

十速

TM57FA40/40A

DATA SHEET

Rev 2.3

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. Tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V1.0	May, 2009	New release
V1.1	Sept, 2009	 Modify system clock mode for fast crystal 455 KHz ~ 12 MHz. Add 8 DIP/SOP in packet types in Features section. Add 8 SOP, 8 DIP figure in Pin Assignment section. In SYSCFG section, bit 11-10, for 01 setting, modify the LVR threshold to 2.9V. In SYSCFG section, bit 9-8, modify the Fast crystal to 455 KHz ~ 12 MHz. Modify CLRWDT description to Clear Watchdog/Wakeup Timer. Add the figures in Clock Timing in Electrical Characteristics section. Add figures for 8-DIP and 8-SOP Package Dimension.
V1.2	Jan, 2010	 Remove 8 DIP/SOP in packet types in Features section. Remove 8 SOP, 8 DIP figures in Pin Assignment section. Modify the default of nPAPU, nPBPU, nPDPU in R-Plane. Modify GOTO / CALL range to 0xFFF. Modify the Operating temperature becomes -40 to +85°C. Modify the temperature in clock timing in Electrical Characteristics section becomes -40 to +85°C. Add FSR.7 fixed 0 in F-Plane. Modify PA1 set by rising/falling edge.
V1.3	Dec, 2010	 Add more description about /Borrow and /Digit Borrow in ALU and Working (W) Register section. Add Internal RC mode description and figure in System Clock Oscillator section. Modify the equation of the frequency calculation in Buzzer Output section. Modify the system block diagram. Modify the ordering information.
V1.4	Oct, 2011	 Modify the package type data. Add description about LVR selection in Reset Section. Modify the data in DC Characteristics.
V1.5	Dec, 2011	Add Ordering Information table in the Packaging Information section.
V1.6	Jan, 2012	Modify Ordering Information table in the Packaging Information section.
V1.7	Jan, 2012	 Add the Electrical Characteristics specs in the Features section. Add description in Reset section. Merge the information about LVR Circuit Characteristics into DC Characteristics table. Modify the Low Voltage Detection Time data in Reset Timing Characteristics.
V1.8	Apr, 2012	 Modify the document, add serial number for TM57FA40A. Add description in Features section about the system clock mode and power on reset. Modify figures in the Pin Assignment section.

DS-TM57FA40_40A_E 2 Rev 2.3, 2018/08/21

		4. Modify the description in Interrupt section.			
		5. Modify the description in Reset section.			
		6. Modify the SYSCFG table.			
		7. Add output high/low current in DC Characteristics section.			
		8. Add description for TM57FA40A about power supply current			
		in DC Characteristics section.			
		9. Add description for TM57FA40A in the ordering information.			
V1.9	Lul 2012	Modify Absolute Maximum Ratings data in Electrical			
V 1.9	Jul, 2012	Characteristics section.			
		1. Add supported EV board on ICE.			
V2.0	Jun, 2013	2. Add Pin Summary.			
		3. Modify Ordering Information.			
V2.1	Aug, 2013	Modify Ordering Information.			
V 2.1	71ug, 2013	Would y Ordering Information.			
V2.2	Feb, 2015	Modify Pin Assignment.			
. 2.2	100, 2010	1.204.19 1.11.130.5			
V2.3	Aug, 2018	Add SOP/DIP8 information			
	<i>U,</i> 1				

DS-TM57FA40_40A_E 3 Rev 2.3, 2018/08/21

CONTENTS

AMI	ENDMENT HISTORY	2
FEA	ATURES	6
BLO	OCK DIAGRAM	7
PIN	ASSIGNMENT	8
	DESCRIPTION	
	SUMMARY	
	NCTIONAL DESCRIPTION	
	. CPU Core	
1.		
	1.1 Clock Scheme and Instruction Cycle	11
	1.2 Addressing Mode	
	1.4 ALU and Working (W) Register	
	1.5 STATUS Register	
	1.6 Interrupt	14
2.	. Chip Operation Mode	15
	2.1 Reset	15
	2.2 System Configuration Register (SYSCFG)	
	2.3 FLASH Program ROM	
	2.4 Power-Down Mode	17
3.	. Peripheral Functional Block	18
	3.1 Watchdog (WDT) / Wakeup (WKT) Timer	18
	3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)	19
	3.3 Timer1: 8-bit Timer with Pre-scale (PSC)	
	3.4 8+2 bit PWM	
	3.5 12-bit ADC	
	3.6 System Clock Oscillator	
4.	. I/O Port	
	4.1 PA0-2	
	4.2 PA3-6, PB0-1, PD0-7	
	4.3 PA7	
	MORY MAP	
F-	-Plane	32
R-	2-Plane	33
INST	TRUCTION SET	35

ELECTRICAL CHARACTERISTICS	47
1. Absolute Maximum Ratings	47
2. DC Characteristics	48
3. Clock Timing	49
4. Reset Timing Characteristics	50
5. ADC Electrical Characteristics	50
PACKAGING INFORMATION	51
20-DIP Package Dimension	52
20-SOP Package Dimension	53
16-DIP Package Dimension	54
16-SOP Package Dimension	
8-DIP (300mil) Package Dimension	
8-SOP (150mil) Package Dimension	

FEATURES

1. ROM: 4K x 14 bits Flash ROM

RAM: 184 x 8 bits
 STACK: 6 Levels

4. I/O ports: Three Programmable I/O ports (Max. 18 pins)

5. Timer0/Counter: 8-bit timer/counter with divided by 1~256 pre-scale option

6. Timer1: 8-bit auto-reloadable timer with divided by 1~256 pre-scale option

7. Two 8+2 bit PWM channels capable of 1024 duty resolution

8. 12-bit ADC with 8 channels input

9. Buzzer output

10. Watchdog/Wakeup Timer: On chip Timer based on internal RC oscillation, 11~132 ms wakeup time

11. Reset: Power On Reset, Watchdog Reset, Low Voltage Reset, External pin Reset

12. System Clock Mode:

- Slow Crystal (SXT): 32 KHz

- Fast Crystal (FXT): 455 KHz ~12 MHz

- Internal RC (IRC): 4 MHz

- External RC (XRC)

13. 2-Level Low Voltage Reset: 2.1V/2.9V (Can be disabled)

14. Operation Voltage: Low Voltage Reset Level to 5.5V

- $fosc = 4 \text{ MHz}, 2.4 \text{ V} \sim 5.5 \text{ V}$

- $fosc = 8 \text{ MHz}, 2.4\text{V} \sim 5.5\text{V}$

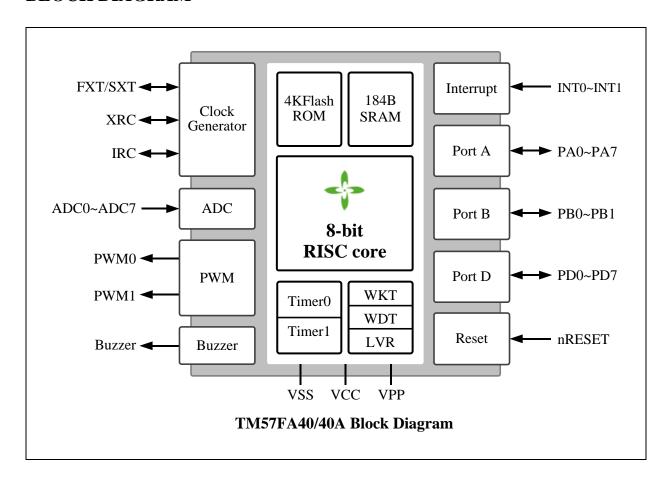
- $fosc = 12 \text{ MHz}, 3.0 \text{ V} \sim 5.5 \text{ V}$

15. Instruction set: 36 Instructions

16. Interrupts: Three pin interrupts, Timer0/Timer1 interrupt and Wakeup Timer interrupt

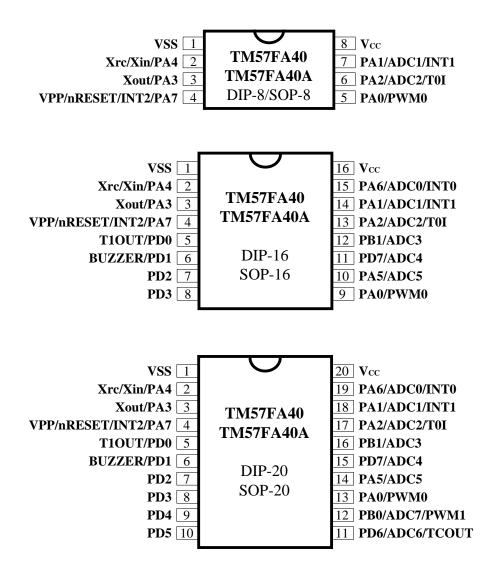
17. Power Down mode support

18. Package Types: 8-DIP/SOP, 16-DIP/SOP, 20-DIP/SOP


Device	Icc in Stop Mode	Note
TM57FA40	0.1 uA@2.2~5V	Power-on Reset disable in Stop mode
TM57FA40A	3 uA@3V, 5 uA@5V	Power-on Reset enable in Stop mode

