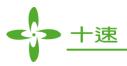


tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

Version	Date	Description			
V0.90	May, 2013	New release			
V0.91	Sep, 2013	 Add supported EV board on ICE Add 18-pin and 16-pin DIP/SOP Pin assignment Add Pin Summary Modify code sample Modify LVR Modify Ordering Information Add 18-pin and 16-pin DIP/SOP Package Dimension 			
V0.92	Mar, 2018	1. Add SSOP-16 and MSOP-8 package type			
V0.93	Jun, 2018	1. Add Comparator Characteristics			



CONTENTS

AMENDMENT HISTORY	2
CONTENTS	3
FEATURES	5
BLOCK DIAGRAM	8
PIN ASSIGNMENT	9
PIN DESCRIPTION	10
PIN SUMMARY	11
FUNCTIONAL DESCRIPTION	12
1. CPU Core	
 1.1 Clock Scheme and Instruction Cycle 1.2 RAM Addressing Mode 1.3 Programming Counter (PC) and Stack	13 15 17 18
2 Chip Operation Mode	24
 2.1 Reset	25 26 26 27 29
3. Peripheral Functional Block	35
 3.1 Watchdog (WDT) Timer	37 41 43 46 48
4. I/O Port	51
 4.1 PA0-2 4.2 PA3-6, PB0-7, PD0-1 4.3 PA7 	53 55
MEMORY MAP	58



F-Plane	
R-Plane	61
INSTRUCTION SET	64
ELECTRICAL CHARACTERISTICS	77
1. Absolute Maximum Ratings	77
2. DC Characteristics	78
3. Clock Timing	80
4. Reset Timing Characteristics	80
5. Comparator Characteristics	80
6. Characteristic Graphs	
PACKAGING INFORMATION	
8-MSOP Package Dimension	
14-DIP Package Dimension	
14-SOP Package Dimension	
16-DIP Package Dimension	89
16-SOP Package Dimension	
16-SSOP Package Dimension	
18-DIP Package Dimension	
18-SOP Package Dimension	
20-DIP Package Dimension	
20-SOP Package Dimension	95

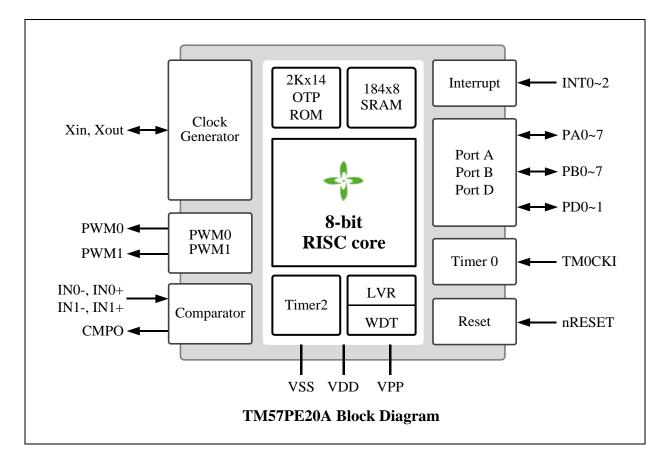
FEATURES


- **1.** ROM: 2K x 14 bits OTP or 1K x 14 bits TTP[™] (Two Time Programmable ROM)
- **2.** RAM: 184 x 8 bits
- 3. STACK: 5 Levels
- 4. I/O Ports: Three bit-programmable I/O ports (Max. 18 pins)
- 5. Two Independent Timers
 - Timer0
 - 8-bit timer0 with divided by 1 ~ 256 pre-scale option / counter / interrupt / stop function
 - T2
 - 15-bit T2 with 4 interrupt interval time options
 - IDLE mode wake-up timer or used as one simple 15-bit time base
 - Clock source: SXT or SIRC/2
- 6. Two Independent PWMs
 - One 8-bit PWM0 with pre-scale / period-adjustment / buffer-reload / clear and hold function
 - One 8-bit PWM1 with simple fixed frequency and duty cycle
- 7. One analog voltage comparator
- 8. Min. Operating Voltage (power on) and Speed: VDD can be lowest to 1.6V when the Fsys is 4 MHz
- 9. PA1 ~ PA6, PB1 ~ PB6 individual pin low level wake up
- 10. System Oscillation Sources (Fsys)
 - Fast-clock
 - FXT (Fast Crystal): 1 MHz ~ 24 MHz
 - FIRC (Fast Internal RC): 8 MHz
 - Slow-clock
 - SXT (Slow Crystal): 32768 Hz
 - SIRC (Slow Internal RC)
 - $V_{DD} = 5V$, SIRC = 110 KHz
 - $V_{DD} = 3V$, SIRC = 88 KHz
- **11.** System Clock Prescaler: System Oscillation Sources can be divided by 16 / 4 / 2 / 1 as System Clock (Fsys)

- **12.** Power Saving Operation Modes
 - FAST Mode: Fast-clock keeps CPU running
 - SLOW Mode: Fast-clock stops, Slow-clock keeps CPU running
 - IDLE Mode: Fast-clock and CPU stop, T2 keeps running
 - STOP Mode: All Clocks stop, T2 stops
- **13.** Dual System Clock
 - FIRC + SIRC
 - FIRC + SXT
 - FXT + SIRC

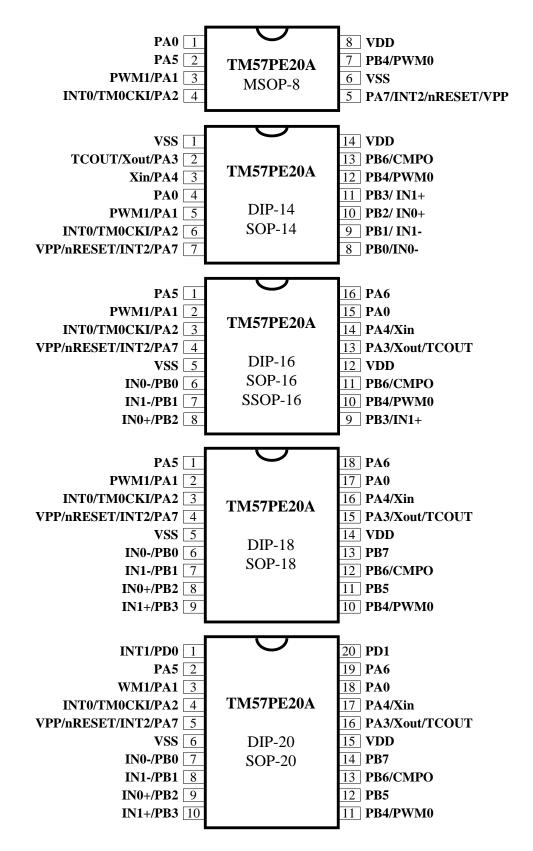
```
14. Reset Sources
```

- Power On Reset
- Watchdog Reset
- Low Voltage Reset
- External pin Reset
- **15.** 3-Level Low Voltage Reset: 1.6V / 2.1V / 3.0V (can be disabled)
- 16. 2-Level Low Voltage Detect: 2.2V / 3.1V (can be disabled)
- 17. Enhanced Power Noise Rejection
- **18.** Built-in Power Management circuitry
- **19.** Operation Voltage: Low Voltage Reset Level to 5.5V
 - Fsys = 4 MHz, 1.6V ~ 5.5V
 - Fsys = 8 MHz, 2.1V ~ 5.5V
 - Fsys = 16 MHz, 3.1V ~ 5.5V
- **20.** Operating Temperature Range: -40°C to +85°C
- **21.** Interrupts
 - Three External Interrupt Pins
 - Two pins are falling edge triggered
 - One pin is rising or falling edge triggered
 - Timer0 / T2 / Comparator Interrupts
- 22. Watchdog Timer (WDT)
 - Clocked by built-in RC oscillator with 4 adjustable Reset time options
 - $V_{DD} = 5V$, WDT = 152 ms / 76 ms / 38 ms / 19 ms
 - $V_{DD} = 3V$, WDT = 192 ms / 96 ms / 48 ms / 24 ms
 - Watchdog timer can be disabled/enabled in Power-down mode



- 23. I/O Port Modes
 - Pseudo-Open-Drain Output (PA2 ~ PA0)
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option
- 24. Table Read Instruction: 14-bit ROM data lookup table
- **25.** Support 5-wire program
- **26.** Instruction set: 39 Instructions
- **27.** Package Types:
 - 8-pin MSOP (118mil)
 - 14-pin DIP (300 mil)
 - 14-pin SOP (150 mil)
 - 18-pin DIP (300 mil)
 - 18-pin SOP (300 mil)
 - 16-pin DIP (300 mil)
 - 16-pin SOP (150 mil)
 - 16-pin SSOP(150mil)
 - 20-pin DIP (300 mil)
 - 20-pin SOP (300 mil)
- **28.** Supported EV board on ICE

EV board: EV2774



BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

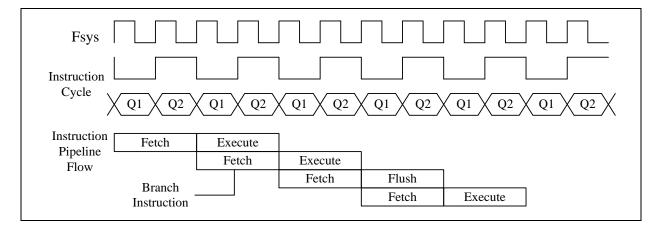
Name	In/Out	Pin Description			
PA0–PA2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.			
PA3–PA6	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.			
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input or open-drain output. Pull-up resistor is assignable by software.			
PB0–PB7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.			
PD0-PD1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output open-drain output. Pull-up resistors are assignable by software.			
nRESET	Ι	External active low reset			
Xin, Xout	_	Crystal/Resonator oscillator connection for system clock			
TCOUT	0	Instruction cycle clock output. The instruction clock frequency is system clock frequency divided by two (Fsys/2)			
VDD, VSS	Р	Power Voltage input pin and ground			
VPP	Ι	PROM programming high voltage input			
INT0-INT2	Ι	External interrupt input			
PWM0-PWM1	0	PWM output			
TM0CKI	Ι	Timer0's input in counter mode			
IN0-, IN0+ IN1-, IN1+	Ι	Comparator voltage input			
СМРО	0	Comparator output			

PIN SUMMARY

	Pin Number					GPIO					A	ltern	ate Fı	inction		
			JP				Inj	out	(Dutpu	ıt	er				
20-SOP/DIP	18-SOP/DIP	14-SOP/DIP	40SS/4IQ/40S-91	40SM-8	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	Q.O	P.O.D	P.P	Function After Reset	MMd	Touch Key	ADC	MISC
1	-	-	-	-	INT1/PD0	I/O	0	0	0		0	PD0				
2	1	-	1	2	PA5	I/O	0		0		0	PA5				
3	2	5	2	3	PWM1/PA1	I/O	0			0	0	PA1	0			
4	3	6	3	4	INT0/TM0CKI /PA2	I/O	0	0		0	0	PA2				TM0CKI
5	4	7	4	5	VPP/Nreset /INT2/PA7	I/O	0	0	0			PA7				nRESET
6	5	1	5	6	VSS	Р										
7	6	8	6	-	IN0-/PB0	I/O	0		0		0	PB0				IN0-
8	7	9	7	-	IN1-/PB1	I/O	0		0		0	PB1				IN1-
9	8	10	8	-	IN0+/PB2	I/O	0		0		0	PB2				IN0+
10	9	11	9	-	IN1+/PB3	I/O	0		0		0	PB3				IN1+
11	10	12	10	7	PB4/PWM0	I/O	0		0		0	PB4	0			
12	11	-	-	-	PB5	I/O	0		0		0	PB5				
13	12	13	11	-	PB6/CMPO	I/O	0		0		0	PB6				CMPO
14	13	-	-	-	PB7	I/O	0		0		0	PB7				
15	14	14	12	8	VDD	Р										
16	15	2	13	-	PA3/Xout/ TCOUT	I/O	0		0		0	PA3				Xout/ TCOUT
17	16	3	14	-	PA4/Xin	I/O	0		0		0	PA4				Xin
18	17	4	15	1	PA0	I/O	0			0	0	PA0				
19	18	-	16	-	PA6	I/O	0		0		0	PA6				
20	-	-	-	-	PD1	I/O	0		0		0	PD1				

Symbol : P.P. = Push-Pull Output

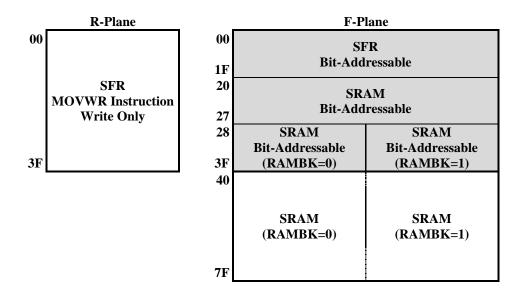
P.O.D. = Pseudo Open Drain O.D. = Open Drain



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle


The system clock (Fsys) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.6~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bitaddressable. And there are two RAM banks can be selected by RAMBK (F03.5).

◊Example: Write immediate data into R-Plane register

MOVLW AAH ; Move immediate AAH into W register ; Move W value into R-Plane location 05H MOVWR 05H ◊Example: Write immediate data into F-Plane register MOVLW 55H ; Move immediate 55H into W register ; Move W value into F-Plane location 20H MOVWF 20H **Example:** Move F-Plane location 20H data into W register MOVFW 20H ; To get a content of F-Plane location 20H to W ◊Example: Clear SRAM Bank0 data by indirect addressing mode MOVLW 20H ; W = 20H (SRAM start address) MOVWF FSR ; Set start address of user SRAM into FSR register BCF STATUS, 5 ; Set RAMBK = 0LOOP: MOVLW 00H MOVWF INDF ; Clear user SRAM data INCF FSR, 1 ; Increment the FSR for next address MOVLW 80H ; W = 80H (SRAM end address) XORWF FSR, 0 ; Check the FSR is end address of user SRAM?

; Check the Z flag

; If Z = 0, goto LOOP label ; If Z = 1, exit LOOP

•••

BTFSS

GOTO

STATUS, 2

LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 11-bit wide capable of addressing a 2K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 11 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[10:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC[10:8]. The STACK is 11-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instructions pop the STACK level in order.

For table lookup, the device offers the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W register by setting the DPTR = {DPH, DPL} registers in F-Plane.

	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
START:		0.011	
	MOVLW	00H	
	MOVWF	INDEX	; Set lookup table's address (INDEX)
LOOP:			
	MOVFW	INDEX	; Move INDEX value to W register
	CALL	TABLE	; To Lookup data ($W = 55H$ when INDEX = 00H)
	INCF	INDEX, 1	; Increment the INDEX for next address
	GOTO	LOOP	; Goto LOOP label
	ORG	X00H	; X = 1, 2, 3,, 6, 7
TABLE:			
	ADDWF	PCL, 1	; (Addr = $X00H$) Add the W with PCL, the result
			; back in PCL
	RETLW	55H	; $W = 55H$ when return
	RETLW	56H	; $W = 56H$ when return
	RETLW	58H	; $W = 58H$ when return

Example: To look up the PROM data located "TABLE"

Note: TM57PE20A defines 256 ROM addresses as one page, so that TM57PE20A has eight pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, ..., and 700H~7FFH. On the other words, PC[10:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X=1, 2, 3, ..., 6, 7). If a lookup table has fewer data, it needs not set the starting address at X00H, just only confirm all lookup table data are located at the same page.

