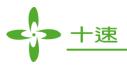


tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY



Version	Date	Description
V0.90	Apr, 2016	New release.
		1. Modify operate voltage condition
		2. Modify operate frequency condition
V0.91	Apr, 2017	3. Add LVR2.2V
v0.91 Apr,		4. Add TM57MT21/MT21A comparison table
		5. Add Graphs: minimum operating voltage vs. LVR
		6. Others error correction
V0.92	Nov, 2017	1. Modify operate voltage condition
V0.93	Mar, 2018	1. Add SSOP-20, QFN-20 package type

CONTENTS

AMENDMENT HISTORY	
FEATURES	5
BLOCK DIAGRAM	8
PIN ASSIGNMENT	9
PIN DESCRIPTION	
PIN SUMMARY	
FUNCTION DESCRIPTION	
1. CPU Core	
 Clock Scheme and Instruction Cycle Addressing Mode Programming Counter (PC) and Stack ALU and Working (W) Register STATUS Register (F-Plane 03H) Interrupt 	
2. Chip Operation Mode	
 2.1 Reset	23 24 24 24 25 26
3. Peripheral Functional Block	
 3.1 Watchdog Timer (WDT) / Wakeup Timer (WKT)	31 36 39 43 56 61
4. I/O Port	
4.1 PA0-6, PB0-7, PD74.2 PA7	75
MEMORY MAP	
F-Plane	
R-Plane	

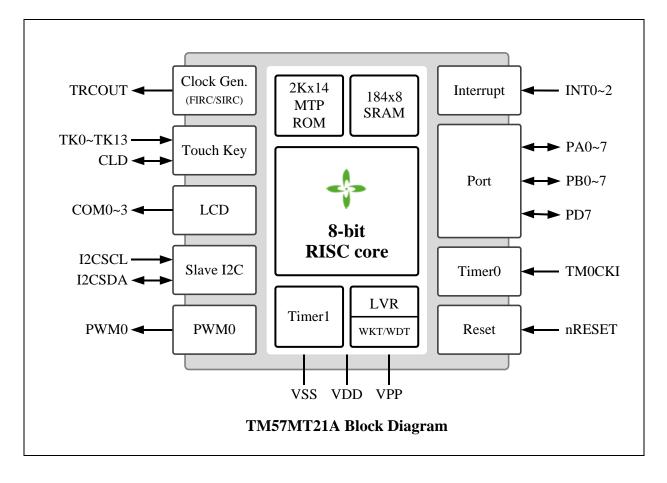
Instruction Set	
Electrical Characteristics	
1. Absolute Maximum Ratings	
2. DC Characteristics	97
3. Clock Timing	
4. Reset Timing Characteristics	
5. Characteristic Graphs	
Packaging information	
20-DIP Package Dimension	
20-SOP Package Dimension	
20-SSOP Package Dimension	
20-QFN Package Dimension	
16-DIP Package Dimension	
16-SOP Package Dimension	