19. Supported EV board on ICE

EV board: EV2795



BLOCK DIAGRAM

PIN ASSIGNMENT

DS-TM57FA40_40A_E 8 Rev 2.3, 2018/08/21

PIN DESCRIPTION

Name	In/Out	Pin Description
PA2-PA0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS " push-pull " output or " pseudo-open-drain " output. Pull-up resistors are assignable by software.
PA6-PA3 PB1-PB0 PD7-PD0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS " push-pull " output or " open-drain " output. Pull-up resistors are assignable by software.
PA7	I	Schmitt-trigger input
nRESET	I	External active low reset
Xin, Xout	_	Crystal/Resonator oscillator connection for system clock
Xrc		External RC oscillator connection for system clock
VCC, VSS	P	Power input pin and ground
VPP	I	PROM programming high voltage input
INT0~2	I	External interrupt input
TOI	I	Timer0's input in counter mode
T1OUT	О	Timer1 match output, T1OUT toggles when Timer1 overflow occurs.
BUZZER	О	BUZZER output
TCOUT	О	Instruction cycle clock divided by N output. Where N is 1, 2, 4, 8. The instruction clock frequency is system clock frequency divided by two.
PWM0/PWM1	О	10-bit PWM output
ADC7~0	I	A/D channels input

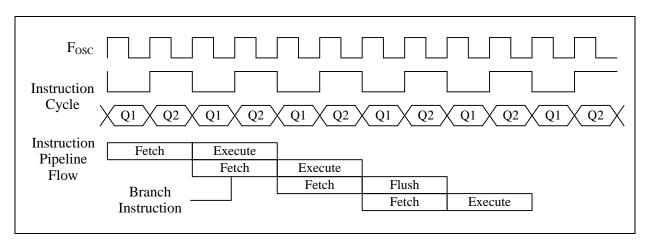
PIN SUMMARY

Pi Nun						GPIO)		t	A	Altern	ate F	unction
				Inj	out	(Outpu	t	Sese				
20-SOP/DIP	4IG/AOS-91	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.0	P.O.D	ďď	Function After Reset	MMd	Touch Key	ADC	MISC
1	1	VSS	P										
2	2	Xrc/Xin/PA4	I/O	0		0		0	SYS				
3	3	Xout/PA3	I/O	0		0		0	SYS				
4	4	VPP/nRESET/INT2/PA7	I	0	0				SYS				nRESET
5	5	T1OUT/PD0	I/O	0		0		0	PD0				T1OUT
6	6	BUZZER/PD1	I/O	0		0		0	PD1				BUZZER
7	7	PD2	I/O	0		0		0	PD2				
8	8	PD3	I/O	0		0		0	PD3				
9	-	PD4	I/O	0		0		0	PD4				
10	-	PD5	I/O	0		0		0	PD5				
11	-	PD6/ADC6/TCOUT	I/O	0		0		0	PD6			0	TCOUT
12	-	PB0/ADC7/PWM1	I/O	0		0		0	PB0	0		0	
13	9	PA0/PWM0	I/O	0			0	0	PA0	0			
14	10	PA5/ADC5	I/O	0		0		0	PA5			0	
15	11	PD7/ADC4	I/O	0		0		0	PD7			0	
16	12	PB1/ADC3	I/O	0		0		0	PB1			0	
17	13	PA2/ADC2/T0I	I/O	0			0	0	PA2			0	TOI
18	14	PA1/ADC1/INT1	I/O	0	0		0	0	PA1			0	
19	15	PA6/ADC0/INT0	I/O	0	0	0		0	PA6			0	
20	16	VCC	P										_

Symbol : P.P. = Push-Pull Output

P.O.D. = Pseudo Open Drain

O.D. = Open Drain SYS = by SYSCFG bit



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

DS-TM57FA40_40A_E 11 Rev 2.3, 2018/08/21

1.2 Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are write-only. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode.

The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address contains in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

	R-Plane
00	MOVWR Instruction Write Only
3F	

	F-P	lane
00		
	SF	TR .
	Bit Add	ressable
1F		
20	RA	
	Bit Add	ressable
27		
28	RAMBANK=0	RAMBANK=1
	Bit Addressable	Bit Addressable
3F		
40	RAMBANK=0	RAMBANK=1
7 F		

1.3 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4K x 14 program ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings.

The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [11:8] keeps unchanged. The STACK is 12-bit wide and 6-level in depth. The CALL instruction and Hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

DS-TM57FA40_40A_E 12 Rev 2.3, 2018/08/21

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

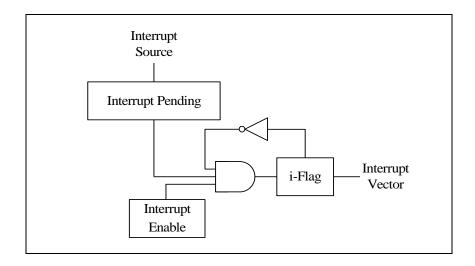
Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reset Value	_	_	0	0	0	0	0	0		
R/W	_	_	R/W	R	R	R/W	R/W	R/W		
Bit		Description								
7-6	Not Used									
5	0: RAN	NK: RAM I Bank0 I Bank1	I Bank Sel	ection						
4				VR Reset,	or CLRWI	OT/SLEEP	instruction	ı		
3	PD: Power Down 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction									
2	Z: Zero Flag 0: the result of a logic operation is not zero 1: the result of a logic operation is zero									
	DC: Decimal Carry Flag or Decimal/Borrow Flag									
		ADD instruction				SUB instruction				
1	1: a carry from the low nibble bits of the result occurs 0: no carry 1: no borrow 0: a borrow from the low nibble bits or result occurs						ibble bits of the			
	C: Carry	Flag or Bo	rrow Flag							
0						SUE	SUB instruction			
U	1: a carry 0: no carr	occurs fro	om the MS	В	1: no bor 0: a borro		from the MS	SB		


DS-TM57FA40_40A_E 13 Rev 2.3, 2018/08/21

1.6 Interrupt

The device has 1 level, 1 vector and six interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its interrupt enable control bit is 0 or 1. Because device has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting. The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

DS-TM57FA40_40A_E 14 Rev 2.3, 2018/08/21

2. Chip Operation Mode

2.1 Reset

The device can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value.

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register. There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with VCC is more than 3.3V, while another one is suitable for application with VCC is less than 3.3V.

See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Threshold Level	Consider the operating voltage to choose LVR
LVR2.9	5.5V > VCC > 3.3V
LVR2.1	VCC is wide voltage range

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value. The TO/PD flag is not affected by these resets.

DS-TM57FA40_40A_E 15 Rev 2.3, 2018/08/21

2.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at Flash INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by FLASH Writer only. User can select clock source, LVR threshold voltage and chip operation mode by SYSCFG register. The 13th bit of SYSCFG is code protection selection bit. If this bit is 1, the data in FLASH will be protected when user reads FLASH.

Bit	13~0							
Default Value	00_0000_000x_xxxx							
Bit		Description						
13	PROTECT: Code Protection Selection							
	1	Enable						
	0	Disable						
12	IVCP	D: IVC*/LVR Power Down in Sleep mode						
	1	IVC/LVR OFF in Sleep mode						
	0	IVC/LVR ON in Sleep mode						
11-10	LVR:	LV reset mode						
	11	2.1V, always enable						
	10	Invalid						
	01	2.9V, always enable						
	00	LVR disable						
9-8	CLK: Clock Source Selection							
	11	Fast Xtal (FXT) (455 KHz~12 MHz)						
	10	Slow Xtal (SXT) (32 KHz)						
	01	Internal RC (IRC) (4 MHz)						
	00	External RC (XRC)						
7	RESET: External pin Reset Enable							
	1	Enable External pin Reset						
	0	Disable External pin Reset						
6	WDT: WDT Reset Enable							
	1	Enable WDT Reset, Disable WKT Timer						
	0	Disable WDT Reset, Enable WKT Timer						
4-0	Reserv	ved by tenx						

^{*} IVC is the chip built-in 3.3V regulator for internal circuit.

DS-TM57FA40_40A_E 16 Rev 2.3, 2018/08/21

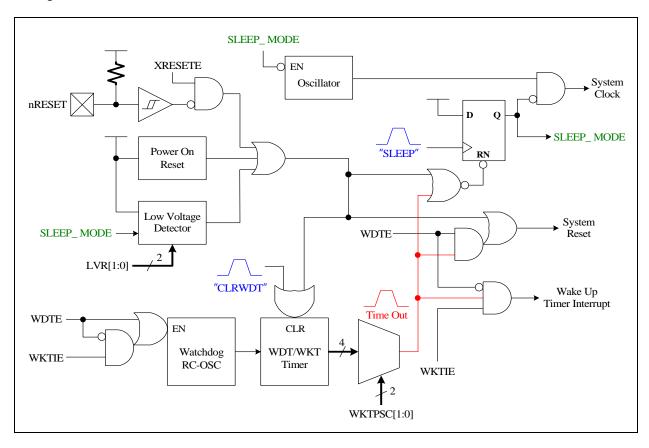
2.3 FLASH Program ROM

The FLASH Program ROM of this device is 4K words, with an extra INFO area to store the SYSCFG. The FLASH ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but can be written only when PROTECT is not set or FLASH ROM is erased. That is, un-protect the PROTECT bit needs the erased FLASH ROM.