ORG 000H ; Reset Vector GOTO START ; Goto user program address START: ; Get high byte address of TABLE label MOVLW (TABLE>>8)&0xff ; DPH (F17.1~0) = 02H MOVWF DPH (TABLE)&0xff MOVLW ; Get low byte address of TABLE label MOVWF DPL ; DPL (F04.7~0) = 80H LOOP: TABRL ; W = 86H when $DTPR = \{DPH, DPL\} = 0280H$; W = 19H when $DTPR = \{DPH, DPL\} = 0280H$ TABRH . . . **INCF** DPL, 1 ; Increment the DPL for next address . . . GOTO LOOP ; Goto LOOP label ORG 280H TABLE: 0x1986 ; 14-bit ROM data DT DT 0x3719 ; 14-bit ROM data

Example: To look up the PROM data located in "TABLE" by TABRL and TABRH instructions

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU, the reset status, and the voltage status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits. The RAMBK bit is used to the SRAM Bank selection. The LVD bit is a voltage status flag. It is affected by the power supply voltage (V_{DD}). The LVD threshold voltage is chosen by SYSCFG[11:10].

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reset Value	0	0	-	0	0	0	0	0		
R/W	R	R/W	-	R	R	R/W	R/W	R/W		
Bit				Desci	ription					
7	LVD thresh 0: V _{DD} vo	LVD : Low Voltage Detect Flag LVD threshold is 2.2V/3.1V when LVR is 2.1V/3.0V 0: V _{DD} voltage is more than LVD threshold, LVR is disabled or VDDFLT (R0E.6) = 1 1: V _{DD} voltage is less than LVD threshold								
6	GB0: Gene	ral Purpose	Bit 0							
5	0: SRAM I	RAMBK: SRAM Bank Selection 0: SRAM Bank0 1: SRAM Bank1								
4	TO : Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions 1: WDT time out occurs									
3	PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction									
2	Z : Zero Flag 0: the result of a logic operation is not zero 1: the result of a logic operation is zero									
	DC: Decim	al Carry Fla	g or Decima	l /Borrow F	lag					
	ADD instruction SUB instruction									
1	0: no carry 1: a carry from the low nibble bits of the result occurs0: a borrow from the low nibble bits of the result occurs1: no borrow							ts of the		
	C: Carry Flag or /Borrow Flag									
0		ADD ins	struction			SUB ins	struction			
0	0: no carry0: a borrow occurs from the MSB1: a carry occurs from the MSB1: no borrow									

 \bigcirc Example: Write immediate data into STATUS register

MOVLW	00H	
MOVWF	STATUS	; Clear STATUS register

 \bigcirc Example: Bit addressing set and clear STATUS register

BSF	STATUS, 0	; Set C = 1
BCF	STATUS, 0	; Clear $C = 0$

♦ Example: Determine the C flag by BTFSS instruction

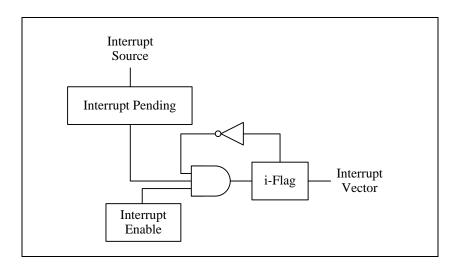
BTFSS	STATUS, 0	; Check the C flag
GOTO	LABEL_1	; If $C = 0$, goto LABEL_1 label
GOTO	LABEL_2	; If $C = 1$, goto LABEL_2 label

♦ Example: Detect low supply voltage by the LVD flag

LOOP:

BTFSC	STATUS, 7	; Check the LVD flag
GOTO	LowBattery	; If LVD = 1, goto LowBattery label
GOTO	LOOP	; If $LVD = 0$, goto LOOP label

19



1.6 Interrupt

The TM57PE20A has 1 level, 1 vector and 6 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PE20A has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Example: Setup INTO (PA2) interrupt request with rising edge trigger

	ORG GOTO	000H START	; Reset Vector ; Goto user program address
	ORG GOTO	001H INT	; All interrupt vector ; If INT0 (PA2) input occurred rising edge
START:	ORG	002H	
START.	MOVLW MOVWR	xx <u>00</u> xxxxB PAMODL	; Select INT0 (PA2) pin mode as ; Open drain output low or input with Pull-up
	MOVLW MOVWF	xxxxx <u>1</u> xxB PAD	; Release INTO (PA2), it becomes Schmitt-trigger ; input mode with input pull-up resistor
	MOVLW MOVWR MOVLW	0xx <u>1</u> x0xxB R0B 1111111 0 B	; Set INTO interrupt trigger as rising edge
	MOVWF MOVLW	INTIF 0000000 <u>1</u> B	; Clear INT0 interrupt request flag
MAIN:	MOVWF	INTIE	; Enable INT0 interrupt
	GOTO	MAIN	
INT:	MOVWF MOVFW MOVWF	20H STATUS 21H	; Store W data to SRAM 20H ; Get STATUS data ; Store STATUS data to SRAM 21H
	BTFSS GOTO 	INTOIF EXIT_INT	; Check INT0IF bit ; INT0IF = 0, exit interrupt subroutine ; INT0 interrupt service routine
EXIT_INT	MOVLW MOVWF	1111111 <u>0</u> B INTIF	; Clear INT0 interrupt request flag
	MOVFW MOVWF MOVFW RETI	21H STATUS 20H	; Get SRAM 21H data ; Restore STATUS data ; Restore W data ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	—	T2IE	CMPIE	TM0IE	_	INT2IE	INT1IE	INTOIE
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	—	0	0	0	_	0	0	0
F08.6	T2IE : T2 interrupt enable 0: disable 1: enable							
F08.5	5 CMPIE : Comparator interrupt enable 0: disable 1: enable							
F08.4	TM0IE : Timer0 interrupt enable 0: disable 1: enable							
F08.2	INT2IE : INT 0: disable 1: enable	Γ2 (PA7) pin	interrupt ena	ıble				
F08.1	INT1IE : INT1 (PD0) pin interrupt enable 0: disable 1: enable							
F08.0	INTOIE : INTO (PA2) pin interrupt enable 0: disable 1: enable							

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	—	T2IF	CMPIF	TM0IF	—	INT2IF	INT1IF	INT0IF
R/W	—	R/W	R/W	R/W	—	R/W	R/W	R/W
Reset	—	0	0	0	—	0	0	0

F09.6	T2IF : T2 interrupt event pending flag
	This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag
F 00 f	
F09 5	CMPIF : Comparator interrupt event pending flag

- F09.5 **CMPIF**: Comparator interrupt event pending flag This bit is set by H/W at Comparator output falling/rising edge, write 0 to this bit will clear this flag
- F09.4 **TM0IF**: Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag
- F09.2 **INT2IF**: INT2 interrupt event pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag
- F09.1 **INT1IF**: INT1 interrupt event pending flag This bit is set by H/W at INT1 pin's falling edge, write 0 to this bit will clear this flag
- F09.0 **INTOIF**: INTO interrupt event pending flag This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	_	T2PSC		INT0EDG	TCOE	_	WDTI	PSC
R/W	_	W		W	W	_	W	
Reset	_	0	0	0	0	_	1	1

R0B.4 INT0EDG: INT0 pin (PA2) edge interrupt event

0: falling edge to trigger

1: rising edge to trigger

2 Chip Operation Mode

2.1 Reset

The TM57PE20A can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

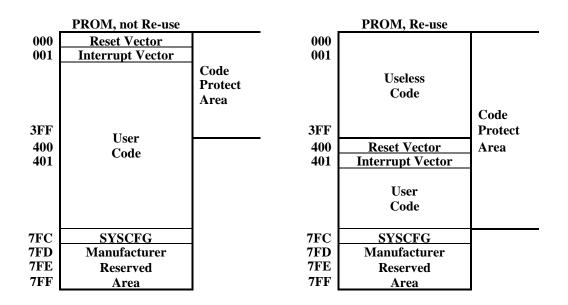
There are three voltage selections for the LVR threshold level, one is higher level which is suitable for application with V_{DD} is more than 3.6V, the second one is suitable for application with V_{DD} is more than 3.0V, while another one is suitable for application with V_{DD} is less than 3.0V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Threshold Level	Consider the operating voltage to choose LVR
LVR3.0	$5.5V > V_{DD} > 3.6V$
LVR2.1	$5.5V > V_{DD} > 3.0V$
LVR1.6	V _{DD} is wide voltage range

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value.

2.2 System Configuration Register (SYSCFG)


The System Configuration Register (SYSCFG) is located at ROM address 7FCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 13th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

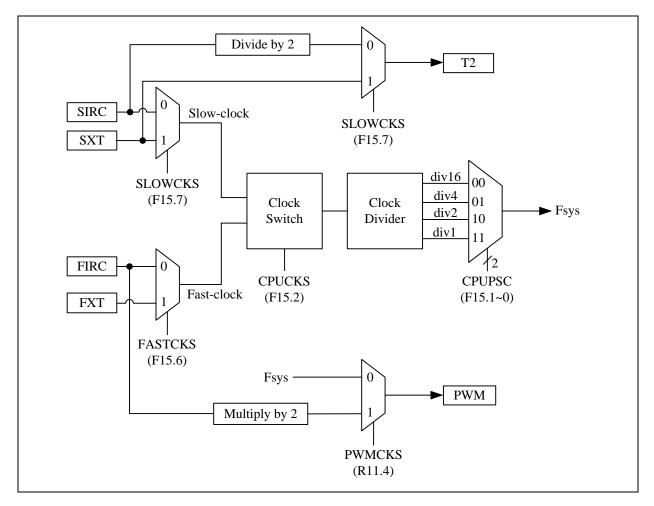
Bit		13~0			
Default Value	11111111111				
Bit		Description			
	PROTECT: (Code protection selection			
13	0	Enable			
	1	Disable			
	REUSE : PRC	M Re-use control			
12	0	Enable			
	1	Disable			
	LVR: Low Vo	oltage Reset Mode			
	00	LVR = 3.0V, LVD = 3.1V, always enable			
11-10	01	LVR = 2.1V, LVD = 2.2V, always enable			
	10	LVR disable, LVD disable			
	11	LVR = 1.6V; always enable. LVD disable			
9-8	Reserved				
	XRSTE : Exte	ernal Pin (PA7) Reset Enable			
7	0	Disable, PA7 as IO pin			
	1	Enable			
	WDTE: WDT Reset Enable				
6-5	0x	WDT Reset Disable			
0-5	10	WDT Reset Enable in Fast/Slow Mode, Disable in Power-down Mode			
	11	WDT Reset Always Enable			
4-0	Reserved				

2.3 PROM Re-use ROM

The PROM of this device is 2K words. For some F/W program, the program size could be less than 1K words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 400h. In the SYSCFG, if protect mode is enabled and not Re-use, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "REUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

2.4 Power-Down Mode

The Power-down mode includes IDLE Mode and STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption. The T2 Timer is working or not depends on F/W setting, and WDT is set by SYSCFG. The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and T2 interrupts) or PA1-6 and PB1-6 pins low level wake up.


R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRDN				PWI	RDN			
R/W				V	V			
Reset	_	_	_	_	_	_	_	_

R03.7~0 **PWRDN:** Write this register to enter Power Down (STOP/IDLE) Mode

2.5 Dual System Clock

TM57PE20A is designed with dual-clock system. There are four kinds of clock source, FXT (Fast Crystal) Clock, SXT (Slow Crystal) Clock, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock source. When in IDLE mode, only SXT or SIRC/2 can be configured to keep oscillating to provide clock source to T2 block. Refer to the Figure as below.

FAST Mode:

TM57PE20A enters FAST mode by setting the CPUCKS (F15.2). In FAST mode, TM57PE20A can select FXT or FIRC as its system clock source by setting FASTCKS (F15.6). However, change Fast-clock type under FAST mode is not allowed. User should let TM57PE20A enter SLOW mode first, change FASTCKS, then back to FAST mode.

In this mode, the program is executed using Fast-clock as system clock source. The Timer0 block is driven by Fast-clock. PWM can be driven by Fast-clock or FIRC 16 MHz by setting PWMCKS (R11.4).

SLOW Mode:

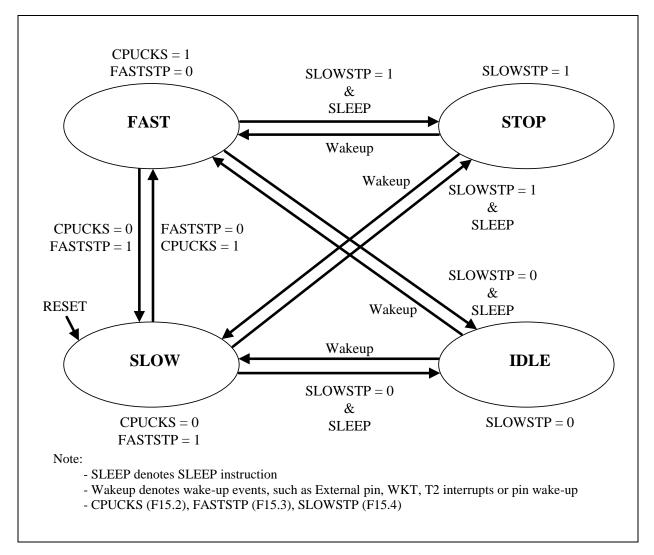
After power on or reset, TM57PE20A enters SLOW mode, the default Slow-clock is SIRC. User can select SXT or SIRC as its System clock by setting SLOWCKS (F15.7). However, change Slow-clock type under SLOW mode is not allowed. User should let TM57PE20A enter FAST mode first, change SLOWCKS, then back to SLOW mode.

IDLE Mode:

When SLOWSTP (F15.4) is cleared, the TM57PE20A will enter the "IDLE Mode" after executing the SLEEP instruction. In this mode, the Slow-clock will continue running to provide clock to T2 block. CPU stops fetching code and all blocks are stop except T2 related circuits.

T2 is independent and has its own control registers. It is possible to keep T2 working and wake-up in the IDLE mode.

STOP Mode:


When SLOWSTP (F15.4) is set, all blocks will be turned off and the TM57PE20A will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

2.6 Dual System Clock Modes Transition

TM57PE20A is operated in one of four modes: FAST Mode, SLOW Mode, IDLE Mode, and STOP Mode.

Modes Transition Diagram:

CPU Mode	&	Clock	Functions	Table:
-----------------	---	-------	-----------	--------

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0	T2	PWM0/1	Wakeup event
FAST	FIRC, FXT	Fast-clock	Run	Run	Run	Run	Run	Х
SLOW	SIRC, SXT	Slow-clock	Stop	Run	Run	Run	Run	Х
IDLE	SIRC, SXT	Stop	Stop	Run	Stop	Run	Stop	T2/IO
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	IO

FAST Mode transits to SLOW Mode:

The source clock of Slow-clock can be chosen by SLOWCKS (F15.7). If SLOWCKS is set, the source clock of Slow-clock is Slow Crystal (SXT), otherwise is Slow Internal RC (SIRC). The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

- (1) Select Slow-clock type (SXT: SLOWCKS=1, SIRC: SLOWCKS=0)
- (2) Switch system clock source to Slow-clock (CPUCKS = 0)
- (3) Stop Fast-clock (FASTSTP = 1)

Example: Switch operating mode from FAST mode to SLOW mode with SXT

BSF	SLOWCKS	; Select SXT as Slow-clock source
BCF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock

SLOW Mode transits to FAST Mode:

The source clock of Fast-clock can be chosen by FASTCKS (F15.6). If FASTCKS is set, the source clock of Fast-clock is Fast Crystal (FXT), otherwise is Fast Internal RC (FIRC). The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Select Fast-clock type (FXT: FASTCKS=1, FIRC: FASTCKS=0)
- (2) Enable Fast-clock (FASTSTP = 0)
- (3) Switch system clock source to Fast-clock (CPUCKS = 1)

♦ Example: Switch operating mode from SLOW mode to FAST mode with FXT

BSF	FASTCKS	; Select FXT as Fast-clock source
BCF	FASTSTP	; Enable Fast-clock
BSF	CPUCKS	; Switch system clock source to Fast-clock

IDLE Mode Setting:

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP = 0)
- (2) Execute SLEEP instruction

IDLE mode can be woken up by interrupts (XINT or T2) or PA1-6 and PB1-6 pins low level wake up.

