (F _{ADC} )	Source impedance (Rs<50K ohm)	-	-	1	MHZ
	Source is internal voltage	-	_	4	
Conversion Time	$F_{ADC} = 2 MHz$	-	25	Ι	μs
$V_{CC}/4$ reference voltage	$25^{\circ}$ C, V _{CC} = $3.0$ V~ $5.5$ V	-1%	$0.25 V_{CC}$	+1%	V
Input Voltage	_	V _{ss}	_	V _{CC}	V

## 9. VBG Characteristics ( $V_{CC} = 5.0V, V_{SS} = 0V$ )

Parameter	Conditions	Min.	Тур.	Max.	Units
Bandgap Reference Voltage	25°C	-1%	1.2	+1%	V
(LDO1.2V)	-20°C~105°C	-1.5%	1.2	+1.5%	V
Bandgap Reference Voltage	25°C	-1%	3.0	+1%	V
(VR, LDO3V)	-20°C~105°C	-1.5%	3.0	+1.5%	V

## **10. OPA Characteristics** ( $T_A = 25 \text{ °C}$ , $V_{CC} = 5.0V$ , $V_{SS} = 0V$ )

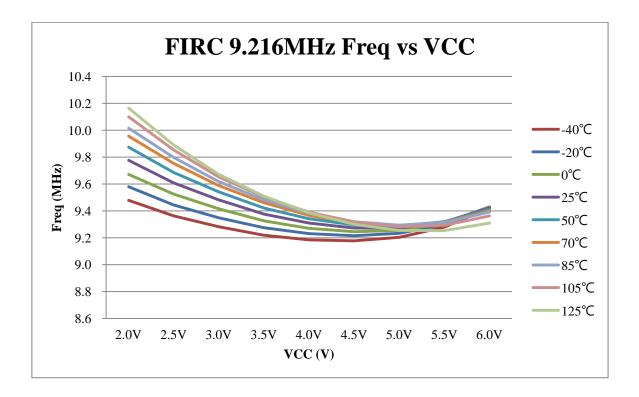
Parameter	Conditions	Min.	Тур.	Max.	Units
Power supply	-	2.2	-	5.5	V
Vicm	_	0.1	-	$V_{CC}$ -0.7	V
Vos2	After trim	-	2	-	mV
$\Delta$ Vos/ $\Delta$ T	After trim	-	4	8	μV/C
AVOL	$\begin{aligned} RL &= 1M \text{ ohm, } CL &= 100 \text{ pF,} \\ Vi &= 0.1 \text{ to } 4V, \text{ Vo} &= 1 \text{ to } 4V \end{aligned}$	_	100	-	dB
GBW	RL = 1M ohm, $CL = 100  pF$	-	2	-	MHz
CMRR	Vo = 2V	-	80	-	dB
PSRR	Vo = 2V	-	80	-	dB
ICC	Gain = 1, OPP = 5V, OPO > 2.5V at $V_{CC} = 5V$	-	200	-	uA
SR	No load	-	1.2	-	V/µs
IOH	Gain = 1, OPP = 5V, OPO > 2.5V at V _{CC} = 5V	_	8	_	mA
IOL	Gain = 1, OPP = 5V, OPO > 2.5V at $V_{CC} = 5V$	_	14	_	mA