000	Reset Vector
001	Interrupt Vector
	User Code
FFF	SVSCEC (INFO area)
	SYSCFG (INFO area)

2.4 Power-Down Mode

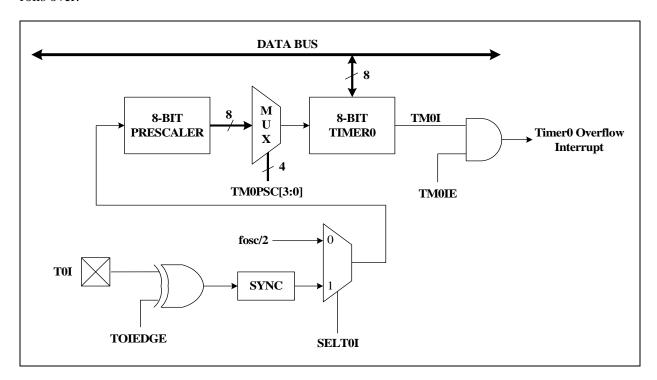
The Power-down mode is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption, while the WDT/WKT Timer is working or not depends on F/W setting. The Power down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT interrupt). In the power down mode, user can enable or disable IVC according to the standby current requirement. Enabled IVC can provide the chip internal circuit more stable 3.3V power.

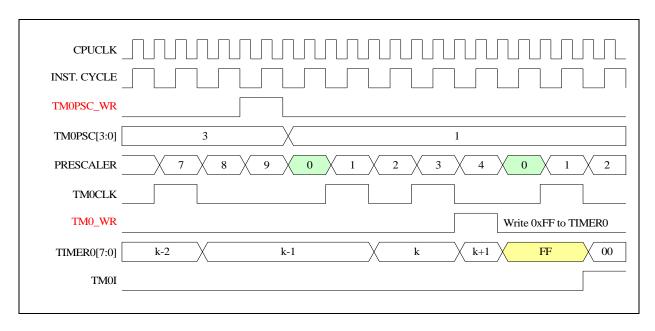

DS-TM57FA40_40A_E 17 Rev 2.3, 2018/08/21

3. Peripheral Functional Block

3.1 Watchdog (WDT) / Wakeup (WKT) Timer

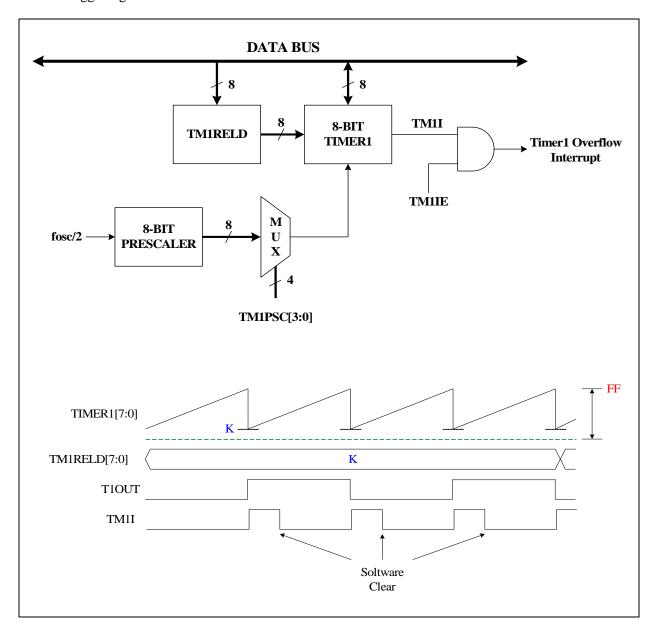
The WDT and WKT share the same internal RC Timer. The overflow period of WDT/WKT can be selected from 11 ms to 132 ms. The WDT/WKT is cleared by the CLRWDT instruction. If the Watchdog Reset is enabled (WDTE=1), the WDT generates the chip reset signal, even in sleep mode, otherwise, the WKT only generates overflow time out interrupt. The WDT/WKT works in both normal mode and sleep mode. If WDTE=0 and WKTIE=0 (Wakeup interrupt disable), the internal RC Timer stops for power saving.



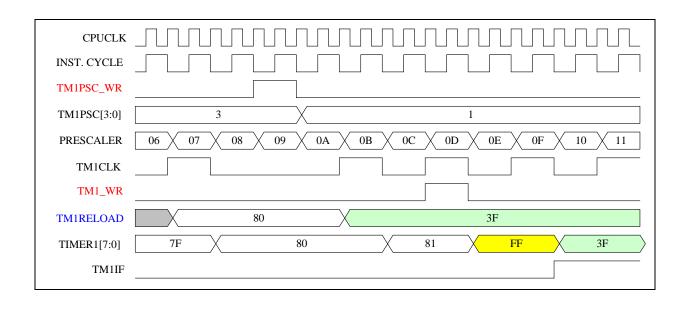

DS-TM57FA40_40A_E 18 Rev 2.3, 2018/08/21

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or T0I input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register in R-Plane. The Timer0 can generate interrupt (TM0I) when it rolls over.

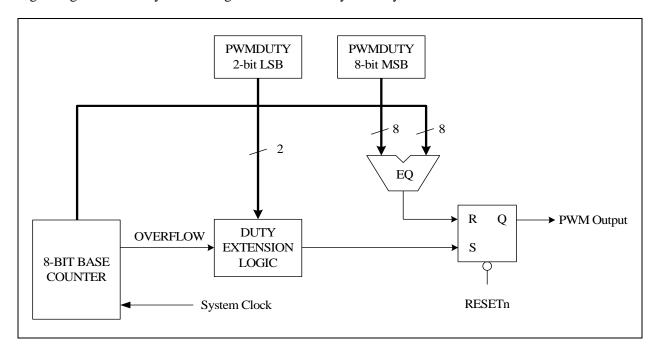


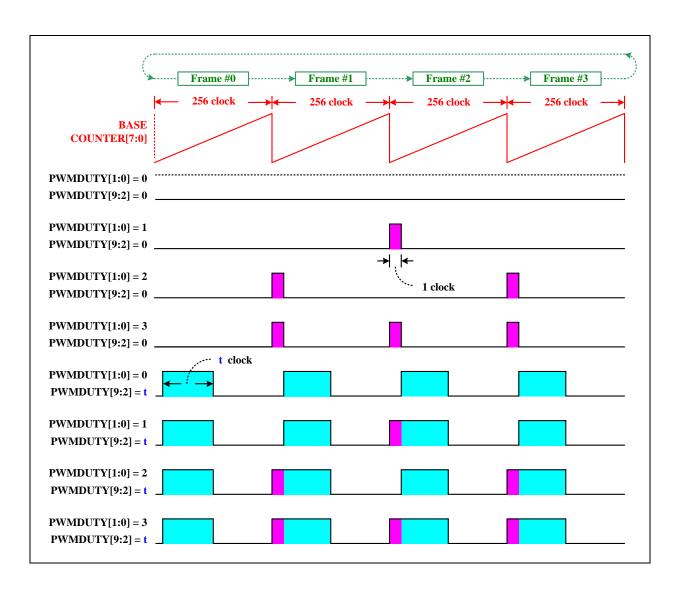
DS-TM57FA40_40A_E 19 Rev 2.3, 2018/08/21


3.3 Timer1: 8-bit Timer with Pre-scale (PSC)

The Timer1 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RELD) while it rolls over based on the pre-scaled instruction clock. The Timer1 increase rate is determined by "Timer1 Pre-Scale" (TM1PSC) register in R-Plane. The Timer1 can generate interrupt (TM1I) and T1OUT toggle signal when it rolls over.

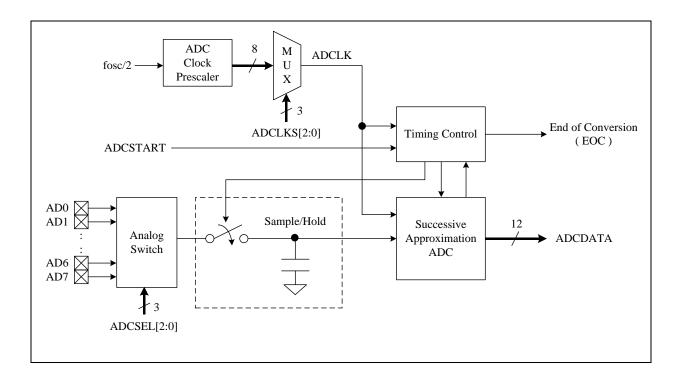
DS-TM57FA40_40A_E 20 Rev 2.3, 2018/08/21



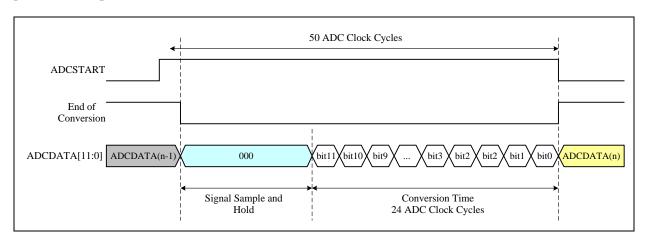

3.4 8+2 bit PWM

PWM0 and PWM1 have the same structure. The PWM can generate fix frequency waveform with 1024 duty resolution based on System Clock. A spread LSB technique allows PWM to run its frequency at "System Clock divided by 256" instead of "System Clock divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register (PWMDUTY). When the base counter rolls over, the 2-bit LSB of PWM duty register decide whether to set the PWM output signal high immediately or set it high after one clock cycle delay.