◊Example: Switch operating mode to IDLE mode

BCF	SLOWSTP	; Enable Slow-clock
SLEEP		; Enter IDLE mode

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP = 1)
- (2) Execute SLEEP instruction

STOP mode can be woken up by interrupt (XINT) or PA1-6 and PB1-3 pins low level wake up.

♦ Example: Switch operating mode to STOP mode

BSF	SLOWSTP	; Stop Slow-clock
SLEEP		; Enter STOP mode

IO setting notes in STOP/IDLE mode:

Note: In STOP/IDLE mode, PA3 and PA4 must be set as input mode with internal pull-up enable to avoid floating state when select FXT or SXT mode. The PA3 and PA4 IO setting list as below.

	Fast-clock	Slow-clock	PAMODL[7]	PAMODL[6]	PAD3	PAMODH[1]	PAMODH[0]	PAD4
1	FIRC	SIRC	*	*	*	*	*	*
2	FIRC	SXT	0	0	1	0	0	1
3	FXT	SIRC	0	0	1	0	0	1

i ∶ Don't care

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SLOWCKS	FASTCKS	—	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	R/W	—	R/W	R/W	R/W	R/	W
Reset	0	0	_	0	0	0	1	1

F15.7 SLOWCKS: Slow-clock type select or T2 clock source select For Slow-clock type 0: SIRC 1: SXT For T2 clock source 0: SIRC/2 1: SXT F15.6 FASTCKS: Fast-clock type select 0: FIRC 1: FXT F15.4 SLOWSTP: Slow-clock Enable / Disable 0: enable 1: disable in Power-down mode F15.3 FASTSTP: Fast-clock Enable / Disable 0: enable 1: disable F15.2 CPUCKS: System clock source select 0: Slow-clock 1: Fast-clock

F15.1~0 **CPUPSC**: System clock source prescaler. System clock source 00: divided by 16 01: divided by 4 10: divided by 2 11: divided by 1

Warning: The CLKCTL (F15) can't be set directly for CPU modes transition. It may cause the transition fail. Please refer the mentioned steps for transition in this chapter.

2.7 Internal Power Management

The TM57PE20A has built-in Power Management circuitry and scheme to adapt user's system operation voltage and clock speed. The Power Management related control bits are listed below.

NOPUMP: (R0E.3, Default = 0)

If this bit is "1", the TM57PE20A's internal Voltage Pump circuitry has stopped working. Otherwise, the TM57PE20A works in the auto-pump-mode. It turns on Voltage Pump when V_{DD} <2.7V, turns off Voltage Pump when V_{DD} >2.7V.

MODE3V: (**R0E.2**, **Default** = 0)

This bit enables the TM57PE20A to work in the extremely high clock speed and/or low voltage $(V_{DD}=1.1V)$ environment. When MODE3V is set, the TM57PE20A continuously turns on the Voltage Pump circuitry no matter $V_{DD}>2.7V$ or $V_{DD}<2.7V$. So that it is suggested enable this mode when the operating voltage range covers 2.7V.

Warning: User must set MODE3V = 0 when $V_{DD} > 3.2V$

VDDFLT: (R0E.6, Default = 0)

If this bit is "1", the TM57PE20A turns on the power noise filter circuitry to enhance the chip's power noise immunity. The LVD flag is disabled in such setting.

		NOPU	NOPUMP = 1	
Fsys Type	Frequency or Option	MODE3V=1	MODE3V=0	MODE3V = 0 or
		PUMP always ON	auto-pump-mode	PUMP always OF
	4 MHz	1.6V ~ 3.2V	1.6V ~ 5.5V	1.8V ~ 5.5V

The following table shows the relationship of operation voltage and system clock.

rsys Type	Frequency or Option	MODE3 V=1	MODE3 V=0	MODESV = 0 or 1
		PUMP always ON	auto-pump-mode	PUMP always OFF
	4 MHz	1.6V ~ 3.2V	1.6V ~ 5.5V	1.8V ~ 5.5V
	8 MHz	2.1V ~ 3.2V	2.1V ~ 5.5V	2.1V ~ 5.5V
FXT	12 MHz	2.6V ~ 3.2V	2.6V ~ 5.5V	2.6V ~ 5.5V
ГАТ	16 MHz	3.1V ~ 3.2V	3.1V ~ 5.5V	3.1V ~ 5.5V
	20 MHz	-	3.6V ~ 5.5V	3.6V ~ 5.5V
	24 MHz	-	4.3V ~ 5.5V	4.3V ~ 5.5V
	0.5 MHz (CPUPSC=00)	1.2V ~ 3.2V	1.2V ~ 5.5V	1.6V ~ 5.5V
FIRC [*]	2 MHz (CPUPSC=01)	1.3V ~ 3.2V	1.3V ~ 5.5V	1.6V ~ 5.5V
FIKC	4 MHz (CPUPSC=10)	1.6V ~ 3.2V	1.6V ~ 5.5V	1.8V ~ 5.5V
	8 MHz (CPUPSC=11)	2.1V ~ 3.2V	2.1V ~ 5.5V	2.1V ~ 5.5V
SXT	32768 Hz	1.4V ~ 3.2V	1.4V ~ 5.5V	1.6V ~ 5.5V
	6785 Hz (CPUPSC=00)	1.1V ~ 3.2V	1.1V ~ 5.5V	1.6V ~ 5.5V
SIRC^*	27.5 KHz (CPUPSC=01)	1.1V ~ 3.2V	1.1V ~ 5.5V	1.6V ~ 5.5V
SIKC	55 KHz (CPUPSC=10)	1.1V ~ 3.2V	1.1V ~ 5.5V	1.6V ~ 5.5V
	110 KHz (CPUPSC=11)	1.1V ~ 3.2V	1.1V ~ 5.5V	1.6V ~ 5.5V

Note: FIRC and SIRC are very low accuracy when operating at low voltage.

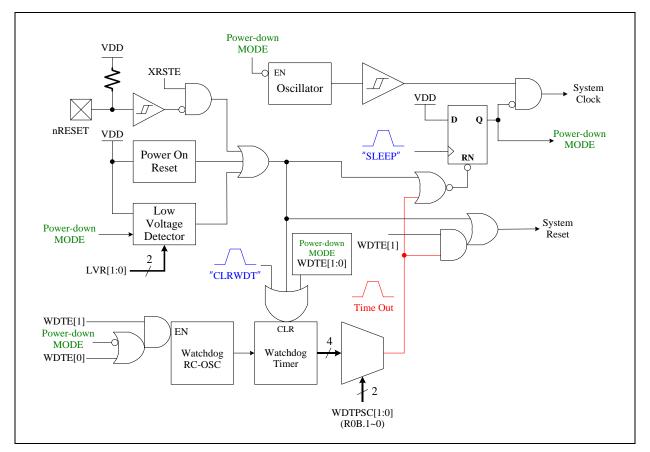
The TM57PE20A starts at the Slow-clock mode after power on or reset. It can be switched to Fast-clock mode as long as the supply voltage is within related operating voltage range.

R0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0E	_	VDDFLT			NOPUMP	MODE3V	_	—
R/W	_	W	_	_	W	W	_	_
Reset	_	0	_	_	0	0	_	—

R0E.6 **VDDFLT:** Power noise filter 0: disable 1: enable

R0E.3 NOPUMP: Voltage PUMP control 0: enable auto-pump-mode or PUMP always ON 1: disable voltage pump

R0E.2 MODE3V: MODE 3V control


0: disable 1: enable

3. Peripheral Functional Block

3.1 Watchdog (WDT) Timer

The WDT clock source is internal RC Timer. It is enabled by setting the WDTE[1:0] (SYSCFG[6:5]). The overflow period of WDT can be selected from 19 ms to 192 ms. The WDT timer is cleared by the CLRWDT instruction. The WDT works in both normal (SLOW and FAST mode) mode and IDLE mode. In normal mode, the WDT is enabled by setting WDTE[1], no matter WDTE[0] is set or cleared. In other words, the internal RC Timer stops for power saving when WDTE[1] is cleared. In IDLE mode, the WDT is only enabled when WDTE[1] and WDTE[0] are both set. Otherwise it will be disabled and stopped for power saving. Refer to the following table and figure.

WDT Block Diagram

Mode	WDTE[1:0]		Watchdog RC Oscillator
	0	0	Stor
Normal Mode	0	1	Stop
	1	0	Dun
	1	1	- Run
	0	0	
D 1 M. 1.	0	1	Stop
Power-down Mode	1	0	
	1	1	Run

The WDT and WKT's behavior in different Mode are shown as below table.

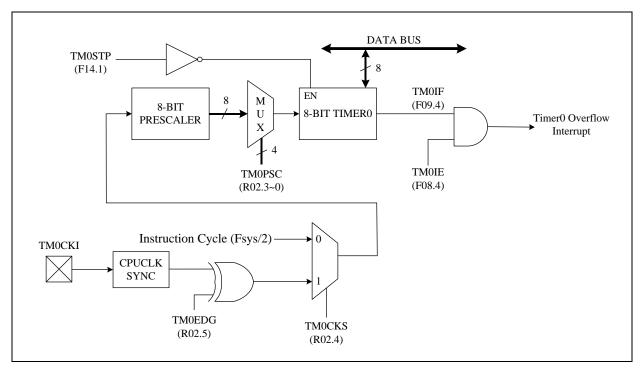
F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	LVD	GB0	RAMBK	ТО	PD	Z	DC	С
R/W	R	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions 1: WDT time out occurs

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTCLR		WDTCLR						
R/W		W						
Reset	_	-	_	_	_	-	-	_

R04.7~0 WDTCLR: Write this register to clear WDT

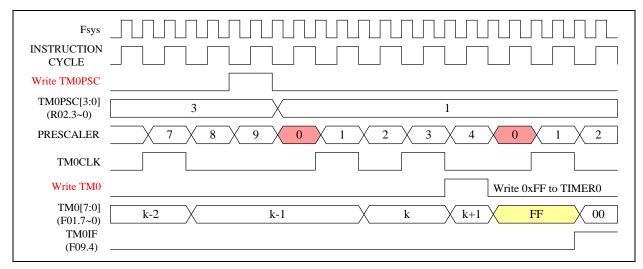
R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	-	T2I	PSC	INT0EDG	TCOE	_	WDTI	PSC
R/W	-	V	V	W	W	_	W	
Reset	_	0	0	0	0	_	1	1


R0B.1~0 WDTPSC: WDT pre-scale select:

Bit 1	Bit 0	5V	3V
0	0	19 ms	24 ms
0	1	38 ms	48 ms
1	0	76 ms	96 ms
1	1	152 ms	192 ms

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0's increasing rate is determined by the TM0PSC[3:0] (R02.3~0). The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F14.1) bit is set.



Timer0 Block Diagram

Timer Mode:

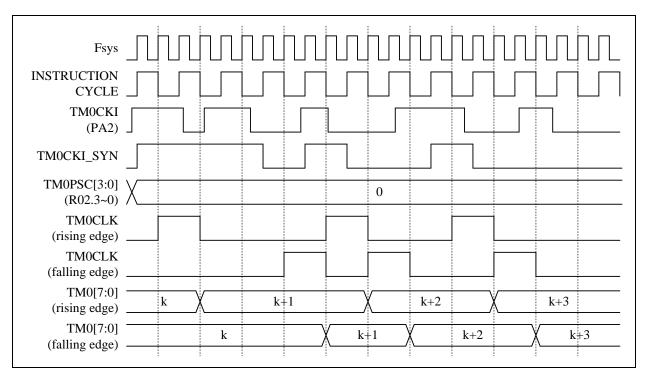
When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set. The following timing diagram describes the Timer0 works in pure Timer mode.

Timer0 works in Timer mode (TM0CKS = 0)

The equation of Timer0 interrupt timer value is as following:

Timer0 interrupt interval cycle time = Instruction cycle time / TM0PSC / 256

♦ Example: Setup Timer0 work in Timer mode, Fsys = Fast-clock / CPUPSC = FXT 4MHz / 1 = 4MHz


er0 clock sour MOVLW MOVWR	ce and divider 00x <u>00101</u> B TM0CTL	; TM0CKS = 0, Timer0 clock is instruction cycle ; TM0PSC = 0101b, divided by 32
er0 BSF CLRF	TM0STP TM0	; Timer0 stops counting ; Clear Timer0 content
er0 and intern MOVLW MOVWF BSF BCF	rupt function 111 <u>0</u> 1111B INTIF TMOIE TMOSTP	; Clear Timer0 request interrupt flag ; Enable Timer0 interrupt function ; Enable Timer0 counting

Timer0 clock source is Fsys/2 = 4 MHz / 2 = 2 MHz, Timer0 divided by 32 Timer0 interrupt frequency = 2 MHz / 32 / 256 = 244.14 Hz

Counter Mode:

If TM0CKS = 1, then Timer0 counter source clock is from TM0CKI (PA2) pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer. The following timing diagram describes the Timer0 works in Counter mode.

Timer0 works in Counter mode (TM0CKS = 1) for TM0CKI

♦ Example: Setup Timer0 works in Counter mode

; Setup Timer0 clock	source and divider	
MOVL	W 00 <u>110000</u> B	; TM0EDG = 1, counting edge is falling edge
MOVW	/R TM0CTL	; TM0CKS = 1, Timer0 clock is TM0CKI (PA2) ; TM0PSC = 0000b, divided by 1
; Setup Timer0		
BSF	TM0STP	; Timer0 stops counting
CLRF	TM0	; Clear Timer0 content
; Enable Timer0 and	read Timer0 counter	
BCF	TM0STP	; Enable Timer0 counting
BSF	TM0STP	; Timer0 stops counting
MOVF	W TM0	; Read Timer0 content

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
TM0		TM0										
R/W	R/W											
Reset	0	0	0	0	0	0	0	0				

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	—	T2IE	CMPIE	TM0IE	-	INT2IE	INT1IE	INTOIE
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	—	0	0	0	—	0	0	0

F08.4 **TM0IE**: Timer0 interrupt enable 0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF		T2IF	CMPIF	TM0IF		INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	-	0	0	0	-	0	0	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

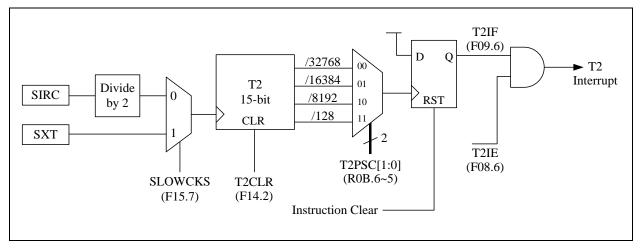
F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	—		_	_	CMPST	T2CLR	TM0STP	PWM0CLR
R/W	_	_	_	_	R	R/W	R/W	R/W
Reset	—	-	_	_	0	0	0	1

F14.1 **TM0STP**: Timer0 counter stop

- 0: Timer0 is counting
- 1: Timer0 stops counting

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0CTL	_	_	TM0EDG	TM0CKS	TM0PSC				
R/W	_	_	W	W	W				
Reset	_	_	0	0	0	0	0	0	

R02.5 **TM0EDG:** TM0CKI (PA2) edge selection for Timer0 prescaler count


0: TM0CKI (PA2) rising edge for Timer0 prescaler count

- 1: TM0CKI (PA2) falling edge for Timer0 prescaler count
- R02.4 TM0CKS: Timer0 clock source select
 - 0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock 1: TM0CKI (PA2) as Timer0 prescaler clock
- R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8
 - 0100: divided by 16
 - 0101: divided by 32
 - 0110: divided by 64
 - 0111: divided by 128
 - 1xxx: divided by 256

3.3 T2: 15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either SIRC/2 or SXT. The clock source is used to generate time base interrupt and T2 counter block clock. It is selected by SLOWCKS (F15.7). The T2's 15-bit content cannot be read by instructions. It generates interrupt flag T2IF (F09.6) with the clock divided by 32768, 16384, 8192, or 128 depends on the T2PSC[1:0] (R0B.6~5) bits. The following figure shows the block diagram of T2.