FEATURES

- 1. MTP: 2K x 14 bits MTP ROM (Support ISP uses 5 wires)
- **2.** RAM: 184 x 8 bits
- 3. STACK: 6 Levels
- 4. I/O Ports: Three bit-programmable I/O ports (Max. 17 pins)
- 5. Two Independent Timers
 - Timer0
 - 8-bit Timer0 with divided by 1~256 pre-scale option / auto-reload / counter / interrupt / stop function
 - Timer1
 - 8-bit Timer1 with divided by 1~256 pre-scale option / auto-reload / interrupt / stop function
- 6. One 8-bit PWM0 with pre-scale / period-adjustment / clear and hold function / positive-negativeoutput function
- 7. 14-channel Touch Key
 - 1~8 Key H/W auto scan, upper / lower boundary adjustable for each key
 - Interrupt / Wake-up CPU while key is pressed (H/W auto mode)
 - Interrupt while Touch Key is end of conversion (S/W manual mode)
- 8. Specific purpose slave I2C interface with interrupt function
- 9. Software controlled COM0~3 LCD driver with 1/2 bias
- 10. PA0~PA6, PB6~PB7, PD7 individual pin low level wake up
- 11. System Oscillation Sources (Fsys)
 - Fast-clock
 - FIRC (Fast Internal RC) : 1 / 2 / 4 MHz
 - Slow-clock
 - SIRC (Slow Internal RC) : 2.1 / 4.2 / 8.5 / 17 KHz @ V_{DD} = 3V
- 12. Power Saving Operation Modes
 - FAST Mode: Fast-clock keeps CPU running
 - SLOW Mode: Fast-clock stops, Slow-clock keeps CPU running
 - IDLE Mode: Fast-clock and CPU stop, Wake-up Timer or Auto Touch Key keep running
 - STOP Mode: All Clocks Stop, Wake-up Timer and Auto Touch Key Stop
- **13.** Dual System Clock
 - FIRC + SIRC

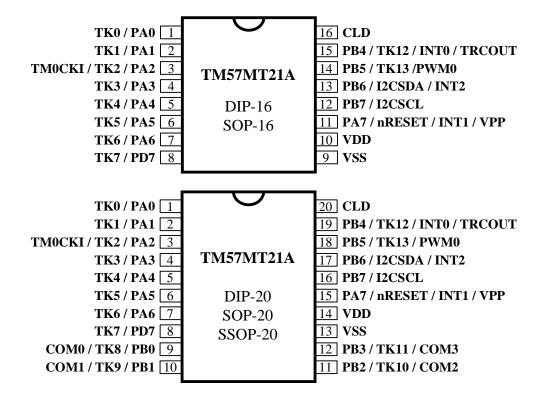
- 14. Reset Sources
 - Power On Reset
 - Watchdog Reset
 - Low Voltage Reset
 - External pin Reset
- 15. 2-Level Low Voltage Reset: 1.9V / 2.2V (can be disabled)
- 16. Operation Voltage: Low Voltage Reset Level to 4.0V
 - Fsys = 2 MHz, 1.3V ~ 4.0V
 - Fsys = 4 MHz, $1.5V \sim 4.0V$
- **17.** Operating Temperature Range: -40°C to +85°C
- 18. Interrupts
 - Three External Interrupt pins
 - Two pin is falling edge triggered
 - One pin is rising or falling edge triggered
 - Timer0 / Timer1 / Wake-up Timer Interrupt
 - I2C Interrupt
 - Touch Key Interrupt
- 19. Watchdog Timer (WDT) / Wake-up Timer (WKT)
 - Clocked by built-in RC oscillator with 4 adjustable Reset / Interrupt time options
 - $V_{DD} = 3V$, WDT / WKT = 240 ms / 120 ms / 60 ms / 30 ms
 - Watchdog timer can be disabled / enabled in Power-down mode
- 20. I/O Port Modes
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option
- **21.** Instruction set: 36 Instructions
- 22. Package Types:
 - 20-pin DIP (300 mil)
 - 20-pin SOP (300 mil)
 - 20-pin SSOP (150 mil)
 - 20-pin QFN (4x4x0.75-0.5mm)
 - 16-pin DIP (300 mil)
 - 16-pin SOP (150 mil)
- 23. Supported EV board on ICE
 - EV board: EV8206