DS-TM57FA40_40A_E 22 Rev 2.3, 2018/08/21



PWM example code:


movlw	01111111b	
movwf	0ch	;set PWM0DUTY[9:2]=8'b01111111
movlw	11000000b	
movwf	0dh	;set PWM0DUTY[1:0]=2'b11
movlw	01000000b	
movwr	0bh	;enable PWM0 output to PA0 (PWM0_OUT)
:		_
:		
movlw	00h	
movwr	0bh	;disable PWM0 (PWM0_OUT)

3.5 12-bit ADC

The 12-bit ADC (Analog to Digital Converter) consists of an 8-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCLKS to choose a proper ADC clock frequency, which must be less than 2 MHz. User then launches the ADC conversion by setting the ADCSTART control bit. After end of conversion, H/W automatically clears the ADCSTAT bit. User can poll this bit to know the conversion status. The nADC_IE control register is used for ADC pin type setting, user can write the corresponding bit to "0" when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption.

DS-TM57FA40_40A_E 24 Rev 2.3, 2018/08/21

ADC example code:

movlw 00000111b

movwf 11h ;ADC channel select,ADC7(PB0) (ADCSEL)

movlw 00000001h

movwr 09h ;disable PB0 pull up resistor (nPBPU)

movlw 01111111b

movwr 12h ;set ADC7 input enable (nADC_IE)

movlw 00010000b

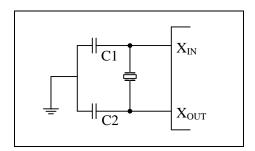
movwr 0ch ;set ADC clock is instruction cycle / 64 (ADCCLKS)

bsf 11h,3 ;start ADC conversion (ADCSTART)

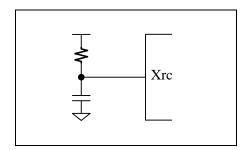
ADC_LOOP:

btfsc 11h,3

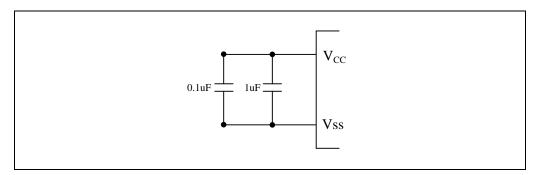
goto ADC_LOOP ;wait ADCSTART go LOW


: ;read ADCQ[11:0] (ADCDQ)

:

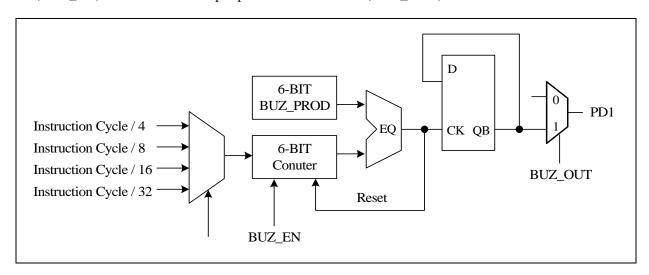


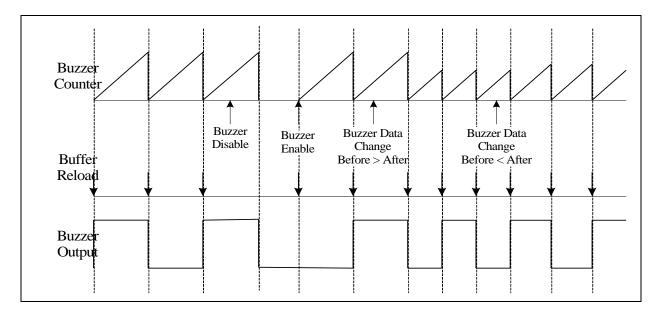
3.6 System Clock Oscillator


System Clock can be operated in four different oscillation modes, which is selected by setting the CLKS in the SYSCFG register. In Slow/Fast Crystal mode, a crystal or ceramic resonator is connected to the Xin and Xout pins to establish oscillation. In external RC mode, the external resistor and capacitor determine the oscillation frequency. In the internal RC mode, the on chip oscillator generates 4 MHz system clock. In this mode, PCB Layout may have strong effect on the stability of Internal Clock Oscillator. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

External Oscillator Circuit (Crystal or Ceramic)

External RC Oscillator


Internal RC Mode


DS-TM57FA40_40A_E 26 Rev 2.3, 2018/08/21

3.7 BUZZER Output

The Buzzer driver consists of 6-bit counter and a clock divider. It generates 50% duty square waveform with wide frequency range. To use the Buzzer function, user needs to set both the Buzzer enable control bit (BUZ_EN) and the Buzzer output pin enable control bit (BUZ_OUT).

DS-TM57FA40_40A_E 27 Rev 2.3, 2018/08/21

BUZ_PROD[5:0] determines output frequency. Frequency calculation is as follows.

$$F_{BZ} = (f_{OSC}/2) / (Instruction Cycle Divider) / (BUZ_PROD +1) / 2$$

Output frequency calculation

CPU Clock (fosc) = 8192 KHz Instruction Cycle = fosc/2 = 8192 KHz/2 = 4096 KHz Prescaler Ratio (BUZ_PSC) = 2'b11 (Instruction Cycle Divider = 32) Period Data (BUZ_PROD) = 9

FBZ = (8192 KHz/2) / 32 / (9+1) / 2 = 6.4 (KHz)

BUZZER example code:

movlw 10000000b

movwr 0bh ; enable BUZZER output to PD1 (BUZ_OUT)

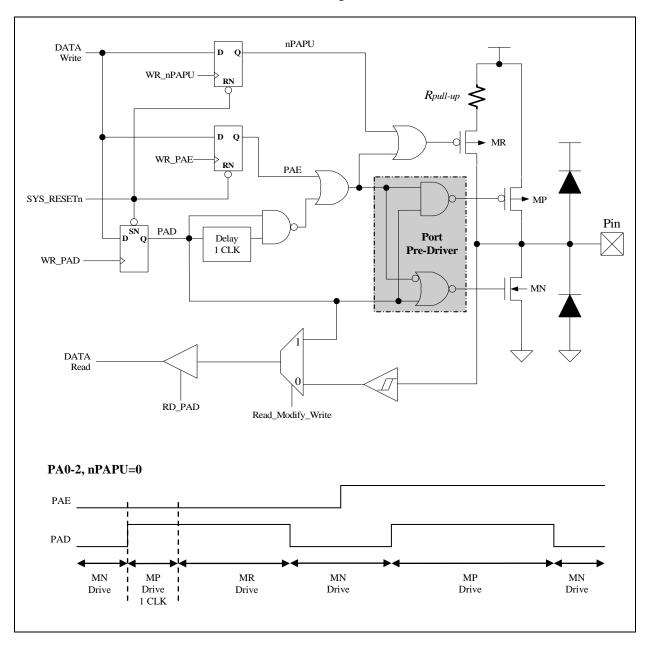
movlw 11001001b ; (fosc/2)/32 (BUZ_PSC) movwr 10h ; Period=9 (BUZ_PROD)

movlw 80h

movwr 0ch ; enable BUZZER counting (BUZ_EN)

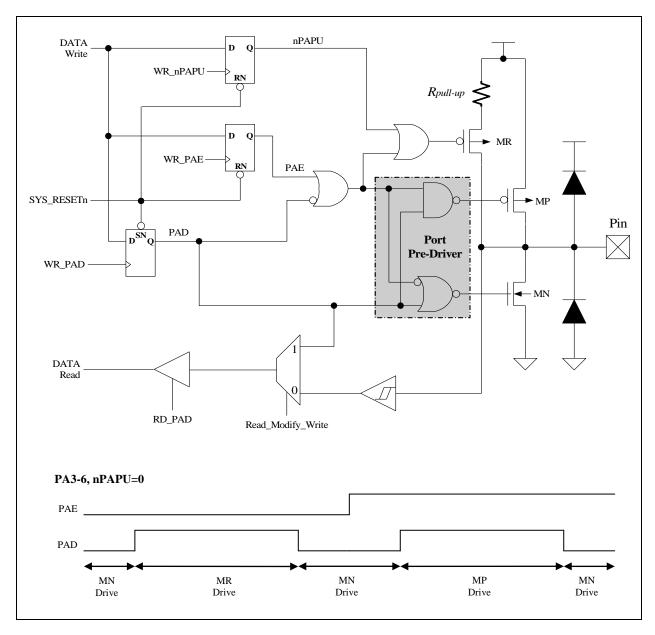
:

movlw 00h


movwr 0ch ; disable BUZZER counting (BUZ_EN)

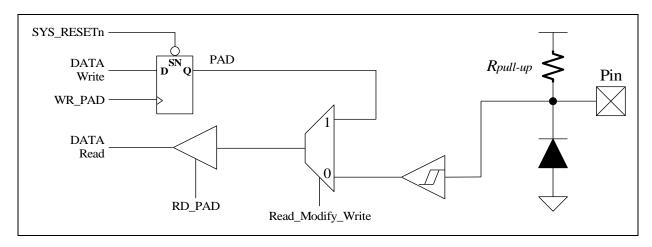
4. I/O Port

4.1 PA0-2


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in **pseudo-open-drain** mode, S/W sets the PAE=0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the other instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

4.2 PA3-6, PB0-1, PD0-7

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure **open-drain** mode, instead.