T2 Block Diagram

◊Example: T2 clock source is SXT and divided by 32768

; Setup T2	clock source a	and divider	
	BSF	SLOWCKS	; SLOWCKS=1, T2 clock source is SXT
	MOVLW	0 <u>00</u> xx0xxB	; T2PSC = 00b, divided by 32768
	MOVWR	R0B	•
	BSF	T2CLR	; $T2CLR = 1$, clear T2 counter
; Enable T2	2 interrupt fun	ction	
	MOVLW	1 <u>0</u> 111111B	
	MOVWF	INTIF	; Clear T2 request interrupt flag
	BSF	T2IE	; Enable T2 interrupt function

T2 clock source is Slow-clock = 32768 Hz, T2 divided by 32768

T2 interrupt frequency = 32768 Hz / 32768 = 1 Hz

T2 interrupt period = 1 / 1 Hz = 1s

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE		T2IE	CMPIE	TM0IE		INT2IE	INT1IE	INT0IE
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	—	0	0	0	—	0	0	0

F08.6 **T2IE**: T2 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	—	T2IF	CMPIF	TM0IF		INT2IF	INT1IF	INTOIF
R/W	—	R/W	R/W	R/W		R/W	R/W	R/W
Reset	-	0	0	0	—	0	0	0

F09.6 **T2IF**: T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14					CMPST	T2CLR	TM0STP	PWM0CLR
R/W	_	_	_	_	R	R/W	R/W	R/W
Reset	—	—	—	—	0	0	0	1

F14.2 **T2CLR**: T2 counter clear

0: T2 is counting

1: T2 is cleared immediately, this bit is auto cleared by H/W

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SLOWCKS	FASTCKS	GB1	SLOWSTP	FASTSTP	CPUCKS	CPUPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	1	1

F15.7 SLOWCKS: Slow-clock type select or T2 clock source select

For Slow-clock type

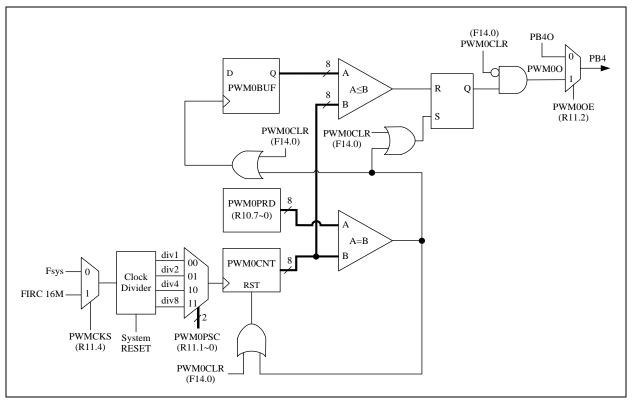
- 0: SIRC
- 1: SXT

For T2 clock source

- 0: SIRC/2
- 1: SXT

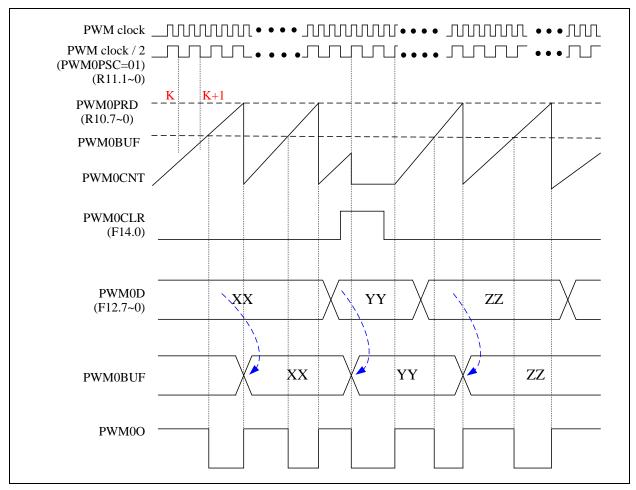
R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	T2PSC		INT0EDG	TCOE		WDT	TPSC
R/W	—	W		W	W	_	V	V
Reset	—	0 0		0	0	-	1	1

R0B.6~5 T2PSC: T2 prescaler. T2 clock source


00: divided by 32768 01: divided by 16384 10: divided by 8192 11: divided by 128

3.4 PWM0: 8-bit PWM

TM57PE20A has two built-in 8-bit PWM generators, one is PWM0 and the other is PWM1. Both of them use the same clock source. The PWM clock source can be chosen by PWMCKS (R11.4) bit. If PWMCKS bit is set, the PWM clock source is FIRC 16 MHz, otherwise is system clock (Fsys). And it also can be divided by 1, 2, 4, and 8 according to PWM0PSC (R11.1~0). The PWM0 duty cycle can be changed with writing to PWM0D (F12.7~0). Writing to PWM0D will not change the current PWM0 duty until the current PWM0 period completes. When current PWM0 period is finish, the new value of PWM0D will be updated to the PWM0BUF.


The PWM0 will output to PB4 if PWM0OE (R11.2) is set. With I/O mode setting, the PWM0 output can be set as CMOS push-pull output mode or open-drain output mode. When PBMODH[1] (R07.1) is set and PBMODH[0] (R07.0) is cleared, the PB4 output is CMOS push-pull output mode. When PBMODH[1] is cleared, the PB4 output is open-drain output mode. Setting the PWM0CLR (F14.0) bit will clear the PWM0 counter and load the PWM0D to PWM0BUF, PWM0CLR bit must be cleared so that the PWM0 counter can count. Figure shows the block diagram of PWM0.

PWM0 Block Diagram

Figure shows the PWM0 waveforms. When PWM0CLR (F14.0) bit is set or PWM0BUF equals to zero, the PWM0 output is cleared to '0' no matter what its current status is. Once the PWM0CLR bit is cleared and PWM0BUF is not zero, the PWM0 output is set to '1' to begin a new PWM cycle. PWM0 output will be '0' when PWM0CNT is greater than or equals to PWM0BUF. PWM0CNT keeps counting up when equals to PWM0PRD (R10.7~0), the PWM0 output is set to '1' again.

PWM0 Timing Diagram

◊Example: CPU is running at FAST mode, Fsys = Fast-clock / CPUPSC = FXT 4 MHz / 1 = 4 MHz

; Setup PWM0 prescaler,	period, and duty	
BSF	PWM0CLR	; PWM0CLR = 1, PWM0 clear and hold
MOVLW	000 <u>0</u> 0 <u>101</u> B	; PWMCKS = 0, PWM-clock source is Fsys
MOVWR	PWMCTL	; PWM0OE = 1, PWM0 output to PB4 pin ; PWM0PSC = 01b, divided by 2
MOVLW	FFH	-
MOVWR	PWM0PRD	; Set PWM0 period = $FFH + 1 = 256$
MOVLW MOVWF BCF	80H PWM0D PWM0CLR	; Set PWM0 duty = 80H = 128 ; PWM0CLR = 0, PWM0 is running

PWM0 output duty = PWM0D / (PWM0PRD + 1) = 128 / (255 + 1) = 1 / 2

PWM clock = Fsys = 4 MHz, PWM clock divided by 2

PWM0 output frequency = 4 MHz / 2 / (255 + 1) = 7812.5 Hz

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0D		PWM0D								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

F12.7~0 **PWM0D**: PWM0 duty

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	—			_	CMPST	T2CLR	TM0STP	PWM0CLR
R/W	_	_	_	_	R	R/W	R/W	R/W
Reset	—	—	-	—	0	0	0	1

F14.0 **PWM0CLR**: PWM0 clear and hold

0: PWM0 is running

1: PWM0 is clear and hold

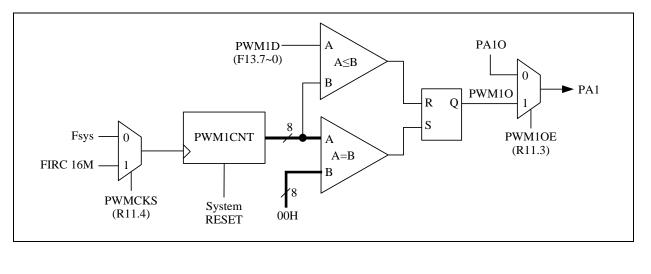
R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRD		PWM0PRD								
R/W		W								
Reset	1	1 1 1 1 1 1 1 1								

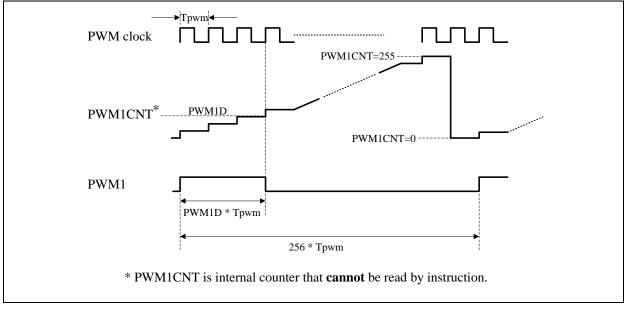
R10.7~0 **PWM0PRD**: PWM0 period data

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMWCTL		—	-	PWMCKS	PWM01E	PWM0OE	PWM	OPSC
R/W	_	_	_	W	W	W	W	
Reset	—	—	_	0	0	0	0	0

R11.4 **PWMCKS**: PWM Clock source select 0: System clock (Fsys) 1: FIRC 16 MHz

R11.2 **PWM0OE**: PWM0 positive output to PB4 pin 0: disable 1: enable


R11.1~0 **PWM0PSC**: PWM0 prescaler, PWM0 clock source


00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

3.5 PWM1: 8-bit PWM

PWM1 is a simple fixed frequency and duty cycle variable PWM generator. System clock (Fsys) and FIRC Clock (16 MHz) can be selected as the PWM clock by PWMCKS (R11.4) bit. The PWM frequency is fixed, the period is PWM clock counts from 0 to 255. The duty can be set via PWM1D (F13.7~0). The output of PWM1 shares the pin PA1 that can be selected by PWM1OE (R11.3) control bit. Figure is the block diagram of PWM1.

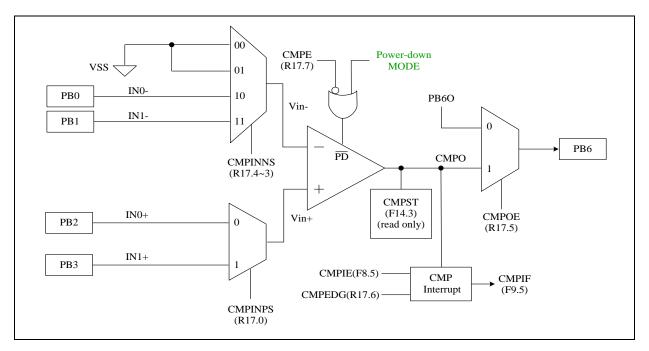
PWM1 output duty = [PWM1D / 256] When PWM1D = 80H, PWM1 output duty will be 1/2 PWM1 output frequency = PWM clock / 256 When PWM clock = FIRC 16 MHz, PWM1 output frequency = 16 MHz / 256 = 62.5 KHz

F13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1D		PWM1D								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

F13.7~0 **PWM1D**: PWM1 duty

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMWCTL				PWMCKS	PWM10E	PWM0OE	PWM	OPSC
R/W	_	_	_	W	W	W	W	
Reset	-	-	-	0	0	0	0	0

- R11.4 **PWMCKS**: PWM Clock source select 0: System clock (Fsys) 1: FIRC 16 MHz
- R11.3 **PWM10E**: PWM1 positive output to PA1 pin 0: disable


1: enable

3.6 Analog Comparator

TM57PE20A includes an analog comparator. It can be enabled by CMPE (R17.7) in normal mode (SLOW and FAST mode). The analog comparator has four analog inputs (IN0-, IN1-, IN0+ and IN1+) and one digital output (CMPO). The input source of negative pin can be selected from VSS, IN0- or IN1- by CMPINNS (R17.4~3), and the input source of positive pin can be selected from IN0+ or IN1+ by CMPINPS (R17.0) bit. The analog comparator compares the input values on the positive pin Vin+ and negative pin Vin-. When the voltage on positive pin is higher than the voltage on negative pin, the analog comparator output (CMPO) is set. The output status can not only be read from CMPST (F14.3) bit, but also output to PB6 pin by setting CMPOE (R17.5) bit. The comparator output can be set as CMOS pushpull output mode or open-drain output mode. When PBMODH[5] (R07.5) is set and PBMODH[4] (R07.4) is cleared, the PB6 output is CMOS push-pull output mode. When PBMODH[5] is cleared, the PB6 output mode.

The analog comparator can generate interrupt flag CMPIF (F9.5) when the output status rising or falling. The comparator interrupt can be enabled by CMPIE (F8.5) bit, and the interrupt trigger edge can be selected by CMPEDG (R17.6) bit. A block diagram of the analog comparator is shown below.