24. Comparison Table:

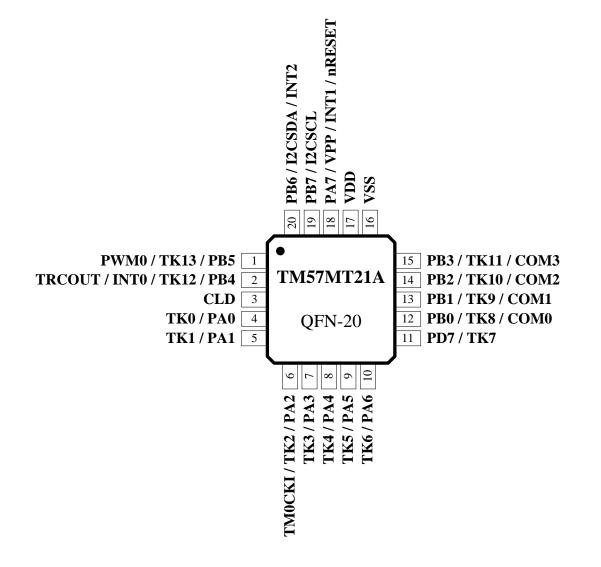

		EV2806	TM57MT21	TM57MT21A		
EV Board		_	EV2806	EV2806		
LVR		_	1.9V (can be disabled)	1.9V / 2.2V (can be disabled)		
	Channel	14 key	14 key	14 key		
Touch Key (S/W mode)	Reference Capacitor	O (TKCHS=15)	O (TKCHS=15)	O (TKCHS=15)		
(3/ ** mode)	Interrupt	Х	Х	O (triggered when TKEOC=1)		
	Channel	Scan 1~8 key	Scan 1~8 key	Scan 1~8 key		
	Scan	multiple 1 / 2 / 4 time(s)	multiple 1 / 2 / 4 time(s)	multiple 1 / 2 / 4 time(s)		
	Interrupt	O (triggered after all keys scanned and pressed)	O (triggered after all keys scanned and pressed)	O (triggered when any key pressed)		
Touch Key	ATKPOL ¹	Х	Х	0		
(H/W mode)	ATKSIT ²	X (share with WKTPSC)	X (share with WKTPSC)	O (independent SFR)		
	ATKDT ³	8 bits Binary (ex. ATKDT=00001000b)	8 bits Binary (ex. ATKDT=00001000b)	3 bits BCD (ex. ATKDT=011b)		
	TKDH/DL ⁴ readable	Х	Х	0		

Note:

- 1. ATKPOL : Touch Key auto scan polarity flag
- 2. ATKSIT: Touch Key auto scan interval time
- 3. ATKDT: Touch Key auto scan result manifestation
- 4. TKDH / TKDL: Touch Key 10 bits data count



BLOCK DIAGRAM



PIN ASSIGNMENT

PIN DESCRIPTION

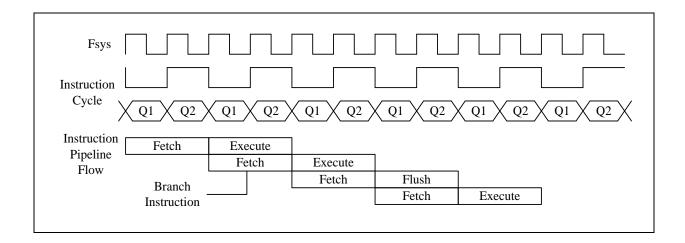
Name	In/Out	Pin Description
PA0–PA6	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input or open-drain output. Pull- up resistor is always assignable.
PB0–PB7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
PD7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistor is assignable by software.
nRESET	Ι	External active low reset
TRCOUT	0	Touch Key clock output
VDD, VSS	Р	Power Voltage input pin and ground
VPP	Ι	PROM programming high voltage input
INT0-INT2	Ι	External interrupt input
PWM0	0	PWM0 output
TM0CKI	Ι	Timer0's input in counter mode
TK0–TK13	Ι	Touch Key input
CLD	I/O	Touch Key charge collection capacitor connection pin
COM0–COM3	0	LCD Common output
I2CSCL	Ι	I2C serial clock input
I2CSDA	I/O	I2C serial data pin