DS-TM57FA40_40A_E 30 Rev 2.3, 2018/08/21

4.3 PA7

PA7 can be only used in Schmitt-trigger input mode. The pull-up resistor is always connected to this pin.

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description			
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register			
TIMER0	01.7~0	R/W	0	Timer0 content			
PC	02.7~0	R/W	0	Programming Counter [7~0]			
RAMBANK	03.5	R/W	0	RAM Bank Selection			
TO	03.4	R	0	WDT time out flag, cleared by 'SLEEP', 'CLRWDT' instruction			
PD	03.3	R	0	Sleep mode flag, cleared by 'CLRWDT' instruction			
ZFLAG	03.2	R/W	0	Zero Flag			
DCFLAG	03.1	R/W	0	Decimal Carry Flag			
CFLAG	03.0	R/W	0	Carry Flag			
FSR	04.7	R	0	Fixed 0			
rsk	04.6~0	R/W	-	File Select Register, indirect address mode pointer			
PA[7]	05.7	R	-	PA7 pin state			
DAD[6.0]	05.6.0	R	ı	Port A pin or "data register" state			
PAD[6:0]	05.6~0	W	7F	Port A output data register			
PBD[1:0]	06.1~0	R	-	Port B pin or "data register" state			
1 DD[1.0]	00.1~0	W	3	Port B output data register			
DDD[7.01	07.7~0	R	ı	Port D pin or "data register" state			
PDD[7:0]	07.7~0	W	FF	Port D output data register			
TM1I	09.5	R	ı	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows			
TM1I	09.3	W	0	write 0: clear this flag; write 1: no action			
TM0I	09.4	R	ı	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows			
1101	09.4	W	0	write 0: clear this flag; write 1: no action			
WKTI	09.3	R	ı	WKT interrupt event pending flag, set by H/W while WKT time out			
WKII		W	0	write 0: clear this flag; write 1: no action			
		R -		INT2 pin (PA7) interrupt event pending flag, set by H/W at INT2 pin's			
XINT2	09.2			falling edge			
		W	0	write 0: clear this flag; write 1: no action			
XINT1	09.1	R	-	INT1 pin (PA1) interrupt event pending flag, set by H/W at INT1 pin's falling or rising edge			
		W	0	write 0: clear this flag; write 1: no action			
	09.0			INT0 pin (PA6) interrupt event pending flag, set by H/W at INT0 pin's			
XINT0		R	-	falling edge			
		W	0	write 0: clear this flag; write 1: no action			
TIMER1	0a.7~0	R/W	0	Timer1 content			
PWM0DUTY	0c.7~0	R/W	0	PWM0 duty 8-bit MSB			
1 1111111111111111111111111111111111111	0d.7~6	R/W	0	PWM0 duty 2-bit LSB			
PWM1DUTY	0e.7~0	R/W	0	PWM1 duty 8-bit MSB			
1 1111111111111111111111111111111111111	0f.7~6	R/W	0	PWM1 duty 2-bit LSB			
ADCQ	10.7~0	R	-	ADC conversion result ADCQ[11:4]			
	11.7~4	R	-	ADC conversion result ADCQ[3:0]			
ADCSTART	11.3	R	-	H/W clears this bit after ADC end of conversion			
		W	0	S/W sets this bit to start ADC conversion			
ADCSEL	11.2~0	R/W	0	ADC channel select; 0: ADC0, 1: ADC1,,7: ADC7			
RAM	20~27	R/W	-	Internal RAM – Common Area			
	28~7F	R/W	-	Internal RAM – RAM Bank0			
	28~7F	R/W	-	Internal RAM – RAM Bank1			

R-Plane

Name	Address	R/W	Rst	Discription		
TCOUT_PSC	02.7~6	W	0	TCOUT Pre-Scale 00: TCOUT output clock is "Instruction Cycle" divided by 1 01: TCOUT output clock is "Instruction Cycle" divided by 2 10: TCOUT output clock is "Instruction Cycle" divided by 4 11: TCOUT output clock is "Instruction Cycle" divided by 8		
T0IEDGE	02.5	W	0	0: T0I (PA2) rising edge to increase Timer0/PSC count 1: T0I (PA2) falling edge to increase Timer0/PSC count		
SELT0I	02.4	W	0	0: Timer0/PSC clock source is "Instruction Cycle" 1: Timer0/PSC clock source is T0I pin		
TM0PSC	02.3~0	W	0	Timer0 Pre-Scale 0000: Timer0 input clock is "Instruction Cycle" divided by 1 0001: Timer0 input clock is "Instruction Cycle" divided by 2 ~ 0111: Timer0 input clock is "Instruction Cycle" divided by 128 1000: Timer0 input clock is "Instruction Cycle" divided by 256		
PWRDOWN	03	W		write this register to enter Power-Down Mode		
CLRWDT	04	W		write this register to clear WDT/WKT		
PAE	05.6~3	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output		
TAE	05.2~0					
PBE	06.1~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output		
PDE	07.7~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output		
nPAPU	08.6~0	W	7F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) c. the pin is working for Crystal or external RC oscillation d. PA0 is working for PWM0 output 1: the pin pull up resistor is disabled		
nPBPU	09.1~0	W	3	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PBD) is 0 b. the pin's CMOS push-pull mode is chosen (PBE=1) c. PB0 is working for PWM1 output 1: the pin pull up resistor is disabled		
nPDPU	0a.7~0	W	FF	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PDD) is 0 b. the pin's CMOS push-pull mode is chosen (PDE=1) c. the pin is working for T1OUT/BUZZER/TCOUT output 1: the pin pull up resistor is disabled		

Name	Address	R/W	Rst	Discription			
BUZ_OUT	0b.7	W	0	0: disable BUZZER output to PD1 pin			
BUZ_UU1	00.7		U	1: enable BUZZER output to PD1 pin			
PWM0_OUT	0b.6	W	0	0: disable PWM0 output to PA0 pin			
				1: enable PWM0 output to PA0 pin			
PWM1_OUT	0b.5			0: disable PWM1 output to PB0 pin			
				1: enable PWM1 output to PB0 pin 0: INT1 pin (PA1) falling edge to trigger interrupt event			
INT1EDGE	0b.4	W	0	1: INT1 pin (PA1) rising edge to trigger interrupt event			
	01.2			0: disable Instruction Clock divider output to PD6 pin			
TC_OUT	0b.3	W	0	1: enable Instruction Clock divider output to PD6 pin			
TM1_OUT	0b.2 W 0		0	0: disable Timer1 match out (T1OUT) to PD0			
1W11_OU1	00.2	VV	U	1: enable Timer1 match out (T1OUT) to PD0			
				WDT/WKT period (VCC=5V)			
TTTTTTTT C	01 1 0	***		00: 11 ms			
WKTPSC	0b.1~0	W	11	01: 23 ms			
				10: 45 ms 11: 90 ms			
				0: disable BUZZER timer counting			
BUZ_EN	0c.7	W	0	1: enable BUZZER timer counting			
				000: ADC clock is "Instruction Cycle" divided by 128			
A D GT TIG	0 6 4	***	0	001: ADC clock is "Instruction Cycle" divided by 64			
ADCLKS	0c.6~4	W		~			
				111: ADC clock is "Instruction Cycle" divided by 1			
				0000: Timer1 input clock is "Instruction Cycle" divided by 1			
			_	0001: Timer1 input clock is "Instruction Cycle" divided by 2			
TM1PSC	0c.3~0	W	0				
				0111: Timer1 input clock is "Instruction Cycle" divided by 128			
TM1RELD	0d.7~0	W	0	1000: Timer1 input clock is "Instruction Cycle" divided by 256 Timer1 reload offset value while it rolls over			
TM1IE	0a.7~0	W	0	Timer1 interrupt enable, 1=enable, 0=disable			
TM0IE	0e.4	W	0	Timer0 interrupt enable, 1=enable, 0=disable			
WKTIE	0e.3	W	0	Wakeup Timer interrupt enable, 1=enable, 0=disable			
XINT2E	0e.2	W	0	INT2 pin (PA7) interrupt enable, 1=enable, 0=disable			
XINT1E	0e.1	W	0	INT1 pin (PA1) interrupt enable, 1=enable, 0=disable			
XINT0E	0e.0	W	0	INT0 pin (PA6) interrupt enable, 1=enable, 0=disable			
TESTREG	0f.1~0	W	0	Test mode register, for manufacturer only, user does not write it			
				BUZZER Clock Prescaler			
	10.7~6	W	0	00: BUZZER clock is "Instruction Cycle" divided by 4			
BUZ_PSC				01: BUZZER clock is "Instruction Cycle" divided by 8			
				10: BUZZER clock is "Instruction Cycle" divided by 16			
				11: BUZZER clock is "Instruction Cycle" divided by 32			
BUZ_PROD	10.5~0	W	0	BUZZER Period Data. BUZZER output is BUZZER Clock divided by BUZ_PROD			
				Built-in regulator control in sleep mode			
	11.4~3	w	0	00: VCC > 4.5 V			
IVC_REG				01: 4.5 V > VCC > 3.6 V			
		10: 3.6 V > VCC					
ADC_TRIM	11.2~0	W	0	Test mode register, for manufacturer only, user does not write it			
				Each bit controls its corresponding ADC7~0 enable pin, if the bit is			
nADC_IE	12.7~0	W	ff	0: the corresponding pin is ADC input			
				1: the corresponding pin is digital input			