◊Example: Compare channel IN0- (input: 2V) and channel IN0+ (input: 4V)

MOVLW	xx <u>10</u> xxxxB	; PBMODL[5:4] = 10B
MOVWR	PBMODH	; Set PB6 for comparator output
MOVLW MOVWR	xx <u>11</u> xx <u>11</u> B PBMODL	; PBMODL[5:4] = 11B, PBMODL[1:0] = 11B ; Set PB0 as IN0- for comparator analog input ; Set PB2 as IN0+ for comparator analog input
MOVLW	<u>101</u> 10000B	; Channel select: IN0- vs. IN0+
MOVWR	CMPCTL	; comparator enable, comparator output enable

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE		T2IE	CMPIE	TM0IE		INT2IE	INT1IE	INT0IE
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	_	0	0	0	_	0	0	0

F08.5 **CMPIE**: Comparator interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	-	T2IF	CMPIF	TM0IF		INT2IF	INT1IF	INTOIF
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	_	0	0	0	_	0	0	0

F09.5 **CMPIF**: Comparator interrupt event pending flag Set by H/W at Comparator output falling/rising edge, write 0 to this bit will clear this flag

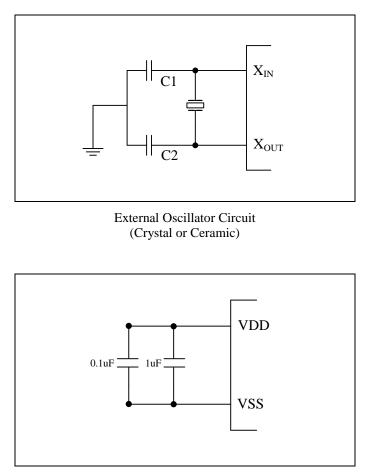
F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14			-	_	CMPST	T2CLR	TM0STP	PWM0CLR
R/W	_	_	_	_	R	R/W	R/W	R/W
Reset	—	—	_	_	0	0	0	1

F14.3 **CMPST**: Comparator output state

R17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CMPCTL	CMPE	CMPEDG	CMPOE	CMPINNS		_	_	CMPINPS
R/W	W	W	W	W		_	_	W
Reset	0	0	0	0	0	_	_	0

- R17.7 **CMPE**: Comparator enable 0: disable 1: enable
- R17.6 **CMPEDG**: Comparator interrupt edge 0: falling edge 1: rising edge

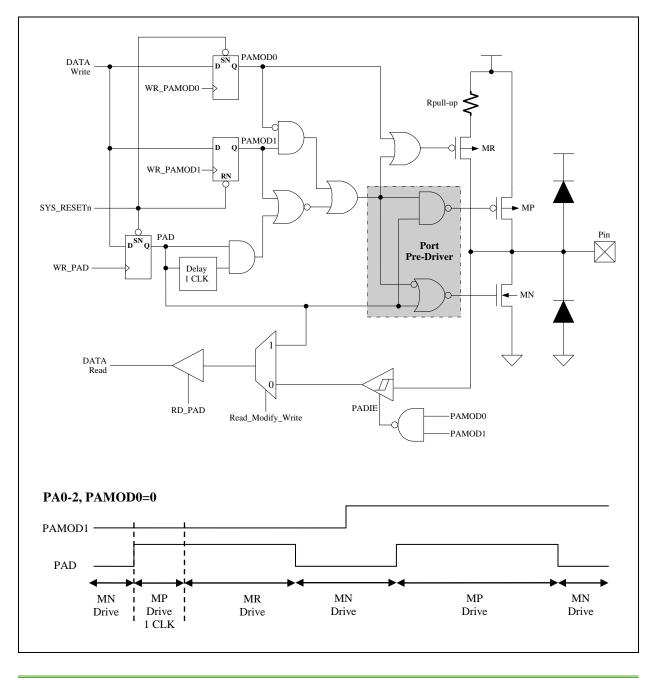
R17.5 **CMPOE**: Comparator output to pin enable 0: disable 1: enable


R17.4~3 **CMPINNS**: Comparator negative input source select 0x: VSS 10: IN0-11: IN1-

R17.0 **CMPINPS**: Comparator positive input source select 0: IN0+ 1: IN1+

3.7 System Clock Oscillator

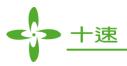
System clock can be operated in four different oscillation modes. Four oscillation modes are FIRC, FXT, SIRC and SXT, respectively. In Fast/Slow Crystal mode (FXT/SXT), a crystal or ceramic resonator is connected to the Xin and Xout pins to establish oscillation. In the Fast Internal RC mode (FIRC), the onchip oscillator generates 8 MHz system clock. Since power noise degrades the performance of Fast Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins to improve the stability of clock and the overall system. In the Slow Internal RC mode (SIRC), it provides a lower speed and accuracy of the oscillator for power saving purpose.

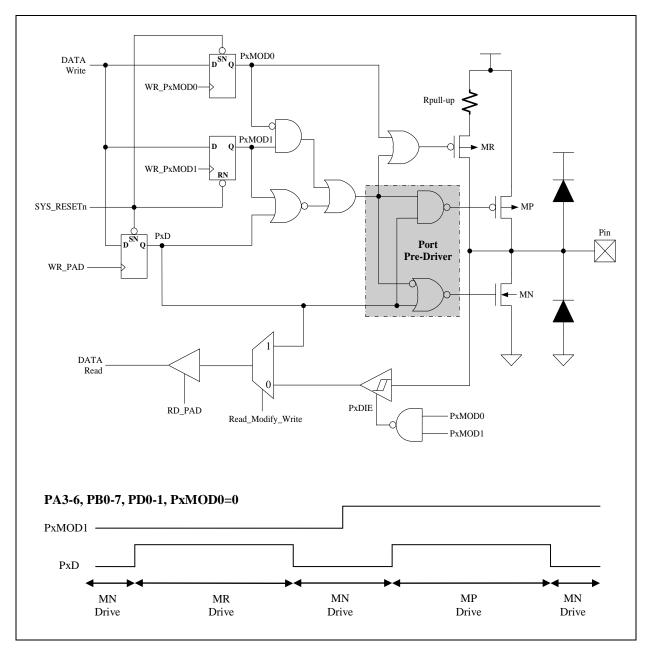

Fast Internal RC Mode

4. I/O Port

4.1 PA0-2

These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAMOD1=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W set the PAMOD1=0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAMOD1=1 and PAMOD0=0 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the other instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

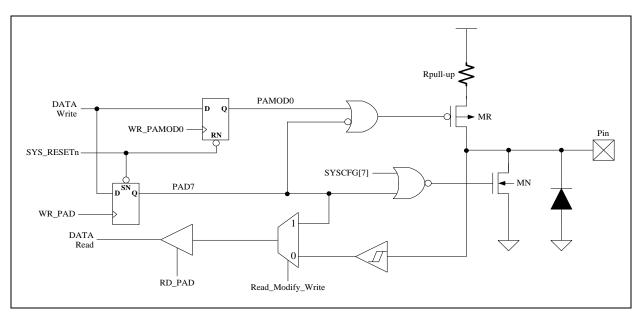



I	Register Setting	3	PIN STATE	Dull un	Mode
PAMODE1	PAMODE0	PAD0-2	PINSIAIE	Pull-up	Mode
		0	Low	No	Pseudo-open-drain output
0	0				Pseudo-open-drain output
0	0	1	High	Yes	or
					Input with pull-high
		0	Low	No	Pseudo-open-drain output
0	1				Pseudo-open-drain output
0	1	1	Hi-Z	No	or
					Input without pull-high
1	0	0	Low	No	CMOS puch pull output
1	0	1	High	No	CMOS push-pull output

How to control PA0-2 status can be concluded as following list.

4.2 PA3-6, PB0-7, PD0-1

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.


I	Register Setting	5	PIN STATE	Dull un	Mode
PxMODE1	PxMODE0	PxD	PINSIAIE	Pull-up	widde
		0	Low	No	Open-drain output
0	0				Open-drain output
0	0	1	High	Yes	or
					Input with pull-high
		0	Low	No	Open-drain output
0	1				Open-drain output
0	1	1	Hi-Z	No	or
					Input without pull-high
1	0	0	Low	No	CMOS much mult output
1	0	1	High	No	CMOS push-pull output
1	1	х	Hi-Z	No	Comparator input

How to control PA3-6, PB0-7 and PD0-1 status can be concluded as following list.

4.3 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is setting by the PAD[7] (F05.7) bit. When the PAD[7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor connected to this pin default, and can be disabled by S/W. In open-drain output mode, the pull-up resistor will be disabled automatically for power saving. When SYSCFG[7] is set, PA7 is only used in Schmitt-trigger input for external active low reset.

How to control PA7 status can be concluded as following list.

SVSCECITI	Re	gister Setting		PIN STATE	D11	Mode
SYSCFG[7]	PAMODE1	PAMODE0	PAD7	PINSIAIE	Pull-up	wiode
		0	0	Low	No	Open-drain output
0	v	0	1	High	Yes	Input with pull-high
0	Х	1	0	Low	No	Open-drain output
		1	1	Hi-Z	No	Input without pull-high
		0	0	Hi-Z	No	Reset input without pull-high
1	х	0	1	High	Yes	Reset input with pull-high
		1	Х	Hi-Z	No	Reset input without pull-high

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7				PAD			
R/W	R/W				R/W			
Reset	1	1	1	1	1	1	1	1

F05.7 **PAD7:** PA7 data or pin mode control 0: PA7 is open-drain output mode and output low 1: PA7 is Schmitt-trigger input mode

F05.6~0 **PAD:** PA6~PA0 data 0: output low

1: output high or Schmitt-trigger input mode

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBD		PBD								
R/W		R/W								
Reset	1	1 1 1 1 1 1 1 1								

F06.7~0 **PBD:** PB7~PB0 data

0: output low

1: output high or Schmitt-trigger input mode

F07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDD	—		-	—	-	_	PDD	
R/W	_	_	_	_	_	_	R/W	
Reset	_	-	-	-	—	—	1	1

F07.1~0 **PDD:** PD1~PD0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PAMODH		PAMODH									
R/W	V	W W				V	V	V			
Reset	0	0	0	1	0	1	0	1			

R05.7~0 PAMODH: PA7~PA4 Pin Mode Control

00: Open Drain output low, or input with pull-up

The PA4's pull-up resistor is disabled automatically for external oscillation in this mode

01: Open Drain output low, or input without pull-up

10: CMOS output low, or CMOS output high

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMODL		PAMODL								
R/W	V	V	V	V	V	V	V	V		
Reset	0	1	0	1	0	1	0	1		

R06.7~0 **PAMODL**: PA3~PA0 Pin Mode Control

00: Open Drain output low, or input with pull-up

The PA3's pull-up resistor is disabled automatically for external oscillation in this mode

01: Open Drain output low, or input without pull-up

10: CMOS output low, or CMOS output high

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMODH		PBMODH								
R/W	I. I	V	v	V	V	J	v	V		
10 11	· ·	•	*	•	•	*	•	•		

R07.7~0 **PBMODH**: PB7~PB4 Pin Mode Control

00: Open Drain output low, or input with pull-up

01: Open Drain output low, or input without pull-up

10: CMOS output low, or CMOS output high

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBMODL		PBMODL								
R/W	V	W W			W W					
Reset	0	1	0	1	0	1	0	1		

R08.7~0 **PBMODL**: PB3~PB0 Pin Mode Control

00: Open Drain output low, or input with pull-up

01: Open Drain output low, or input without pull-up

10: CMOS output low, or CMOS output high

11: Comparator input

R0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDMOD			-	_	PDMOD			
R/W	_	_	_	_	W W			V
Reset	-	-	-	-	0	1	0	1

R0A.3~0 **PDMOD**: PD1~PD0 Pin Mode Control

00: Open Drain output low, or input with pull-up 01: Open Drain output low, or input without pull-up

10: CMOS output low, or CMOS output high

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAWKEN			PAWKEN						
R/W	_		W						
Reset	_	0	0	0	0	0	0	—	

R13.6~1 PAWKEN: PA6~PA1 individual pin low level wake up control

0: disable

1: enable

R18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBWKEN	—		PBWKEN						
R/W	—		W						
Reset	—	0	0	0	0	0	0	—	

R18.6~1 **PBWKEN:** PB6~PB1 individual pin low level wake up control

0: disable

1: enable

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF				Function related to : RAM W/R
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(F01) TM0				Function related to : Timer0
TM0	01.7~0	R/W	0	Timer0 content
(F02) PCL				Function related to : PROGRAM COUNT
PCL	02.7~0	R/W	0	Programming Counter LSB[7~0]
(F03) STATUS				Function related to : STATUS
LVD	03.7	R	0	Low voltage detector flag
GB0	03.6	R/W	0	General purpose bit 0
RAMBK	03.5	R/W	0	SRAM Bank selection, 0: Bank0, 1: Bank1
ТО	03.4	R	0	WDT timeout flag
PD	03.3	R	0	Power-down mode flag
Ζ	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag
С	03.0	R/W	0	Carry flag or /Borrow flag
(F04) FSR				Function related to : RAM W/R / Table Read
DPL	04.7~0	R/W	-	Table read low address, data ROM pointer (DPTR) low byte
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer
(F05) PAD				Function related to : Port A
		R	-	PA7 pin or "data register" state
PAD7	05.7	W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode
DAD	05 (0	R	-	Port A pin or "data register" state
PAD	05.6~0	W	7F	Port A output data register
(F06) PBD				Function related to : Port B
DDD	067.0	R	-	Port B pin or "data register" state
PBD	06.7~0	.7~0 W		Port B output data register
(F07) PDD		· · · · ·		Function related to : Port D
DDD	07.1.0	R	-	Port D pin or "data register" state
PDD	07.1~0	W	3	Port D output data register

Name	Address	R/W	Rst	Description
(F08) INTIE	-			Function related to : Interrupt Enable
-	08.7	-	-	Reserved
T2IE	08.6	R/W	0	T2 interrupt enable 0: disable 1: enable
CMPIE	08.5	R/W	0	Comparator interrupt enable 0: disable 1: enable
TM0IE	08.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable
-	08.3	-	-	Reserved
INT2IE	08.2	R/W	0	INT2 (PA7) pin interrupt enable 0: disable 1: enable
INT1IE	08.1	R/W	0	INT1 (PD0) pin interrupt enable 0: disable 1: enable
INTOIE	08.0	R/W	0	INT0 (PA2) pin interrupt enable 0: disable 1: enable
(F09) INTIF				Function related to : Interrupt Flag
-	09.7	-	-	Reserved
		R	-	T2 interrupt event pending flag, set by H/W while T2 overflows
T2IF	09.6	W	0	0: clear this flag 1: no action
CMPIF	09.5	R	-	Comparator interrupt event pending flag, set by H/W at Comparator output falling/rising edge
	07.5	W	0	0: clear this flag 1: no action
TM0IF	09.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W	0	0: clear this flag 1: no action
-	09.3	-	-	Reserved
INT2IF	09.2	R	-	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge
1111211	07.2	W	0	0: clear this flag 1: no action
INT1IF	09.1	R	-	INT1 interrupt event pending flag, set by H/W at INT1 pin's falling edge
INT IIF 09.1		W	0	0: clear this flag 1: no action
INT0IF	00.0	R	-	INTO interrupt event pending flag, set by H/W at INTO pin's falling/rising edge
	09.0	W	0	0: clear this flag 1: no action

Name	Address	R/W	Rst	Description
(F12) PWM0D	_		-	Function related to : PWM0
PWM0D	12.7~0	R/W	0	PWM0 duty
(F13) PWM1D				Function related to : PWM1
PWM1D	13.7~0	R/W	0	PWM1 duty
(F14) MF14	1	1		Function related to : Comparator / T2 / TM0 / PWM0
CMPST	14.3	R	0	CMPO state
T2CLR	14.2	R/W	0	T2 counter clear 0: T2 is counting 1: T2 is cleared immediately, this bit is auto cleared by H/W
TM0STP	14.1	R/W	0	Timer0 counter stop 0: Timer0 is counting 1: Timer0 stops counting
PWM0CLR	14.0	R/W	1	PWM0 clear and hold 0: PWM0 is running 1: PWM0 is clear and hold
(F15) CLKCTL	-			Function related to : CPUCLK / T2
SLOWCKS	15.7	R/W	0	Slow-clock type select or T2 clock source select For Slow-clock type 0: SIRC 1: SXT For T2 clock source 0: SIRC/2 1: SXT
FASTCKS	15.6	R/W	0	Fast-clock type select 0: FIRC 1: FXT
GB1	15.5	R/W	0	General purpose bit 1
SLOWSTP	15.4	R/W	0	Slow-clock Enable / Disable 0: enable 1: disable in Power-down mode
FASTSTP	15.3	R/W	0	Fast-clock Enable / Disable 0: enable 1: disable
CPUCKS	15.2	R/W	0	System clock source select 0: Slow-clock 1: Fast-clock
CPUPSC	15.1~0	R/W	11	System clock source prescaler. System clock source 00: divided by 16 01: divided by 4 10: divided by 2 11: divided by 1
(F17) DPH				Function related to : Table Read
DPH	17.2~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
User Data Memo	ory			
	20~27	R/W	-	SRAM common area (8 bytes)
SRAM	28~7f	R/W	-	SRAM Bank0 area (RAMBK=0, 88 bytes)
	28~7f	R/W	-	SRAM Bank1 area (RAMBK=1, 88 bytes)