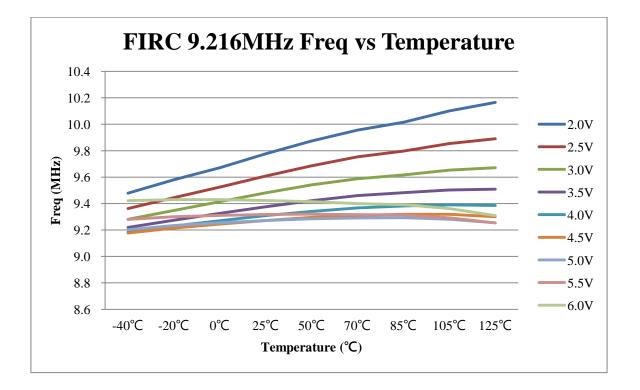


### **11. Comparator Characteristics** ( $T_A = 25$ °C, $V_{CC} = 3.0$ V to 5.5V, $V_{SS} = 0$ V)

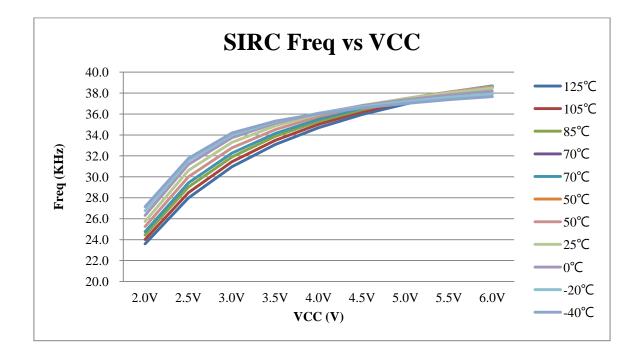
Parameter	Conditions	Min.	Тур.	Max.	Units
Power supply	_	2.2	-	5.5	V
Quiescent Current	$V_{CC} = 5.0V$	-	100	-	μΑ
DAC Current	$V_{CC} = 5.0V$	60	-	220	μΑ
V _{OS_CMP}	$V_{CC} = 5.0V$	-15	-	15	mV
V _{CM_CMP}	$V_{CC} = 5.0V$	0	_	V _{CC} -0.5	V
V _{HYS_CMP}	$V_{CC} = 5.0V$	5	10	20	mV

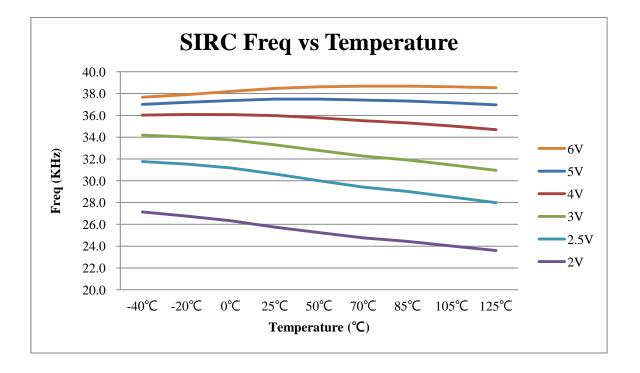
The VSS voltage used by the DAC0/DAC1 module will be raised by about 10mV.


### **12. Emulated EEPROM Characteristics**

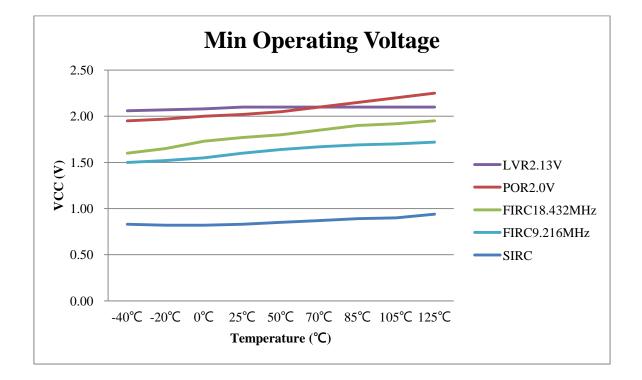

Parameter	Conditions	Min	Тур	Max	Unit
Write Voltage	25°C	4.5	5	5.5	V
Waite Enderson - *	-20°C~85°C	0.5K	_	-	avalaa
Write Endurance*	25°C	1K	_	-	cycles

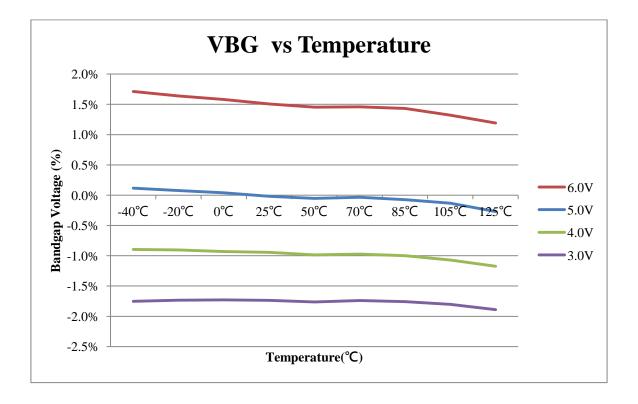
*The value of this parameter is based on the characteristics of tested samples.