INSTRUCTION SET

Each instruction is a 14-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description					
f	F-Plane Register File Address					
r	R-Plane Register File Address					
b	Bit address					
k	Literal. Constant data or label					
d	Destination selection field, 0: Working register, 1: Register file					
W	Working Register					
Z	Zero Flag					
С	Carry Flag					
DC	Decimal Carry Flag					
PC	Program Counter					
TOS	Top Of Stack					
GIE	Global Interrupt Enable Flag (i-Flag)					
	Option Field					
()	Contents					
	Bit Field					
В	Before					
A	After					
←	Assign direction					

DS-TM57FA40_40A_E 35 Rev 2.3, 2018/08/21

Mnemor	nic	Op Code	Cycle	Flag Affect	Description					
Byte-Oriented File Register Instruction										
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"					
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"					
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"					
CLRW		00 0001 0100 0000	1	Z	Clear W					
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"					
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"					
<u>DECFSZ</u>	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero					
<u>INCF</u>	f,d	00 1010 dfff ffff	1	Z	Increment "f"					
<u>INCFSZ</u>	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero					
<u>IORWF</u>	f,d	00 0100 dfff ffff	1	Z	OR W with "f"					
MOVFW	f	00 1000 0 fff ffff	1	-	Move "f" to W					
MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"					
MOVWR	r	00 0000 0 0rr rrrr	1	-	Move W to "r"					
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry					
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry					
<u>SUBWF</u>	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"					
<u>SWAPF</u>	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"					
<u>TESTZ</u>	f	00 1000 1fff ffff	1	Z	Test if "f" is zero					
<u>XORWF</u>	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"					
		Bit-Oriented	File Regis	ter Instruction	1					
<u>BCF</u>	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"					
<u>BSF</u>	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"					
<u>BTFSC</u>	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear					
<u>BTFSS</u>	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set					
		Literal an	d Control	Instruction						
<u>ADDLW</u>	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W					
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W					
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"					
CLRWDT		00 0000 0000 0100	1	TO, PD	Clear Watchdog/Wakeup Timer					
<u>GOTO</u>	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"					
<u>IORLW</u>	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W					
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W					
<u>NOP</u>		00 0000 0000 0000	1	-	No operation					
<u>RET</u>		00 0000 0100 0000	2	-	Return from subroutine					
<u>RETI</u>		00 0000 0110 0000	2	-	Return from interrupt					
<u>RETLW</u>	k	01 1000 kkkk kkkk	2	-	Return with Literal in W					
SLEEP		00 0000 0000 0011	1	TO, PD	Go into standby mode, Clock oscillation stops					
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W					

ADDLW Add Literal "k" and W

 $\begin{array}{lll} Syntax & ADDLW \ k \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow (W) + k \\ Status \ Affected & C, DC, Z \end{array}$

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W = 0x10

A: W = 0x25

ADDWF Add W and "f"

Syntax ADDWF f [,d] Operands $f: 00h \sim 7Fh \ d: 0, 1$ Operation (Destination) \leftarrow (W) + (f)

Status Affected C, DC, Z OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A : W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

Syntax ANDLW k
Operands k:00h~FFh

Operation $(W) \leftarrow (W)$ 'AND' (f)

Status Affected Z

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3 A: W = 0x03

ANDWF AND W with "f"

Syntax ANDWF f [,d] Operands $f: 00h \sim 7Fh \ d: 0, 1$

Operation (Destination) \leftarrow (W) 'AND' (f)

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register.

If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCF Clear "b" bit of "f"

Syntax BCF f [,b]

Operands $f: 00h \sim 3Fh \quad b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

Example BCF FLAG_REG, 7 B: FLAG_REG = 0xC7

 $A : FLAG_REG = 0x47$

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh \quad b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code 01 001b bbff ffff

Description Bit 'b' in register 'f' is set.

Cycle

Example BSF FLAG_REG, 7 B: FLAG_REG = 0x0A

 $A : FLAG_REG = 0x8A$

BTFSC Test "b" bit of "f", skip if clear(0)

Syntax BTFSC f [,b]

Operands $f: 00h \sim 3Fh \quad b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in

register 'f' is '0', then the next instruction is discarded, and a NOP is executed

instead, making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A : if FLAG.1 = 0, PC = FALSE FALSE ... if FLAG.1 = 1, PC = TRUE

BTFSS Test "b" bit of "f", skip if set(1)

Syntax BTFSS f [,b]

Operands $f: 00h \sim 3Fh \quad b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 1

Status Affected -

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' in

register 'f' is '1', then the next instruction is discarded, and a NOP is executed

instead, making this a 2nd cycle instruction.

Cycle

Example LABEL1 BTFSS FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A: if FLAG.1 = 0, PC = TRUE

FALSE ... if FLAG.1 = 1, PC = FALSE

CALL Call subroutine "k"

 $\begin{array}{ccc} Syntax & CALL \ k \\ Operands & K: 00h \sim FFFh \end{array}$

Operation: TOS \leftarrow (PC)+ 1, PC.11 \sim 0 \leftarrow k

Status Affected

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC = LABEL1

A : PC = SUB1, TOS = LABEL1+1

CLRF Clear "f"

Syntax CLRF f
Operands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example $CLRF FLAG_REG = 0x5A$

A: $FLAG_REG = 0x00$, Z = 1

CLRW Clear W

Syntax CLRW

Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Zero bit (Z) is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer \leftarrow 00h

Status Affected TO, PD

OP-Code 00 0000 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter = ?

A: WDT counter = 0x00

COMF Complement "f"

SyntaxCOMF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation(destination) \leftarrow (\bar{f})Status AffectedZ

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If

'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example COMF REG1,0 B: REG1 = 0x13

A: REG1 = 0x13, W = 0xEC

DECF Decrement "f"

SyntaxDECF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - 1$

Status Affected Z

OP-Code 00 0011 dfff ffff

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle 1

Example DECF CNT, 1 B: CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECFSZ Decrement "f", Skip if 0

Syntax DECFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a

2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECFSZ CNT, 1 B: PC = LABEL1

GOTO LOOP A: CNT = CNT - 1

CONTINUE if CNT=0, PC = CONTINUE if CNT \neq 0, PC = LABEL1+1

GOTO Unconditional Branch

 $\begin{tabular}{lll} Syntax & GOTO k \\ Operands & k:00h \sim FFFh \\ Operation & PC.11 \sim 0 \leftarrow k \end{tabular}$

Status Affected

OP-Code 11 kkkk kkkk kkkk

Description GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC bits

<11:0>. GOTO is a two-cycle instruction.

Cycle 2

Example LABEL1 GOTO SUB1 B: PC = LABEL1

A: PC = SUB1

INCF Increment "f"

Syntax INCF f [,d] Operands $f: 00h \sim 7Fh$

Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code 00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCF CNT, 1 B: CNT = 0xFF, Z = 0

A: CNT = 0x00, Z = 1

INCFSZ Increment "f", Skip if 0

Syntax INCFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCFSZ CNT, 1 B : PC = LABEL1

GOTO LOOP A : CNT = CNT + 1

CONTINUE if CNT=0, PC = CONTINUE

if $CNT \neq 0$, PC = LABEL1+1

IORLW Inclusive OR Literal with W

 $\begin{array}{lll} \text{Syntax} & & \text{IORLW k} \\ \text{Operands} & & \text{k}:00\text{h} \sim \text{FFh} \\ \text{Operation} & & (\text{W}) \leftarrow (\text{W}) \text{ OR k} \\ \end{array}$

Status Affected Z

OP-Code 01 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example IORLW 0x35 B: W = 0x9A

A: W = 0xBF, Z = 0

IORWF Inclusive OR W with "f"

 $\begin{tabular}{ll} Syntax & IORWF f [,d] \\ Operands & f: 00h \sim 7Fh, d: 0, 1 \\ Operation & (destination) \leftarrow (W) OR k \\ \end{tabular}$

Status Affected Z

OP-Code 00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWF RESULT, 0 B: RESULT = 0x13, W = 0x91

A: RESULT = 0x13, W = 0x93, Z = 0

MOVFW Move "f" to W

SyntaxMOVFW fOperands $f: 00h \sim 7Fh$ Operation $(W) \leftarrow (f)$

Status Affected

OP-Code 00 1000 0fff ffff

Description The contents of register f are moved to W register.

Cycle 1

Example MOVF FSR, 0 B: W = ?

 $A: W \leftarrow f$, if W = 0 Z = 1

MOVLW Move Literal to W

SyntaxMOVLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow k$

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle

Example MOVLW 0x5A B: W = ?

A: W = 0x5A

MOVWF Move W to "f"

 $\begin{array}{ll} \text{Syntax} & \text{MOVWF f} \\ \text{Operands} & \text{f}: 00\text{h} \sim 7\text{Fh} \\ \text{Operation} & \text{(f)} \leftarrow (\text{W}) \\ \end{array}$

Status Affected

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWF REG1 B : REG1 = 0xFF, W = 0x4F

A: REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

SyntaxMOVWR rOperands $r:00h \sim 3Fh$ Operation $(r) \leftarrow (W)$

Status Affected

OP-Code 00 0000 00rr rrrr

Description Move data from W register to register 'r'.