R-Plane

Name	Address	R/W	Rst	Description
(R02) TM0CT	Ľ			Function related to: Timer0
TM0EDG	02.5	W	0	TM0CKI (PA2) edge selection for Timer0 prescaler count 0: TM0CKI (PA2) rising edge for Timer0 prescaler count 1: TM0CKI (PA2) falling edge for Timer0 prescaler count
TM0CKS	02.4	W	0	Timer0 clock source select 0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock 1: TM0CKI (PA2) as Timer0 prescaler clock
TM0PSC	02.3~0	W	0	Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 44 0111: divided by 128 1xxx: divided by 256
(R03) PWRD	N			Function related to: Power Down
PWRDN	03	W	-	Write this register to enter Power-down (STOP/IDLE) Mode
(R04) WDTCI	LR			Function related to: WDT
WDTCLR	04	W	-	Write this register to clear WDT timer
(R05) PAMOI	DH			Function related to : Port A
PAMODH	05.7~0	W	15	 PA7~PA4 I/O mode control 00: Open Drain output low, or input with pull-up The PA4's pull-up resistor is disabled automatically for external oscillation 01: Open Drain output low, or input without pull-up 10: CMOS output low, or CMOS output high
(R06) PAMOI	DL			Function related to : Port A
PAMODL	06.7~0	W	55	 PA3~PA0 I/O mode control 00: Open Drain output low, or input with pull-up The PA3's pull-up resistor is disabled automatically for external oscillation 01: Open Drain output low, or input without pull-up 10: CMOS output low, or CMOS output high
(R07) PBMOI	OH			Function related to : Port B
PBMODH	07.7~0	W	55	PB7~PB4 I/O mode control 00: Open Drain output low, or input with pull-up 01: Open Drain output low, or input without pull-up 10: CMOS output low, or CMOS output high
(R08) PBMOI	DL			Function related to : Port B
PBMODL	08.7~0	w	55	PB3~PB0 I/O mode control 00: Open Drain output low, or input with pull-up 01: Open Drain output low, or input without pull-up 10: CMOS output low, or CMOS output high 11: Comparator input

Name	Address	D/W	Det		Description		
(R0A) PDMOD		IX/ VV	KSt	Function related to : Po	-		
PDMOD	0a.3~0	w	5	PD1~PB0 I/O mode control 00: Open Drain output low, or input with pull-up 01: Open Drain output low, or input without pull-up 10: CMOS output low, or CMOS output high			
(R0B) MR0B				I	/ INT0 / TCOUT / WD1	1	
T2PSC	0b.6~5	w	0	T2 prescaler. T2 clock source 00: divided by 32768 01: divided by 16384 10: divided by 8192 11: divided by 128			
INT0EDG	0b.4	W	0	INT0 pin (PA2) edge into 0: falling edge to trigger 1: rising edge to trigger			
TCOE	0b.3	W	0	Enable Instruction Cycle (Fsys/2) output to PA3 pin (TCOUT) 0: disable 1: enable			
-	0b.2	-	-	Reserved			
WDTPSC	0b.1~0	W	11	WDT pre-scale selections: Bit 1 Bit 0 $5V$ $3V$ 0 0 19 ms 24 ms 0 1 38 ms 48 ms 1 0 76 ms 96 ms 1 1 152 ms 192 ms			
(ROE) MROE					ower Filter / Voltage Pun	np / Operating Voltage	
VDDFLT	0e.6	W	0	Power noise filter 0: disable 1: enable			
NOPUMP	0e.3	W	0	Voltage PUMP control 0: enable auto-pump-mode 1: disable voltage pump			
MODE3V	0e.2	W	0	MODE 3V control 0: disable 1: enable			
(R10) PMW0PI	RD			Function related to : PV	WM0		
PWM0PRD	10.7~0	W	FF	PWM0 period data			

Name	Address	R/W	Rst	Description
(R11) PWM0C	TL			Function related to : PWM0
PWMCKS	11.4	W	0	PWM clock source select 0: System clock (Fsys) 1: FIRC 16MHz
PWM1OE	11.3	W	0	PWM1 positive output to PA1 pin 0: disable 1: enable
PWM0OE	11.2	W	0	PWM0 positive output to PB4 pin 0: disable 1: enable
PWM0PSC	11.1~0	W	0	PWM0 prescaler, PWM0 clock source 00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8
(R13) PAWKI	EN			Function related to : Port A / WAKE UP
PAWKEN	13.6~1	W	0	PA6~PA1 individual pin low level wake up control Each bit controls its corresponding pin, if the bit is 0: disable 1: enable
(R17) CMPCT	L			Function related to : Comparator
CMPE	17.7	W	0	Comparator enable 0: disable 1: enable
CMPEDG	17.6	W	0	Comparator interrupt edge 0: falling edge to trigger 1: rising edge to trigger
СМРОЕ	17.5	W	0	Comparator output to pin enable 0: disable 1: enable
CMPINNS	17.4~3	W	0	Comparator negative input source select 0x: VSS 10: IN0- (PB0) 11: IN1- (PB1)
-	17.2~1	-	-	Reserved
CMPINPS	17.0	W	0	Comparator positive input source select 0: IN0+ (PB2) 1: IN1+ (PB3)
(R18) PBWKE	N			Function related to : Port B / WAKE UP
PBWKEN	18.6~1	W	0	PB6~PB1 individual pin low level wake up control Each bit controls its corresponding pin, if the bit is 0: disable 1: enable

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description			
f	F-Plane Register File Address			
r	R-Plane Register File Address			
b	Bit address			
k	Literal. Constant data or label			
d	Destination selection field, 0: Working register, 1: Register file			
W	Working Register			
Z	Zero Flag			
С	Carry Flag or /Borrow Flag			
DC	Decimal Carry Flag or Decimal /Borrow Flag			
PC	Program Counter			
TOS	Top Of Stack			
GIE	Global Interrupt Enable Flag (i-Flag)			
[]	Option Field			
()	Contents			
	Bit Field			
В	Before			
А	After			
→	Assign direction			

Mnemon	ic	Op Code	Cycle	Flag Affect	Description
	I	-		egister Instru	
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"
MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriente	ed File Re	egister Instruc	tion
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal	and Cont	rol Instruction	n
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
SUBLW	k	01 1101 kkkk kkkk	1	C, DC, Z	Subtract W from Literal "k"
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		00 0000 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		00 0000 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 11111 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW	Add Literal "k" and	d W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W re	gister are added to the eight-bit literal 'k' and the result is
	placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}10$
		A: W = 0x25

ADDWF	Add W and "f"					
Syntax	ADDWF f [,d]					
Operands	f : 00h ~ 7Fh, d : 0, 1					
Operation	$(destination) \leftarrow (W) + (f)$					
Status Affected	C, DC, Z					
OP-Code	00 0111 dfff ffff					
Description	Add the contents of the W	register with register 'f'. If 'd' is 0, the result is stored in				
-	the W register. If 'd' is 1, t	he result is stored back in register 'f'.				
Cycle	1	-				
Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2				
-		A: W = 0xD9, FSR = 0xC2				

ANDLW	Logical AND Litera	l ''k'' with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W regist placed in the W register.	er are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
-		$\mathbf{A}:\mathbf{W}=0\mathbf{x}03$

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) AND	(f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	6
Example	ANDWF FSR, 1	B : W = $0x17$, FSR = $0xC2$ A : W = $0x17$, FSR = $0x02$

BCF	Clear "b" bit of "f"	
Syntax	BCF f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 0$	
Status Affected	-	
OP-Code	01 000b bbff ffff	
Description	Bit 'b' in register 'f' is cleared.	
Cycle	1	
Example	BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$ $A : FLAG_REG = 0x47$

BSF	Set "b" bit of "f"		
Syntax	BSF f[,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	01 001b bbff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1		
Example	BSF FLAG_REG, 7	$B : FLAG_REG = 0x0A$ $A : FLAG_REG = 0x8A$	

BTFSC	Test "b" bit of "f", skip i	if clear(0)
Syntax	BTFSC f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 0$	
Status Affected	-	
OP-Code	01 010b bbff ffff	
Description	If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register	
	'f' is 0, then the next instruction	on is discarded, and a NOP is executed instead,
	making this a 2nd cycle instruct	ion.
Cycle	1 or 2	
Example	LABEL1 BTFSC FLAG, 1	B : PC = LABEL1
-	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = FALSE$
	FALSE	if $FLAG.1 = 1$, $PC = TRUE$

BTFSS	Test "b" bit of "f", skip	if set(1)
Syntax	BTFSS f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 1$	
Status Affected	-	
OP-Code	01 011b bbff ffff	
Description	If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register	
	'f' is 1, then the next instructi making this a 2nd cycle instruct	on is discarded, and a NOP is executed instead, tion.
Cycle	1 or 2	
Example	LABEL1 BTFSS FLAG, 1	B : PC = LABEL1
	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = TRUE$
	FALSE	if $FLAG.1 = 1$, $PC = FALSE$

CALL	Call subroutine "k"
Syntax	CALL k
Operands	k : 000h ~ FFFh
Operation	Operation: TOS \leftarrow (PC) + 1, PC.11 \sim 0 \leftarrow k
Status Affected	- · · · · · · · · · · · · · · · · · · ·
OP-Code	10 kkkk kkkk
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit immediate address is loaded into PC bits <11:0>. CALL is a two-cycle instruction.
Cycle	2
Example	LABEL1 CALL SUB1 B : PC = LABEL1 A : PC = SUB1, TOS = LABEL1 + 1

CLRF	Clear "f"	
Syntax	CLRF f	
Operands	f : 00h ~ 7Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' are cleared and the Z bit is set.	
Cycle	1	
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$
-		A : FLAG_REG = $0x00$, Z = 1

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	(W) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared a	and Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog	Гimer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer \leftarrow	00h
Status Affected	TO, PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction clears the Watchdog/Wakeup Timer	
Cycle	1	
Example	CLRWDT	B : WDT counter = ?
		A : WDT counter = $0x00$

COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) $\leftarrow (\overline{f})$	
Status Affected	Z	
OP-Code	00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	COMF REG1, 0	$\mathbf{B}: \mathbf{REG1} = \mathbf{0x13}$
		A : REG1 = 0x13, W = 0xEC

DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - 1$	
Status Affected	Ζ	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	DECF CNT, 1	B : CNT = 0x01, Z = 0
-		A : CNT = $0x00$, Z = 1

DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip nex	t instruction if result is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is p	ecremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, then a NOP is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1	B : PC = LABEL1
	GOTO LOOP CONTINUE	A : $CNT = CNT - 1$ if $CNT = 0$, $PC = CONTINUE$ if $CNT \neq 0$, $PC = LABEL1 + 1$

GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 000h ~ FFFh	
Operation	PC.11~0 ← k	
Status Affected	-	
OP-Code	11 kkkk kkkk kkkk	
Description	GOTO is an unconditional bra	unch. The 12-bit immediate value is loaded into PC
-	bits <11:0>. GOTO is a two-cy	ycle instruction.
Cycle	2	
Example	LABEL1 GOTO SUB1	B: PC = LABEL1 A: PC = SUB1
Example		A : PC = SUB1

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	(destination) \leftarrow (f) + 1	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	The contents of register 'f' are incre	emented. If 'd' is 0, the result is placed in the W
	register. If 'd' is 1, the result is plac	ed back in register 'f'.
Cycle	1	
Example	INCF CNT, 1	B: CNT = 0xFF, Z = 0
		A : $CNT = 0x00, Z = 1$

INCFSZ	Increment "f", Skip if 0	
Syntax	INCFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) + 1, skip ne	xt instruction if result is 0
Status Affected	-	
OP-Code	00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is	ncremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1 INCFSZ CNT, 1	B : PC = LABEL1
-	GOTO LOOP	A: CNT = CNT + 1
	CONTINUE	if $CNT = 0$, $PC = CONTINUE$
		if CNT \neq 0, PC = LABEL1 + 1

Inclusive OR Liter	al with W
IORLW k	
k : 00h ~ FFh	
$(W) \leftarrow (W) OR k$	
Z	
01 1010 kkkk kkkk	
The contents of the W replaced in the W register.	egister are OR'ed with the eight-bit literal 'k'. The result is
1	
IORLW 0x35	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}9\mathbf{A}$
	A: W = 0xBF, Z = 0
	IORLW k k : 00h ~ FFh (W) \leftarrow (W) OR k Z 01 1010 kkkk kkkk The contents of the W re placed in the W register. 1

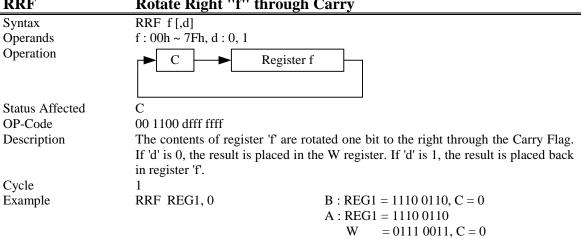
IORWF	Inclusive OR W with '	'f''
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register	with register 'f'. If 'd' is 0, the result is placed in the
	W register. If 'd' is 1, the res	ult is placed back in register 'f'.
Cycle	1	
Example	IORWF RESULT, 0	B : RESULT = 0x13, W = 0x91
		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register	'f' are moved to W register.
Cycle	1	-
Example	MOVFW FSR	B : FSR = $0xC2$, W = ? A : FSR = $0xC2$, W = $0xC2$

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is b 0's.	oaded into W register. The don't cares will assemble as
Cycle	1	
Example	MOVLW 0x5A	B: W = ?
-		A: W = 0x5A

MOVWF	Move W to "f"	
Syntax	MOVWF f	
Operands	f : 00h ~ 7Fh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 1fff ffff	
Description	Move data from W registe	er to register 'f'.
Cycle	1	
Example	MOVWF REG1	B : REG1 = 0xFF, W = 0x4F
-		A: REG1 = 0x4F, W = 0x4F

MOVWR	Move W to "r"	
Syntax	MOVWR r	
Operands	r : 00h ~ 3Fh	
Operation	$(r) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 00rr rrrr	
Description	Move data from W registe	r to register 'r'.
Cycle	1	-
Example	MOVWR REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 = $0x4F$, W = $0x4F$



NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	-
OP-Code	00 0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
RET	Return from Subroutine
Syntax	RET
Operands	-
Operation	$PC \leftarrow TOS$
Status Affected	-
OP-Code	00 0000 0100 0000
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is
1	loaded into the program counter. This is a two-cycle instruction.
Cycle	2
Example	RET $A: PC = TOS$
DD/DI	
RETI	Return from Interrupt
Syntax	RETI
Operands	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$
Status Affected	-
OP-Code	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.
Cycle	2
Example	RETI $A : PC = TOS, GIE = 1$
RETLW	Return with Literal in W
Syntax	RETLW k
Operands	k : 00h ~ FFh
Operation	$PC \leftarrow TOS, (W) \leftarrow k$
Status Affected	
OP-Code	01 1000 kkkk kkkk
Description	The W register is loaded with the eight-bit literal 'k'. The program counter is
F	loaded from the top of the stack (the return address). This is a two-cycle instruction.
Cycle	2
Example	CALL TABLE $B: W = 0x07$
	$\therefore \qquad A: W = value of k8$
	TADIE ADDWE DCI 1

TABLE ADDWF PCL, 1 RETLW k1 RETLW k2 : RETLW kn

RLF	Rotate Left "f" through Carry
Syntax	RLF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLF REG1, 0 B : REG1 = 1110 0110, C = 0
	A : REG1 = 1110 0110
	$W = 1100 \ 1100, C = 1$
RRF	Rotate Right ''f'' through Carry

SLEEP	Go into Power-down mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	00 0000 0000 0011
Description	Go into Power-down mode with the oscillator stops.
Cycle	1
Example	SLEEP -
2	SLEEP -

SUBLW	Subtract W from Li	teral ''k''
Syntax	SUBLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (k) - (W)$	
Status Affected	C, DC, Z	
OP-Code	01 1101 kkkk kkkk	
Description		gister are subtracted (2's complement method) from the result is placed in the W register.
Cycle	1	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Example	SUBLW 0x15	B: W = 0x10, C = ?, Z = ?
1		A: W = 0x05, C = 1, Z = 0
	SUBLW 0x10	B: W = 0x10, C = ?, Z = ?
		A: W = 0x00, C = 1, Z = 1
	SUBLW 0x05	B: W = 0x10, C = ?, Z = ?