# **Characteristics Graphs**







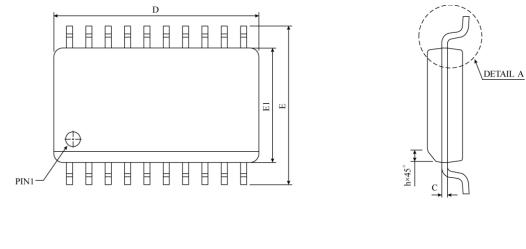












# PACKAGING INFORMATION

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks. The ordering information:

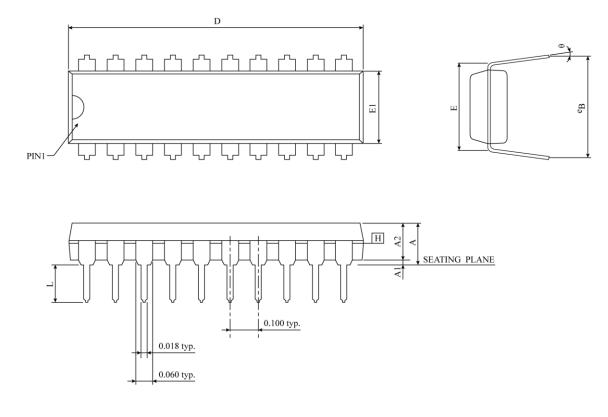
Ordering number	Package
TM56F70C23S	SOP 20-pin (300 mil)
TM56F70C23T	TSSOP 20-pin (173 mil)
TM56F70C23Q	QFN 20-pin (3*3*0.75-0.4mm)
TM56F70C22S	SOP 16-pin (150 mil)



#### SOP-20 (300 mil) Package Dimension








SYMDOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	2.35	2.50	2.65	0.0926	0.0985	0.1043		
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118		
В	0.33	0.42	0.51	0.0130	0.0165	0.0200		
С	0.23	0.28	0.32	0.0091	0.0108	0.0125		
D	12.60	12.80	13.00	0.4961	0.5040	0.5118		
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910		
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992		
e		1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290		
L	0.40	0.84	1.27	0.0160	0.0330	0.0500		
θ	0°	$4^{\circ}$	8°	0°	4°	8°		
JEDEC		MS-013 (AC)						

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



#### DIP-20 (300mil) Package Dimension



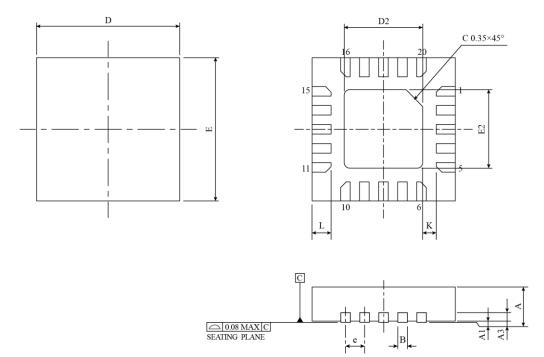
SYMDOL	DI	MENSION IN M	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX			
А	-	-	4.445	-	-	0.175			
A1	0.381	-	-	0.015	-	-			
A2	3.175	3.302	3.429	0.125	0.130	0.135			
D	25.705	26.061	26.416	1.012	1.026	1.040			
Е	7.620	7.747	7.874	0.300	0.305	0.310			
E1	6.223	6.350	6.477	0.245	0.250	0.255			
L	3.048	3.302	3.556	0.120	0.130	0.140			
е _В	8.509	9.017	9.525	0.335	0.355	0.375			
θ	0°	7.5°	15°	0°	7.5°	15°			
JEDEC	MS-001 (AD)								

NOTES :

1.  $\ensuremath{\ensuremath{^\circ}}\xspace^{-1}$  ,  $\ensuremath{\ensuremath{^\circ}}\xspace^{-1}$  , and the ensuremath{\ensuremath{^\circ}}\xspace^{-1} , and the ensuremath{\ensuremath{^\circ}}\xspac

PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.


3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

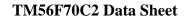
5. DATUM PLANE  $\boxplus$  coincident with the bottom of lead, where lead exits body.