PIN SUMMARY

N	Pin Number					GP	PIO		PIO		PIO		set		Alt	ernat	e Fun	ction
	P				Inj	out	Out	tput	Re									
20-QFN	40SS/410/40S-02	16-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	Q. 0	ďď	Function After Reset	MMd	Touch Key	TCD	12C	MISC				
4	1	1	PA0/TK0	I/O	0		0	0	PA0		0							
5	2	2	PA1/TK1	I/O	0		0	0	PA1		0							
6	3	3	PA2/TK2/TM0CKI	I/O	0		0	0	PA2		0			TM0CKI				
7	4	4	PA3/TK3	I/O	0		0	0	PA3		0							
8	5	5	PA4/TK4	I/O	0		0	0	PA4		0							
9	6	6	PA5/TK5	I/O	0		0	0	PA5		0							
10	7	7	PA6/TK6	I/O	0		0	0	PA6		0							
11	8	8	PD7/TK7	I/O	0		0	0	PD7		0							
12	9	-	PB0/TK8/COM0	I/O	0		0	0	PB0		0	0						
13	10	-	PB1/TK9/COM1	I/O	0		0	0	PB1		0	0						
14	11	-	PB2/TK10/COM2	I/O	0		0	0	PB2		0	0						
15	12	-	PB3/TK11/COM3	I/O	0		0	0	PB3		0	0						
16	13	9	VSS	Р														
17	14	10	VDD	Р														
18	15	11	PA7/INT1/nRESET/VPP	I/O	0	0	0		PA7					nRESET				
19	16	12	PB7/I2CSCL	I/O	0		0	0	PB7				0					
20	17	13	PB6/I2CSDA/INT2	I/O	0	0	0	0	PB6				0					
1	18	14	PB5/TK13/PWM0	I/O	0		0	0	PB5	0	0							
2	19	15	PB4/TK12/INT0/TRCOUT	I/O	0	0	0	0	PB4		0			TRCOUT				
3	20	16	CLD	I/O							0							

Symbol : P.P. = COM Push-Pull Output

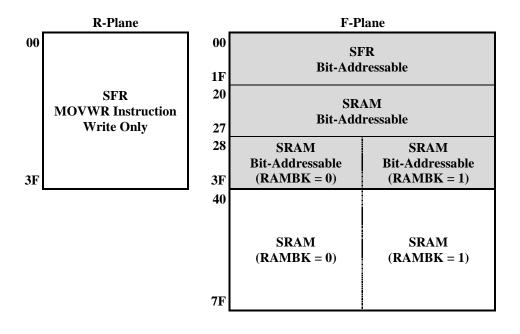
O.D. = Open Drain Output



FUNCTION DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle


The system clock (Fsys) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.7~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bitaddressable. And there are two RAM banks can be selected by RAMBK (F03.5).

◊ Example: Write immediate data into R-Plane register

MOVLW	AAH	; Move immediate AAH into W register
MOVWR	05H	; Move W value into R-Plane location 05H

♦ Example: Write immediate data into F-Plane register

MOVLW	55H	; Move immediate 55H into W register
MOVWF	20H	; Move W value into F-Plane location 20H

◊ Example: Move F-Plane location 20H data into W register

♦ Example: Clear SRAM Bank0 data by indirect addressing mode

	MOVLW MOVWF	20H FSR	; W = 20H (SRAM start address) ; Set start address of user SRAM into FSR register
	BCF	STATUS, 5	; Set RAMBK = 0
LOOP:			
	MOVLW	00H	
	MOVWF	INDF	; Clear user SRAM data
	INCF	FSR, 1	; Increment the FSR for next address
	MOVLW	80H	; $W = 80H$ (SRAM end address)
	XORWF	FSR, 0	; Check the FSR is end address of user SRAM?
	BTFSS	STATUS, 2	; Check the Z flag
	GOTO	LOOP	; If $Z = 0$, go o LOOP label
			; If $Z = 1$, exit LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 11-bit wide capable of addressing a 2K x 14 program ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL / GOTO instructions, PC loads 11 bits address from instruction word. For RET / RETI / RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [10:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC [10:8]. The STACK is 11-bit wide and 6-level in depth. The CALL instruction and Hardware interrupt will push STACK level in order.