A: W = 0xF5, C = 0, Z = 0

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	· · ·	method) W register from register 'f'. If 'd' is 0, the result If 'd' is 1, the result is stored back in register 'f'.
Cycle	1	, C
Example	SUBWF REG1, 1	B : REG1 = 0x03, W = 0x02, C = ?, Z = ? A : REG1 = 0x01, W = 0x02, C = 1, Z = 0
	SUBWF REG1, 1	B : REG1 = 0x02, W = 0x02, C = ?, Z = ? A : REG1 = 0x00, W = 0x02, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = 0x01, W = 0x02, C = ?, Z = ? A : REG1 = 0xFF, W = 0x02, C = 0, Z = 0

SWAPF	Swap Nibbles in ''f''		
Syntax	SWAPF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim$	0), (destination.3~0) \leftarrow (f.7~4)	
Status Affected	-		
OP-Code	00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is		
-	placed in W register. If 'd	is 1, the result is placed in register 'f'.	
Cycle	1		
Example	SWAPF REG, 0	B : REG1 = 0xA5	
-		A : REG1 = 0xA5, W = 0x5A	

TABRH	Return D	PTR high byte to W	V	
Syntax	TABRH			
Operands	-			
Operation	$(W) \leftarrow RO$	M[DPTR] high byte conte	nt, Where DPTR = {DPH[max:8], FSR[7:0]}	
Status Affected	-			
OP-Code	00 0000 01	01 1000		
Description	The W reg	The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle		
	instruction.			
Cycle	2			
Example				
	MOVLW	(TAB1&0xFF)		
	MOVWF	FSR	;Where FSR is F-Plane register	
	MOVLW	(TAB1>>8)&0xFF		
	MOVWF	DPH	;Were DPH is F-Plane register	
	TABRL		:W = 0x89	
	TABRH		W = 0x37	
		ORG 0234H		
	TAB1:			
	DT	0x3789, 0x2277	;ROM data 14bits	

TABRL	Return D	PTR low byte to W	,
Syntax	TABRL		
Operands	-		
Operation	$(W) \leftarrow RO$	M[DPTR] low byte conte	ent, Where $DPTR = \{DPH[max:8], FSR[7:0]\}$
Status Affected	-		
OP-Code	00 0000 01	01 0000	
Description	The W reg instruction.	ister is loaded with low	byte of ROM[DPTR]. This is a two-cycle
Cycle	2		
Example			
	MOVLW	(TAB1&0xFF)	
	MOVWF	FSR	;Where FSR is F-Plane register
	MOVLW	(TAB1>>8)&0xFF	
	MOVWF	DPH	;Where DPH is F-Plane register
	TABRL		W = 0x89
	TABRH		W = 0x37
			,
	TAB1:	ORG 0234H	
	DT	0x3789, 0x2277	;ROM data 14bits

TESTZ	Test if "f" is zero	
Syntax	TESTZ f	
Operands	f : 00h ~ 7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of registe	r 'f' is 0, Zero flag is set to 1.
Cycle	1	-
Example	TESTZ REG1	B : REG1 = 0, Z = ?
-		A : REG1 = 0, Z = 1

XORLW	Exclusive OR Liter	al with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W re is placed in the W registe	gister are XOR'ed with the eight-bit literal 'k'. The result r.
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
-		A: W = 0x1A

XORWF	Exclusive OR W wit	h ''f''	
Syntax	XORWF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	(destination) \leftarrow (W) XOR	. (f)	
Status Affected	Z		
OP-Code	00 0110 dfff ffff		
Description	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is		
L.		'd' is 1, the result is stored back in register 'f'.	
Cycle	1		
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5	
-		A : REG = $0x1A$, W = $0xB5$	

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \degree C)$

Parameter	Rating	Unit
Supply voltage	V_{SS} - 0.3 to V_{SS} + 6.5	
Input voltage	V_{SS} - 0.3 to V_{DD} + 0.3	V
Output voltage	V_{SS} - 0.3 to V_{DD} + 0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	— mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature -40 to +85		
Storage temperature	-65 to +150	°C

Parameter	Symbol		Conditions			Max	Unit
		FAST mode, 25°C, Fsys = 24 MHz		4.3	_	5.5	
Operating Voltage		FAST mode, 25°C, Fsys = 16 MHz		3.1	_	5.5	
	V_{DD}	FAST mo	de, 25°C, Fsys = 8 MHz	2.1	_	5.5	V
		FAST mo	de, 25°C, Fsys = 4 MHz	1.6	_	5.5	
		SLOW	V mode, 25°C, SIRC	1.1	_	5.5	
		All Input,	$V_{DD} = 5V$	$0.6V_{DD}$	_	-	V
Input High	V	except PA7	$V_{DD} = 3V$	$0.6V_{DD}$	_	_	V
Voltage	V_{IH}	$\mathbf{D} \wedge 7$	$V_{DD} = 5V$	$0.7 V_{DD}$	_	_	V
		PA7	$V_{DD} = 3V$	$0.7V_{DD}$	_	_	V
Tour (T	N7	A 11 T	$V_{DD} = 5V$	_	_	$0.2V_{DD}$	V
Input Low Voltage	V_{IL}	All Input	$V_{DD} = 3V$	_	_	$0.2V_{DD}$	V
I/O Port Source	т		$V_{DD} = 5V, V_{OH} = 0.9V_{DD}$	4	8	_	
Current	I _{OH}	All Output	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	2	4	_	mA
	I _{OL}	All Output, except PA7	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	10	20	_	mA
I/O Port Sink			$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	5	10	_	
Current		PA7	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	15	30	_	
			$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	6	12	_	
Input Leakage Current (pin high)	I _{ILH}	All Input	$\mathbf{V}_{\mathrm{IN}} = \mathbf{V}_{\mathrm{DD}}$	_		1	
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{IN} = 0V$		I	-1	μA
			$V_{DD} = 5V, FXT = 12 MHz$	-	3.1	_	
			$V_{DD} = 3V, FXT = 12MHz$	-	1.9	_	
			$V_{DD} = 5V, FXT = 8 MHz$	-	2.3	_	
		FAST mode,	$V_{DD} = 3V, FXT = 8 MHz$	-	1.4	-	mΛ
		LVR enable, WDT enable	$V_{DD} = 5V, FXT = 4 MHz$	_	1.4	_	μA
			$V_{DD} = 3V, FXT = 4 MHz$	-	0.8	_	
Supply Current	I _{DD}		$V_{DD} = 5V$, FIRC = 8 MHz	_	2.1	_	
11.5			$V_{DD} = 3V$, FIRC = 8 MHz	_	1.4	_	
			$V_{DD} = 5V$, $SXT = 32$ KHz	_	32	_	
		SLOW	$V_{DD} = 3V$, $SXT = 32$ KHz	-	10	-	
		mode, LVR enable	$V_{DD} = 5 V, SIRC,$ CPUPSC = 11	_	44	_	
		enuore	$V_{DD} = 3 V, SIRC,$ CPUPSC = 11	_	17	_	

2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 1.1$ V to 5.5V)

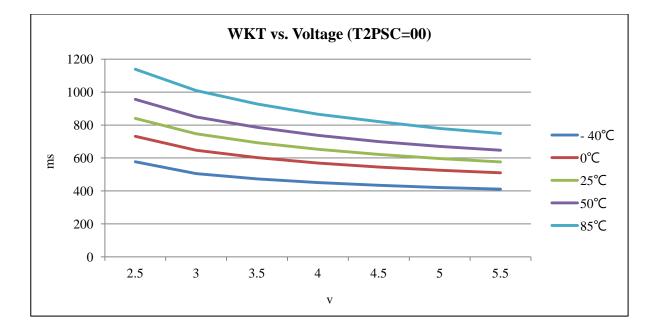
Parameter	Symbol		Min	Тур	Max	Unit						
			$V_{DD} = 5V, SXT = 32 \text{ KHz}$	—	13	-						
			$V_{DD} = 3V$, $SXT = 32$ KHz	_	2.5	_						
		IDLE mode, LVR enable	$V_{DD} = 5 V, SIRC,$ CPUPSC = 11	_	13	_						
			$V_{DD} = 3 V, SIRC,$ CPUPSC = 11	_	3.5	_						
			$V_{DD} = 5V, SXT = 32 \text{ KHz}$	_	9	-						
Supply Current	т		$V_{DD} = 3V$, $SXT = 32$ KHz	—	2	-						
Supply Current	I _{DD}	IDLE mode, LVR disable	$V_{DD} = 5 V, SIRC,$ CPUPSC = 11	_	10	-						
			$V_{DD} = 3 V, SIRC,$ CPUPSC = 11	_	2.5	_						
		STOP mode,	$V_{DD} = 5V$	_	3.2	_						
			LVR enable	$V_{DD} = 3V$	_	0.8	-					
		STOP mode,	$V_{DD} = 5V$	_	_	0.1						
		LVR disable	$V_{DD} = 3V$	_		0.1						
			$V_{DD} = 3.0V$	_	-	12						
System Clock Frequency	Fsys	$V_{DD} > LVR_{th}$	$V_{DD} > LVR_{th}$	$V_{DD} > LVR_{th}$	$V_{DD} > LVR_{th}$	$V_{DD} > LVR_{th}$	$V_{DD} > LVR_{th}$	$V_{DD} = 2.1 V$	_	_	8	MHz
Trequency			$V_{DD} = 1.6V$	_	-	4						
				_	3	-	V					
LVR Reference Voltage	V_{LVR}		$T_A = 25^{\circ}C$	_	2.1	_	V					
, onage			_	1.6	-	V						
LVR Hysteresis Voltage	V _{HYST}		$T_A = 25^{\circ}C$	_	±0.1	_	v					
LVD Reference	V _{LVD}		T - 25°C	_	3.1	-	V					
Voltage	V LVD		$T_A = 25^{\circ}C$		2.2	_	V					
Low Voltage Detection time	t _{LVR}	$T_A = 25^{\circ}C$		100	Ι	-	μs					
		$V_{IN} = 0 V$	$V_{DD} = 5V$		65		KO					
Dull Up Desister	D	Port A, B, D	$V_{DD} = 3V$		120	_	KΩ					
Pull-Up Resistor	R _P	$V_{IN} = 0 V$	$V_{DD} = 5V$		60		VO					
		PA7	$V_{DD} = 3V$	_	140	-	KΩ					

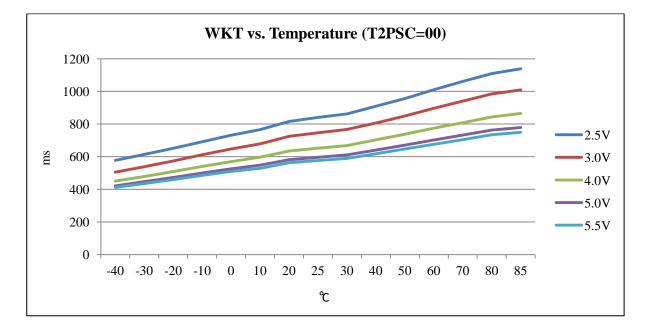
3. Clock Timing ($T_A = -40^{\circ}C$ to $+85^{\circ}C$)

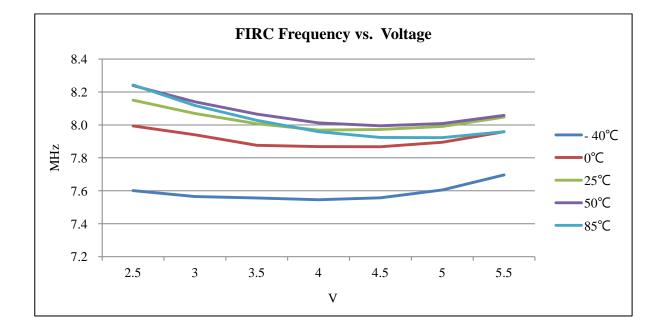
Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	25° C, V _{DD} = 3 ~ 5.5V	7.75	8	8.25	
	25° C, $V_{DD} = 2.6 \sim 3V$	7.6	8	8.4	MHz
	-40° C ~ 85°C, V _{DD} = 2.6 ~ 5.5V	7.5	8	8.5	

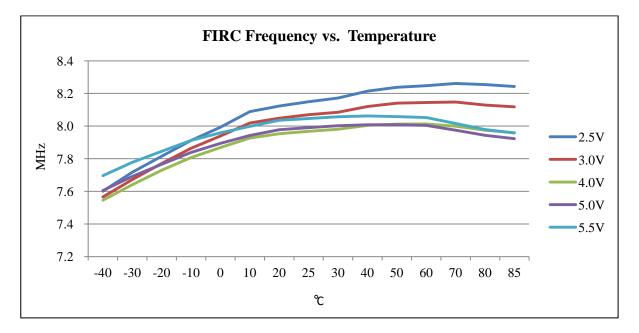
4. Reset Timing Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3V$ to 5V)

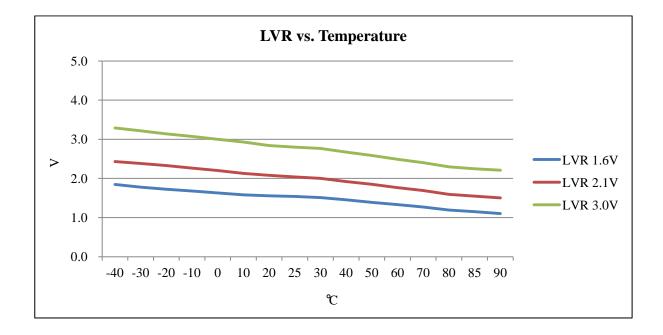
Parameter	Conditions	Min	Тур	Max	Unit	
RESET Input Low width	Input $V_{DD} = 5 \ V \pm 10 \ \%$	3	_	-	μs	
WDT wakeup time	$V_{DD} = 5V, WDTPSC = 00$	-	19	_	ms	
	$V_{DD} = 3V, WDTPSC = 00$	-	24	-		
CDU start un time	$V_{DD} = 5V$	-	19	_		
CPU start up time	$V_{DD} = 3V$	-	24	_	ms	