### QFN-20 (3*3*0.75-0.4mm) Package Dimension

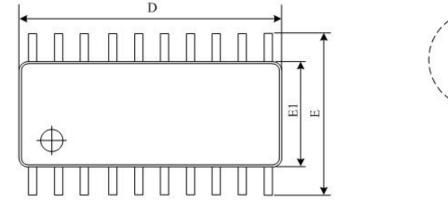


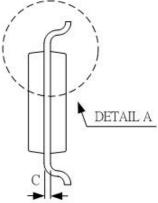
SYMBOL	DI	MENSION IN M	IM	DIMENSION IN INCH		
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.203 REF.				0.008 REF.	
В	0.15	0.20	0.25	0.006	0.008	0.010
D	3.00 BSC			0.118 BSC		
Е		3.00 BSC			0.118 BSC	
e		0.40 BSC			0.016 BSC	
K	0.20	-	-	0.008	-	-
E2	1.60	1.65	1.70	0.063	0.065	0.067
D2	1.60	1.65	1.70	0.063	0.065	0.067
L	0.30	0.40	0.50	0.012	0.016	0.020
JEDEC					•	•

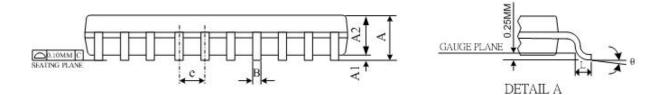

 $\bigtriangleup$  * Notes : 1. All dimension are in millimetrs.

2. DIMENSION B APPLIES TO METALLLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP.

IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL,


THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.


3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.





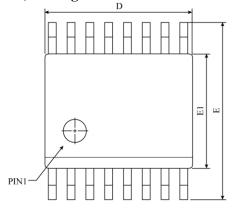

#### TSSOP-20 (173 mil) Package Dimension

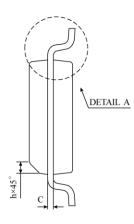


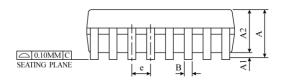


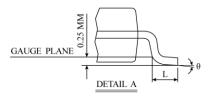


010 (DOI	D	IMENSION IN M	IM	DI	MENSION IN I	NCH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А			1.2	() <b>4</b> ()		0.04
A1	0.05	0.10	0.15	0.002	0.004	0,00
A2	0.8	0.93	1.05	0.031	0.036	0.04
В	0.19	-	0.3	0.007	6 <b>4</b>	0.01
D	6.4	6.5	6.6	0.252	0.256	0.26
E	6.25	6.4	6.55	0.246	0.252	0.25
E1	4.3	4.4	4.5	0.169	0.173	0.17
e		0.65 BSC			0.026 BSC	
L	0.45	0,60	0.75	0.018	0.024	0.03
θ	0 °		8 °	0 °		8 °
JEDEC		MO-153 AC REV.F				


Notes :


^{1.}DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. 2.DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR


^{2.}DIMENSION "ET DOES NOT INCLUDE INTERLEAD PLASH OR PROTRUSION, INTERLEAD PLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE, 3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.

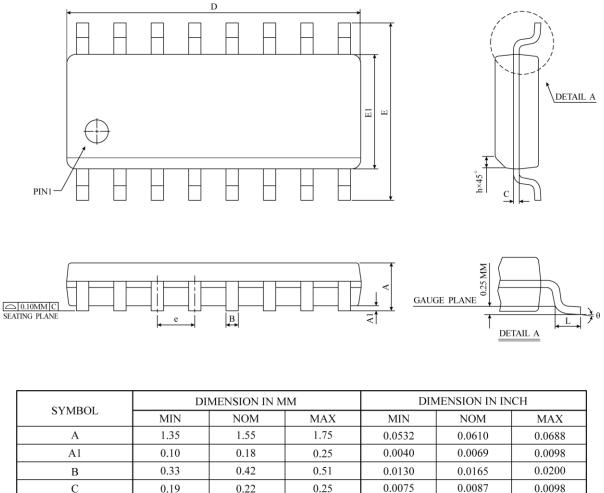



#### SSOP-16 (150mil) Package Dimension










SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH			
STINDUL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e		0.635 BSC			0.025 BSC		
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	$4^{\circ}$	$8^{\circ}$	0°	4°	$8^{\circ}$	
JEDEC	M0-137 (AB)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS, MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



### SOP-16 (150 mil) Package Dimension



С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
E	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e	1.27 BSC			0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	$4^{\circ}$	$8^{\circ}$	0°	4°	8°
JEDEC	MS-012 (AC)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH ) PER SIDE.