♦ Example: To look up the PROM data located "TABLE"

×	ORG GOTO	000H START	; Reset Vector ; Goto user program address
START:	MOVLW	00H	
LOOP:	MOVWF	INDEX	; Set lookup table's address (INDEX)
	MOVFW CALL	INDEX TABLE	; Move INDEX value to W register ; To Lookup data (W = 55H when INDEX = 00H)
	INCF	INDEX, 1	; Increment the INDEX for next address
	GOTO	LOOP	; Goto LOOP label
TABLE:	ORG	X00H	; X = 1, 2, 3,, 6, 7
THDEE.	ADDWF	PCL, 1	; (Addr = X00H) Add the W with PCL, the result ; back in PCL
	RETLW RETLW RETLW	55H 56H 58H	; W = 55H when return ; W = 56H when return ; W = 58H when return

Note: TM57MT21A defines 256 ROM addresses as one page, so that TM57MT21A has 8 pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, ..., and 700H~7FFH. On the other words, PC [10:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X = 1, 2, 3, ..., 6, 7). If a lookup table has fewer data, it needs not set the starting address at X00H, just only confirm all lookup table data are located at the same page.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a / Borrow and / Digit Borrow, respectively, in subtraction.

Note: / Borrow represents inverted of Borrow register.

/ Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS Register because these instructions do not affect those bits. The RAMBK bit is used to the SRAM Bank selection.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Reset Value	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W			
Bit		Description									
7	GB1: Gene	eral Purpose	Bit 1								
6	GB0: Gene	eral Purpose	Bit 0								
5	0: SRAN	RAMBK: SRAM Bank Selection 0: SRAM Bank0 1: SRAM Bank1									
4	0: after F	TO: Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instruction 1: WDT time out occurs									
3	0: after F	Down Flag Power On Ro SLEEP instr	eset, LVR R	eset, or CLI	RWDT instr	uction					
2		sult of a logi	ic operation								
	DC: Decin	nal Carry Fl	ag or Decim	al/Borrow I	Flag						
		ADD in	struction		SUB instruction						
1	0: no carry0: a borrow from the low nibble bits of the result occurs1: a carry from the low nibble bits of the result occurs1: no borrow						ts of				
	C: Carry F	lag or Borro	ow Flag								
0		-	struction			SUB instruction					
0	ADD instructionSOB instruction0: no carry0: a borrow occurs from the MSB1: a carry occurs from the MSB1: no borrow										

 \diamond Example: Write immediate data into STATUS register

MOVLW 00H MOVWF STATUS

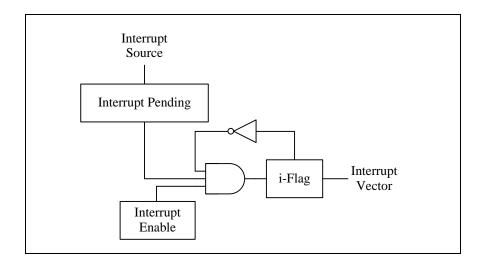
; Clear STATUS register

 \diamond Example: Bit addressing set and clear STATUS register

BSF	STATUS, 0	; Set $C = 1$
BCF	STATUS, 0	; Clear $C = 0$

 \diamond Example: Determine the C flag by BTFSS instruction

BTFSS	STATUS, 0	; Check the C flag
GOTO	LABEL_1	; If $C = 0$, goto LABEL_1 label
GOTO	LABEL_2	; If C = 1, goto LABEL_2 label



1.6 Interrupt

The TM57MT21A has 1 level, 1 vector and 8 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57MT21A has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Example: Setup INTO (PB4) interrupt request with rising edge trigger