Cycle

Example MOVWR REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

NOP No Operation

Syntax NOP

Operation - No Operation

Status Affected

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RETI Return from Interrupt

Syntax RETI

Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$ Status Affected -

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example A: PC = TOS, GIE = 1

RETLW Return with Literal in W

 $\begin{array}{lll} \text{Syntax} & \text{RETLW k} \\ \text{Operands} & \text{k}: 00\text{h} \sim \text{FFh} \\ \text{Operation} & \text{PC} \leftarrow \text{TOS}, (\text{W}) \leftarrow \text{k} \\ \text{Status Affected} & \text{-} \end{array}$

OP-Code 01 1000 kkkk kkkk

Description The W register is loaded with the 8-bit literal 'k'. The program counter is loaded

from the top of the stack (the return address). This is a two-cycle instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWF PCL,1 RETLW k1

RETLW k2

RETLW kn

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected -

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded

into the program counter. This is a two-cycle instruction.

Cycle 2

Example RETURN A: PC = TOS

RLF Rotate Left f through Carry

Syntax RLF f [,d]

Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation C Register f

Status Affected C

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

Example RLF REG1,0 B: REG1 = 1110 0110, C = 0

A: REG1 = 1110 0110

 $W = 1100 \ 1100, C = 1$

RRF Rotate Right "f" through Carry

Syntax RRF f [,d]

Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation C Register f

Status Affected C

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in

register 'f'.

Cycle 1

Example RRF REG1,0 B: REG1 = $1110\ 0110$, C = 0

A: REG1 = 1110 0110

 $W = 0111\ 0011, C = 0$

SLEEP Go into standby mode, Clock oscillation stops

Syntax SLEEP
Operands Operation -

Status Affected TO, PD

OP-Code 00 0000 0000 0011

Description Go into SLEEP mode with the oscillator stopped.

Cycle

Example SLEEP

SUBWF Subtract W from "f"

 $\begin{array}{lll} Syntax & SUBWF f [,d] \\ Operands & f:00h \sim 7Fh, d:0, 1 \\ Operation & (W) \leftarrow (f) - (W) \\ Status Affected & C, DC, Z \\ OP-Code & 00 0010 dfff ffff \end{array}$

Description Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result

is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example SUBWF REG1,1 B : REG1 = 3, W = 2, C = ?, Z = ?

A: REG1 = 1, W = 2, C = 1, Z = 0

SUBWF REG1,1 B: REG1 = 2, W = 2, C = ?, Z = ?

A : REG1 = 0, W = 2, C = 1, Z = 1

SUBWF REG1,1 B: REG1 = 1, W = 2, C = ?, Z = ?

A: REG1 = FFh, W = 2, C = 0, Z = 0

SWAPF Swap Nibbles in "f"

Syntax SWAPF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination, $7\sim4$) \leftarrow (f.3 \sim 0), (destination. $3\sim0$) \leftarrow (f.7 ~4)

Status Affected -

OP-Code 00 1110 dfff ffff

Description The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is

placed in W register. If 'd' is 1, the result is placed in register 'f'.

Cycle 1

Example SWAPF REG, 0 B : REG1 = 0xA5

A : REG1 = 0xA5, W = 0x5A

TESTZ Test if "f" is zero

SyntaxTESTZ fOperands $f: 00h \sim 7Fh$ OperationSet Z flag if (f) is 0

Status Affected Z

OP-Code 00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle 1

Example TESTZ REG1 B: REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

SyntaxXORLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow (W)$ XOR k

Status Affected Z

OP-Code 01 1111 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example XORLW 0xAF B: W = 0xB5

A: W = 0x1A

XORWF Exclusive OR W with "f"

Syntax XORWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (W) XOR (f)

Status Affected Z

OP-Code 00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWF REG 1 B : REG = 0xAF, W = 0xB5

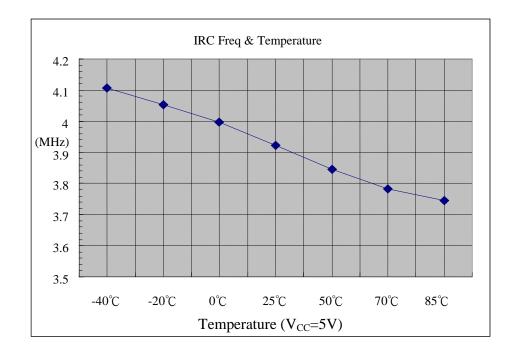
A : REG = 0x1A, W = 0xB5

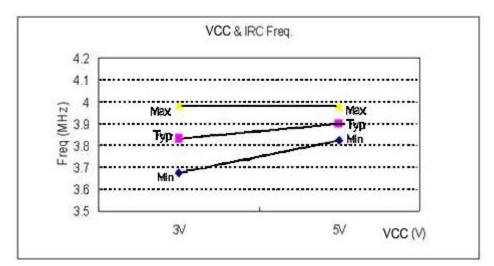
ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \,^{\circ}\text{C})$

Parameter	Rating	Unit
Supply voltage	V_{SS} - 0.3 to V_{SS} + 6.5	
Input voltage	V_{SS} - 0.3 to V_{CC} + 0.3	V
Output voltage	V_{SS} - 0.3 to V_{CC} + 0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	mA
Output current low per 1 PIN	+30	IIIA
Output current low per all PIN	+150	
Maximum Operating Voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	C

DS-TM57FA40_40A_E 47 Rev 2.3, 2018/08/21


2. DC Characteristics ($T_A = 25 \text{ C}$, $V_{CC} = 2.0 \text{V}$ to 5.5 V)


Parameter	Sym	Con	nditions	Min	Тур	Max	Unit													
		All Input,	$V_{CC} = 5V$	$0.5V_{CC}$			V													
Input High Voltage	V_{IH}	except PA7	$V_{CC} = 3V$	$0.55V_{CC}$			V													
		PA7	$V_{CC} = 3 \sim 5V$	$0.6V_{CC}$			V													
		All Input,	$V_{CC} = 5V$			$0.3V_{CC}$	V													
Input Low Voltage	V_{IL}	except PA7	$V_{CC} = 3V$			$0.25V_{CC}$	V													
		PA7	$V_{CC} = 3\sim 5V$			$0.4V_{CC}$	V													
Output High Current	I_{OH}	All Output	$V_{CC} = 5V, V_{OH} = 4.5V$	3 2	7		mA													
			$V_{CC} = 3V, V_{OH} = 2.7V$ $V_{CC} = 5V, V_{OL} = 0.5V$	9	18															
Output Low Current	I_{OL}	All Output	$V_{CC} = 3$ $V_{CC} = 3$ $V_{V_{OL}} = 0.3V$	4	8		mA													
Input Leakage Current (pin high)	$I_{\rm ILH}$	All Input	$V_{IN} = V_{CC}$	_	_	1	uA													
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{\rm IN} = 0V$	_	-	-1	uA													
		Run 10 MHz No Load	$V_{CC} = 4.5 \text{ to } 5.5 \text{V}$		5		A													
	I_{CC}		Run 4 MHz No Load	$V_{\rm CC} = 2.0 V$	_	1		mA												
														Stop mode	$V_{CC} = 5V$, $IVC_REG = 0$, IVC disable		5	7		
		No Load (TM57FA40A)	$V_{CC} = 5V$, IVC enable	_		200														
Power Supply Current		I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}	I_{CC}			$V_{CC} = 2.6V$ $IVC_REG = 2$, IVC disable		5	7	υ. Δ
															G. 1	$V_{CC} = 5V$, $IVC_REG = 0$, IVC disable		0.1	1	uA
		Stop mode No Load (TM57FA40)	$V_{CC} = 5V$, IVC enable	_		200														
		(11/13/17/40)	$V_{CC} = 2.6V$ $IVC_REG = 2$, IVC disable		0.1	1														
Contain Class			$V_{CC} = 3.0V$			12														
System Clock Frequency	f_{OSC}	$V_{CC} > LVR_{th}$	$V_{CC} = 2.6V$	_		10	MHz													
Troquency			$V_{CC} = 2.4V$			4~8														
LVR reference Vol	tage		$ m V_{LVR}$	1.8	2.1	2.3	V													
				2.6	2.9	3.2														
LVR Hysteresis Vo	ltage	`	$V_{ m HYST}$	_	±0.1	_	V													
Low Voltage Detection time			t_{LVR}	100	_	-	μs													
Dull Un Desister	D	$V_{IN} = 0 V$ Ports A/B/D	$V_{CC} = 5V$ $V_{CC} = 3V$		130 300		k													
Pull-Up Resistor	R_P	$V_{IN} = 0 V$ PA7	$V_{CC} = 5V$ $V_{CC} = 3V$		80 90		k													

3. Clock Timing $(T_A = -40 \text{ C to } +85 \text{ C})$

Parameter		Condition			Тур	Max	Unit	
		R = 5K	C = 33 pF	-	1.8	_		
	$V_{CC} = 3V$	R = 10K	C = 100 pF	-	0.73	_		
External DC Eraquanay		R = 100K	C = 300 pF	-	0.04	_	1	
External RC Frequency	$V_{CC} = 5V$	R = 5K	C = 33 pF	_	2.5	_	MHz	
		R = 10K	C = 100 pF	-	0.66	_	MITIZ	
		R = 100K	C = 300 pF	-	0.03	_		
Internal DC Fraguency	$V_{CC} = 4.75 \text{ to } 5.25 \text{V}$		Typ-2%	3.9	Typ+2%			
Internal RC Frequency	•	$V_{\rm CC} = 2.8 \text{ to } 3$.2V	Typ+4%	3.83	Typ+4%		