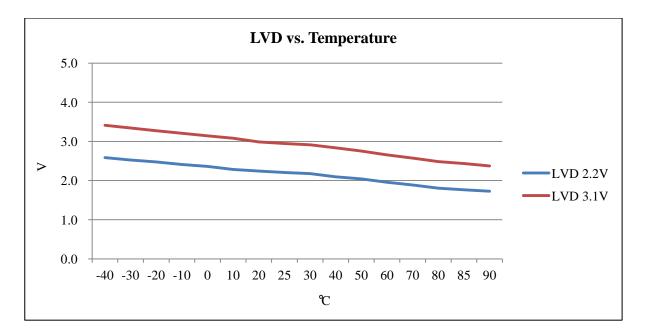

5. Comparator Characteristics ($T_A = 25^{\circ}C, V_{DD} = 5V$)

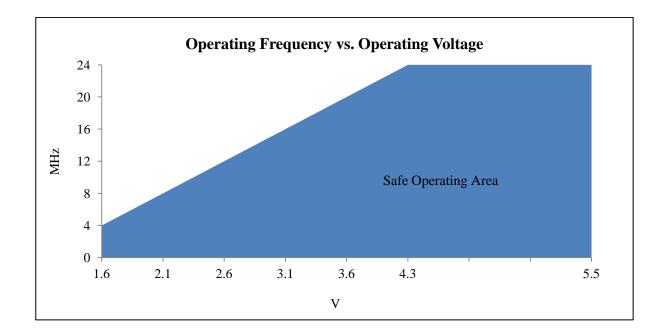

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
CMP Operating Current	т	V – 5V		230	Ι	A
CMP Quiescent Current	I _{CMP}	$V_{DD} = 5V$	_	180	-	μA
CMP Common Mode Voltage Range	V _{CM}	_	0	-	V _{DD} -1	V
CMP Hysteresis Width	V _{HYS}	$V_{DD} = 5V$	-	10	-	mV

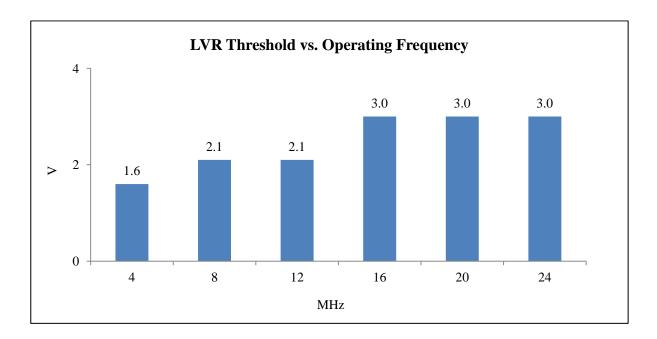


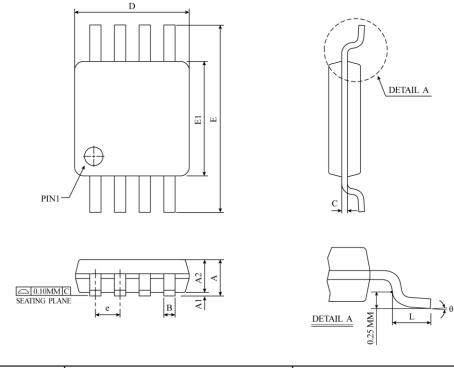

6. Characteristic Graphs







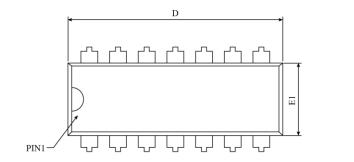


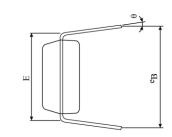


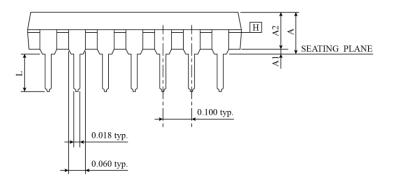
PACKAGING INFORMATION

The ordering information:

Ordering number	Package
TM57PE20A-OTP	Wafer / Dice blank chip
TM57PE20A-COD	Wafer / Dice with code
TM57PE20A-OTP-05	DIP 20-pin (300 mil)
TM57PE20A-OTP-21	SOP 20-pin (300 mil)
TM57PE20A-OTP-02	DIP 14-pin (300 mil)
TM57PE20A-OTP-15	SOP 14-pin (150 mil)
TM57PE20A-OTP-04	DIP 18-pin (300 mil)
TM57PE20A-OTP-20	SOP 18-pin (300 mil)
TM57PE20A-OTP-03	DIP 16-pin (300 mil)
TM57PE20A-OTP-16	SOP 16-pin (150 mil)
TM57PE20A-OTP-26	SSOP 16-pin (150 mil)
TM57PE20A-OTP-52	MSOP 8-pin (118 mil)


SYMBOL	DI	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	0.81	0.96	1.10	0.032	0.038	0.043		
A1	0.05	0.10	0.15	0.002	0.004	0.006		
A2	0.76	0.86	0.95	0.030	0.034	0.037		
В	0.28	0.33	0.38	0.011	0.013	0.015		
С	0.13	0.18	0.23	0.005	0.007	0.009		
D	2.90	3.00	3.10	0.114	0.118	0.122		
Е	4.75	4.90	5.05	0.187	0.193	0.199		
E1	2.90	3.00	3.10	0.114	0.118	0.122		
e		0.65 BSC			0.026 BSC			
L	0.40	0.55	0.70	0.016	0.022	0.028		
θ	0°	3°	6°	0°	3°	6°		
JEDEC								


 $\underline{\mathbb{A}}$ * Notes : dimension "d" does not include mold protrusions or gate burrs.

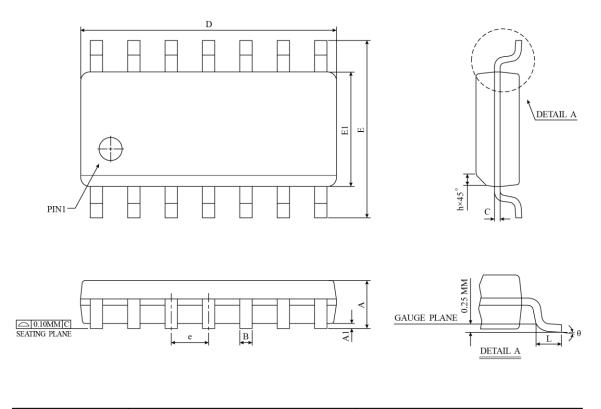

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE. DIMENSION "E1 " DOES NOT INCLUDE MOLD PROTRUSIONS

MOLD PROTRUSIONS SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

SYMDOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
А	-	5.334	-	0.210	
A1	0.381	-	0.015	-	
A2	3.175	3.429	0.125	0.135	
D	18.669	19.685	0.735	0.775	
Е	7.620	BSC	0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
eB	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (AA)				

NOTES :

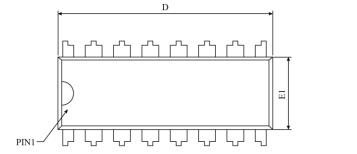
1. ${}^{\rm *}D''$, ${}^{\rm *}E1''$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

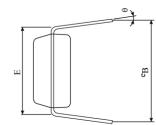

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

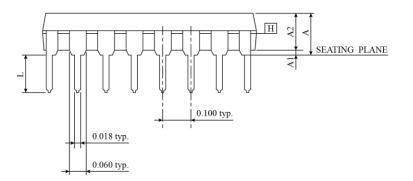
3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE II COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.





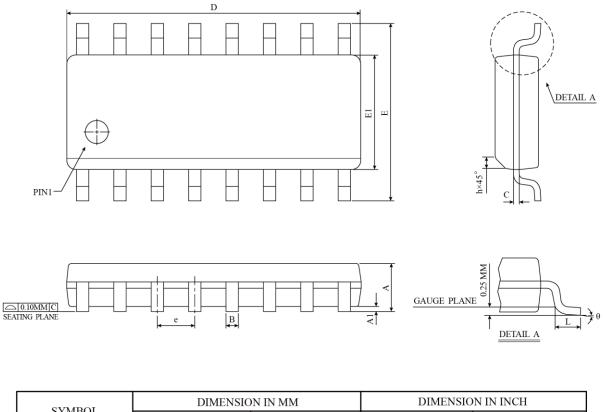

SYMDOL	DIMENSIO	N IN MM	DIMENSION IN INCH			
SYMBOL	MIN	MAX	MIN	MAX		
А	1.35	1.75	0.0532	0.0688		
A1	0.10	0.25	0.0040	0.0098		
В	0.33	0.51	0.013	0.020		
С	0.19	0.25	0.0075	0.0098		
D	8.55	8.75	0.3367	0.3444		
Е	5.80	6.20	0.2284	0.2440		
E1	3.80	4.00	0.1497	0.1574		
е	1.27	BSC	0.050 BSC			
h	0.25	0.50	0.0099	0.0196		
L	0.40	1.27	0.016	0.050		
θ	0°	8°	0°	8°		
JEDEC	MS-012 (AB)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

SYMBOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
А	-	4.369	-	0.172	
A1	0.381	0.965	0.015	0.038	
A2	3.175	3.429	0.125	0.135	
D	18.669	19.685	0.735	0.775	
Е	7.620	BSC	0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
eB	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (BB)				

NOTES :

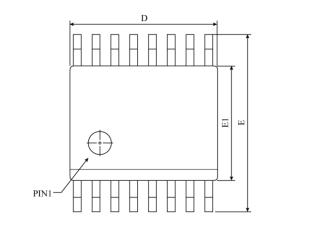
1. $^{\rm n}D''$, $^{\rm n}E1''$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

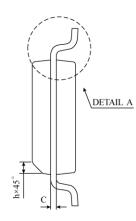

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

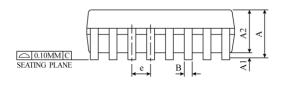
3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

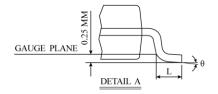
4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

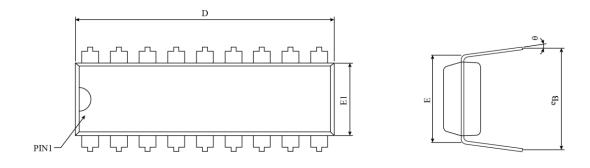
5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

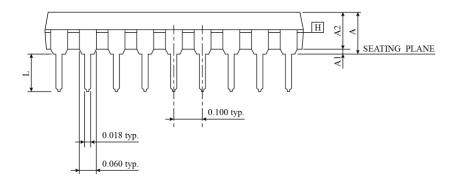



SYMBOL	DIMENSIC	N IN MM	DIVIENSION IN INCH			
SIMBOL	MIN	MAX	MIN	MAX		
А	1.35	1.75	0.0532	0.0688		
A1	0.10	0.25	0.0040	0.0098		
В	0.33	0.51	0.013	0.020		
С	0.19	0.25	0.0075	0.0098		
D	9.80	10.00	0.3859	0.3937		
Е	5.80	6.20	0.2284	0.2440		
E1	3.80	4.00	0.1497	0.1574		
e	1.27	BSC	0.050 BSC			
h	0.25	0.50	0.0099	0.0196		
L	0.40	1.27	0.016	0.050		
θ	0°	8°	0°	8°		
JEDEC	MS-012 (AC)					


A * Notes : dimension ``d" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall


NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.




SYMBOL	DI	MENSION IN M	IM	DIMENSION IN INCH			
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e		0.635 BSC			0.025 BSC		
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137 (AB)						

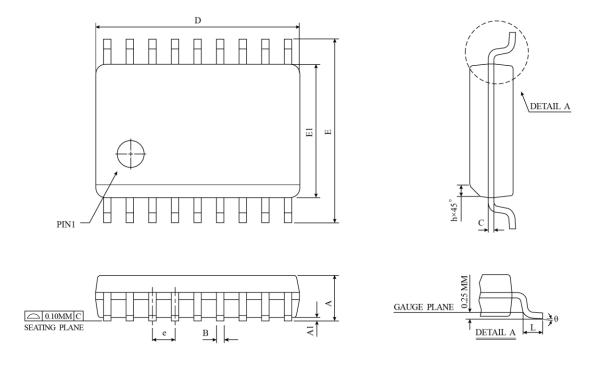
* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS, MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

EXCEED 0.15 MM (0.006 INCH) PER SID

SYMDOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL -	MIN	MAX	MIN	MAX	
А	-	5.334	-	0.210	
A1	0.381	-	0.015	-	
A2	3.175	3.429	0.125	0.135	
D	22.352	23.368	0.880	0.920	
Е	7.620	BSC	0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
е _В	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (AC)				

NOTES :

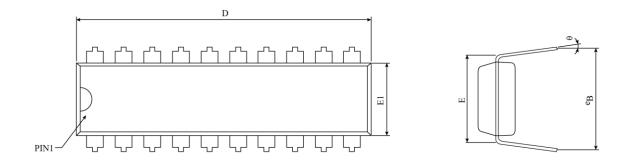
1. ${\rm ``D''}$, ${\rm ``E1''}$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

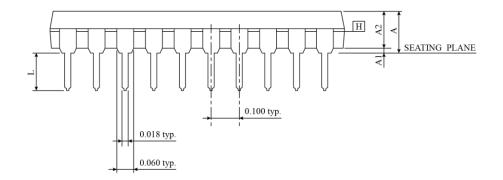

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


SYMBOL -	DIMENSION IN MM		DIMENSION IN INCH		
	MIN	MAX	MIN	MAX	
А	2.362	2.642	0.093	0.104	
A1	0.102	0.305	0.004	0.012	
В	0.406 typ		0.016 typ		
С	0.254 typ		0.010 typ		
D	11.354	11.760	0.447	0.463	
Е	10.008	10.643	0.394	0.419	
E1	7.391	7.595	0.291	0.299	
e	1.27 typ		0.050 typ		
h	0.508 typ		0.020 typ		
L	0.406	1.270	0.016	0.050	
θ	0°	8°	0°	8°	
JEDEC	MS-012 (AB)				


* NOTES : 1. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

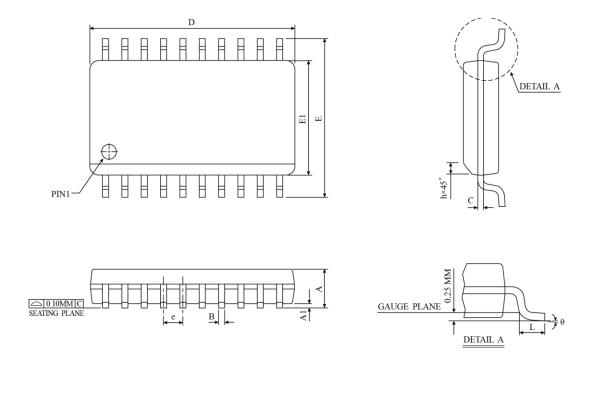
2. DIMENSION "E1" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS.

INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

SYMBOL	DIMENSION IN MM		DIMENSION IN INCH	
	MIN	MAX	MIN	MAX
А	-	4.445	-	0.175
A1	0.381	-	0.015	-
A2	3.175	3.429	0.125	0.135
D	25.705	26.416	1.012	1.040
Е	7.620	7.874	0.300	0.310
E1	6.223	6.477	0.245	0.255
L	3.048	3.556	0.120	0.140
е _В	8.509	9.525	0.335	0.375
θ	0°	15°	0°	15°
JEDEC	MS-001 (AD)			

NOTES :

1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.


2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

SYMBOL	DIMENSION IN MM		DIMENSION IN INCH	
	MIN	MAX	MIN	MAX
А	2.35	2.65	0.0926	0.1043
A1	0.10	0.30	0.0040	0.0118
В	0.33	0.51	0.013	0.020
С	0.23	0.32	0.0091	0.0125
D	12.60	13.00	0.4961	0.5118
Е	10.00	10.65	0.394	0.491
E1	7.40	7.60	0.2914	0.2992
e	1.27 BSC		0.050 BSC	
h	0.25	0.75	0.010	0.029
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°
JEDEC	MS-013 (AC)			

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.