	ORG GOTO	000H START	; Reset Vector ; Goto user program address
	ORG GOTO	001H INT	; All interrupt vector ; If INT0 (PB4) input occurred rising edge
START:	ORG	002H	
	MOVLW MOVWR	xxxxxx 00 B PBMODH	; Select INT0 Pin Mode as Mode0 ; Open drain output low or input with Pull-up
	MOVLW MOVWF	xxx <u>1</u> xxxxB PBD	; Release INT0, it becomes Schmitt-trigger ; input with input pull-up resistor
	MOVLW MOVWR MOVLW	000 <u>1</u> 0xxxB MR0B 1111111 <u>0</u> B	; Set INTO interrupt trigger as rising edge
	MOVWF MOVLW	INTIF 0000000 <u>1</u> B	; Clear INTO interrupt request flag
MAIN:	MOVWF	INTIE	; Enable INT0 interrupt
	GOTO	MAIN	
INT:			
	MOVWF MOVFW MOVWF	20H STATUS 21H	; Store W data to SRAM 20H ; Get STATUS data ; Store STATUS data to SRAM 21H
	BTFSS GOTO	INT0IF EXIT_INT	; Check INT0IF bit ; INT0IF = 0, exit interrupt subroutine ; INT0 interrupt service routine
EXIT_INT:	MOVLW MOVWF	1111111 0 B INTIF	; Clear INT0 interrupt request flag
EATT_INT	MOVFW MOVWF MOVFW RETI	21H STATUS 20H	; Get SRAM 21H data ; Restore STATUS data ; Restore W data ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
708.7	I2CIE: I2C r 0: disable 1: enable	eceive/trans	mit data finisl	hed interrupt	enable			
F08.6	TKIE : Touch 0: disable 1: enable	n Key interru	ıpt enable					
708.5	TM1IE : Tim 0: disable 1: enable	er1 interrupt	enable					
708.4	TM0IE : Tim 0: disable 1: enable	er0 interrupt	enable					
F08.3	WKTIE: Wa 0: disable 1: enable	keup Timer	interrupt ena	ble				
F08.2	INT2IE: INT 0: disable 1: enable	T2 (PB6) pin	interrupt ena	ble				
F08.1	INT1IE : INT 0: disable 1: enable	51 (PA7) pin	interrupt ena	ble				
F08.0	INTOIE : INT 0: disable 1: enable	70 (PB4) pin	interrupt ena	ble				

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
F09.7 I2CIF : I2C interrupt event pending flag This bit is set by H/W while a. I2CRCD0 or I2CRCD1 receive new data finished b. I2CRCD0 or I2CRCD1 data overflow occurred c. I2CTXD0 or I2CTXD1 data transmit finished write 0 to this bit will clear this flag and slave I2C related flags								
F09.6	09.6 TKIF: Touch Key interrupt event pending flag This bit is set by H/W while Key's TK Data Count is over the pre-set compare threshold range (H/W auto mode) or TK is end of conversion (S/W manual mode), write 0 to this bit will clear this flag							
F09.5	TM1IF : Tim This bit is s	1	1	0 0	rite 0 to this b	oit will clear t	this flag	
F09.4	TM0IF : Tim This bit is s				rite 0 to this b	oit will clear t	this flag	
F09.3	WKTIF: WI This bit is s	1	·	00	0 to this bit v	vill clear this	flag	
F09.2	INT2IF : INT2 interrupt event pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag							
F09.1	INT1IF : INT1 interrupt event pending flag This bit is set by H/W at INT1 pin's falling edge, write 0 to this bit will clear this flag							
F09.0	INTOIF : INT This bit is s				g edge, write	0 to this bit v	vill clear this	flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	—	_	INT0EDG	_	TRCNOE	WKTI	PSC
R/W	—	—	_	W	_	W	W	
Reset	-	-	-	0	_	0	1	1

R0B.4 **INT0EDG:** INT0 pin (PB4) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger

2. Chip Operation Mode

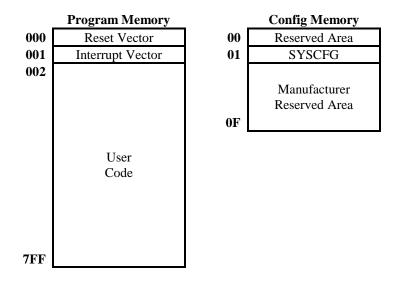
2.1 Reset

The TM57MT21A can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The LVR level is selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels 1.9V or 2.2V can be selected. The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value. The TO/PD flag is not affected by these resets.