DS-TM57FA40_40A_E 49 Rev 2.3, 2018/08/21

4. Reset Timing Characteristics ($T_A = 25$ °C, $V_{CC} = 2.0V$ to 5.5V)

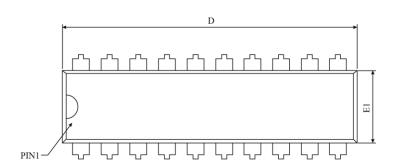
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5V \pm 10 \%$	3	_	_	μs
WDT wolcoup time	$V_{CC} = 5V$, WKTPSC = 11	80	90	100	ma
WDT wakeup time	$V_{CC} = 3V$, WKTPSC = 11	108	120	132	ms
CPU start up time	$V_{CC} = 5V$	_	3.5	-	ms

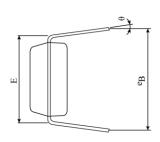
5. ADC Electrical Characteristics ($T_A = 25$ °C, $V_{CC} = 2.0V$ to 5.5V, VSS = 0V)

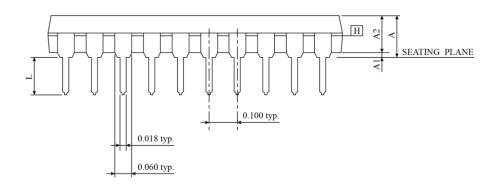
Parameter	Conditions	Min	Тур	Max	Units
Total Accuracy	$V_{CC} = 5.12V, VSS = 0V$	_	± 2.5	± 4	LSB
Integral Non-Linearity		_	± 3.2	± 5	LSD
Max Input Clock (f _{ADC})	_	_	_	2	MHz
Conversion Time	$f_{ADC} = 2 \text{ MHz}$	_	25	_	μs
Input Voltage	-	VSS	_	V_{CC}	V

DS-TM57FA40_40A_E 50 Rev 2.3, 2018/08/21

PACKAGING INFORMATION

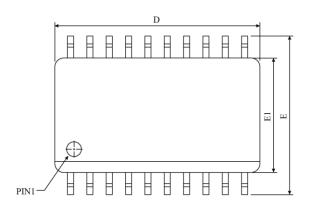

The ordering information:

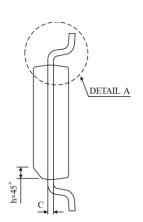

Ordering number	Package
TM57FA40-MTP TM57FA40A-MTP	Wafer / Dice blank chip
TM57FA40-COD TM57FA40A-COD	Wafer / Dice with code
TM57FA40-MTP-03 TM57FA40A-MTP-03	DIP 16-pin (300 mil)
TM57FA40-MTP-16 TM57FA40A-MTP-16	SOP 16-pin (150 mil)
TM57FA40-MTP-05 TM57FA40A-MTP-05	DIP 20-pin (300 mil)
TM57FA40-MTP-21 TM57FA40A-MTP-21	SOP 20-pin (300 mil)
TM57FA40-MTP-01 TM57FA40A-MTP-01	DIP 8-pin (300 mil)
TM57FA40-MTP-14 TM57FA40A-MTP-14	SOP 8-pin (150 mil)

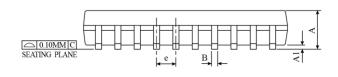

DS-TM57FA40_40A_E 51 Rev 2.3, 2018/08/21

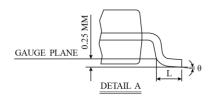
20-DIP Package Dimension

SYMBOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
STMBOL	MIN	MAX	MIN	MAX	
A	-	4.445	-	0.175	
A1	0.381	-	0.015	-	
A2	3.175	3.429	0.125	0.135	
D	25.705	26.416	1.012	1.040	
Е	7.620	7.874	0.300	0.310	
E1	6.223	6.477	0.245	0.255	
L	3.048	3.556	0.120	0.140	
eВ	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (AD)				

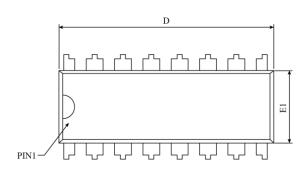

NOTES:

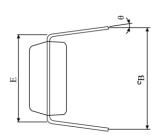

- "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE \boxplus COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

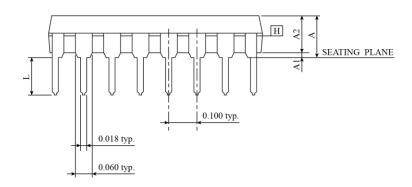

DS-TM57FA40_40A_E 52 Rev 2.3, 2018/08/21



20-SOP Package Dimension

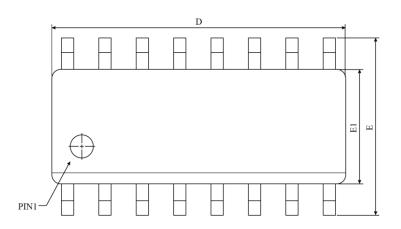

CVMDOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	2.35	2.65	0.0926	0.1043	
A1	0.10	0.30	0.0040	0.0118	
В	0.33	0.51	0.013	0.020	
С	0.23	0.32	0.0091	0.0125	
D	12.60	13.00	0.4961	0.5118	
Е	10.00	10.65	0.394	0.491	
E1	7.40	7.60	0.2914	0.2992	
e	1.27	BSC	0.050 BSC		
h	0.25	0.75	0.010	0.029	
L	0.40	1.27	0.016	0.050	
θ	0°	8°	0°	8°	
JEDEC	MS-013 (AC)				

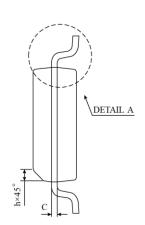

 \triangle *NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

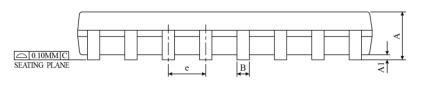

DS-TM57FA40_40A_E 53 Rev 2.3, 2018/08/21

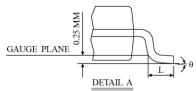
16-DIP Package Dimension

CVADOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	-	4.369	-	0.172	
A1	0.381	0.965	0.015	0.038	
A2	3.175	3.429	0.125	0.135	
D	18.669	19.685	0.735	0.775	
Е	7.620	BSC	0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
eB	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (BB)				


NOTES:


- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE \boxplus COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

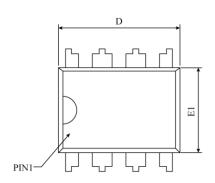

DS-TM57FA40_40A_E 54 Rev 2.3, 2018/08/21

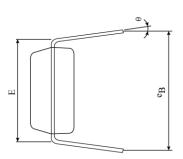


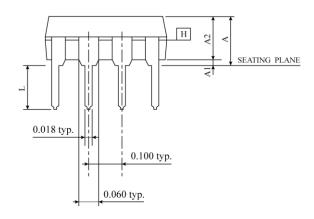
16-SOP Package Dimension

CAMBOI	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.0532	0.0688	
A1	0.10	0.25	0.0040	0.0098	
В	0.33	0.51	0.013	0.020	
С	0.19	0.25	0.0075	0.0098	
D	9.80	10.00	0.3859	0.3937	
Е	5.80	6.20	0.2284	0.2440	
E1	3.80	4.00	0.1497	0.1574	
e	1.27	BSC	0.050 BSC		
h	0.25	0.50	0.0099	0.0196	
L	0.40	1.27	0.016	0.050	
θ	0°	8°	0°	8°	
JEDEC	MS-012 (AC)				

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

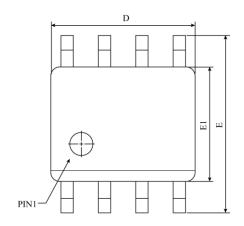

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

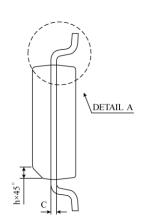

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

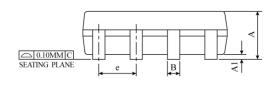

DS-TM57FA40_40A_E 55 Rev 2.3, 2018/08/21

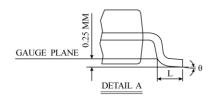
8-DIP (300mil) Package Dimension

CVMDOL	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	-	-	5.334	-	-	0.210
A1	0.381	-	-	0.015	-	-
A2	3.175	3.302	3.429	0.125	0.130	0.135
D	9.017	9.586	10.160	0.355	0.378	0.400
Е		7.620 BSC		0.300 BSC		
E1	6.223	6.350	6.477	0.245	0.250	0.255
L	2.921	3.366	3.810	0.115	0.133	0.150
eВ	8.509	9.017	9.525	0.335	0.355	0.375
θ	0°	7.5°	15°	0°	7.5°	15°
JEDEC	MS-001 (BA)					


NOTES


- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


DS-TM57FA40_40A_E 56 Rev 2.3, 2018/08/21



8-SOP (150mil) Package Dimension

CVMDOL	DI	MENSION IN M	1M	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	4.80	4.90	5.00	0.1890	0.1939	0.1988	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e		1.27 BSC		0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		MS-012 (AA)					

DS-TM57FA40_40A_E 57 Rev 2.3, 2018/08/21