2.2 System Configuration Register (SYSCFG)


The System Configuration Register (SYSCFG) is located at MTP INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by MTP Writer only. User can select LVR threshold voltage and chip operation mode by SYSCFG register. The 13th bit of SYSCFG is code protection selection bit. If this bit is 1, the data in MTP will be protected, when user reads MTP.

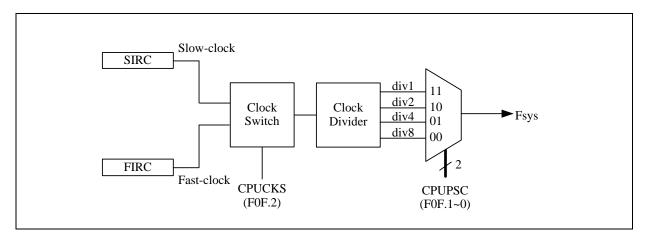
Bit	13~0				
Default Value	0x_00xx_00xx_xxx				
Bit		Description			
	PROTECT: Code Pro	tection Selection			
13	0 Disable				
	1 Enable				
12	Reserved				
	LVR: Low Voltage Re	set Mode			
	$00 \qquad LVR \ level = 1$	9V, always enabled			
11-10	01 LVR disabled				
	10 LVR level = 2	2V, always enabled			
	11 LVR level = 1	.9V, disabled in Power-down Mode			
9-8	Reserved				
	XRSTE : External Pin	(PA7) Reset Enable			
7	0 PA7 as Input H	PIN			
	1 Enable				
	WDTE: WDT Reset E	nable			
6	0 Disable				
	1 Enable				
5-0	Reserved				

2.3 MTP Program ROM

The MTP ROM of this device is 2K words, with an extra INFO area to store the SYSCFG. The MTP ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but can be written only when PROTECT is not set or MTP ROM is erased. That is, un-protect the PROTECT bit needs the erased MTP ROM.

2.4 Power-Down Mode

The Power-down mode includes IDLE Mode and STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption, whether the WDT / WKT Timer are working or not depend on F/W setting. The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins, WKT, ATK and I2C interrupts) or PA0-PA6, PB6-PB7 and PD7 pins low level wake up.


R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRDN		PWRDN						
R/W		W						
Reset	-	-	—	_	-	-	—	—

R03.7~0 **PWRDN:** Write this register to enter Power-down (STOP / IDLE) Mode

2.5 Dual System Clock

TM57MT21A is designed with dual-clock system. There are two kinds of clock source, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Both of them can be applied to CPU kernel as system clock source. Refer to the figure as below.

FAST Mode:

TM57MT21A enters FAST mode by setting the CPUCKS (F0F.2). In this mode, the system clock source is FIRC. The Timer0, Timer1 and PWM0 blocks are driven by Fast-clock.

SLOW Mode:

After power on or reset, TM57MT21A enters SLOW mode, the default system clock source is SIRC. In this mode, Fast-clock is stopped and Slow-clock is enabled for power saving. All peripheral blocks (Timer0, Timer1 and PWM0, etc...) are driven by Slow-clock.

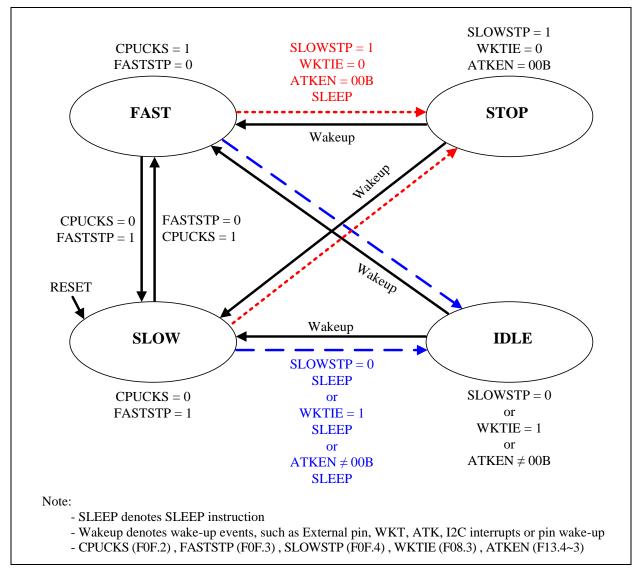
IDLE Mode:

When SLOWSTP (F0F.4) is cleared, the TM57MT21A will enter the "IDLE Mode" after executing the SLEEP instruction. In this mode, the Slow-clock will keep running to provide clock to WKT / WDT or Auto Touch Key block. CPU stops fetching code and all blocks are stop.

Another way to keep clock oscillation in IDLE mode is setting WKTIE = 1 (F08.3) before executing the SLEEP instruction. In such condition, the Slow-clock will also keep running no matter SLOWSTP is set or cleared. It is possible to keep WKT working for wake-up CPU periodically in the IDLE mode, which is useful for low power mode Touch Key detection.

The third way to keep clock oscillation in IDLE mode is setting ATKEN \neq 00b (F13.4~3) before executing the SLEEP instruction. In such condition, The Auto Touch Key will keep working.

STOP Mode:


When SLOWSTP is set, WKTIE and ATKEN are both cleared, all blocks will be turned off and the TM57MT21A will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

2.6 Dual System Clock Modes Transition

TM57MT21A is operated in one of four modes: FAST Mode, SLOW Mode, IDLE Mode, and STOP Mode.

Modes Transition Diagram:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1 PWM0/TK	WKT	ATK	Wakeup event
FAST	FIRC	Fast-clock	Run	Run	Run	Run/Stop	Run/Stop	-
SLOW	SIRC	Slow-clock	Stop	Run	Run	Run/Stop	Run/Stop	-
IDLE	SIRC	Stop	Stop	Run	Stop	Run/Stop	Run/Stop	WKT/ATK/I2C/IO
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	I2C/IO

CPU Mode & Clock Functions Table:

FAST Mode transits to SLOW Mode:

The source clock of Slow-clock is SIRC. The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

- (1) Switch system clock source to Slow-clock (CPUCKS = 0)
- (2) Stop Fast-clock (FASTSTP = 1)

♦ Example: Switch operating mode from FAST mode to SLOW mode

BCF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock

SLOW Mode transits to FAST Mode:

The source clock of Fast-clock is FIRC. The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Enable Fast-clock (FASTSTP = 0)
- (2) Switch system clock source to Fast-clock (CPUCKS = 1)

♦ Example: Switch operating mode from SLOW mode to FAST mode

BCF	FASTSTP	; Enable Fast-clock
BSF	CPUCKS	; Switch system clock source to Fast-clock

IDLE Mode Setting:

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP = 0)
- (2) Execute SLEEP instruction

IDLE mode can be woken up by interrupts (External pins, WKT, ATK or I2C) or PA0-PA7, PB6-PB7 and PD7 pins low level wake up.

◊ Example: Switch operating mode to IDLE mode

BCF	SLOWSTP	; Enable Slow-clock
SLEEP		; Enter IDLE mode

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP = 1)
- (2) Disable WDT/WKT (WKTIE = 0)
- (3) Disable ATK (ATKEN = 00b)
- (4) Execute SLEEP instruction

STOP mode can be woken up by interrupt (External pins or I2C) or PA0-PA7, PB6-PB7 and PD7 pins low level wake up.

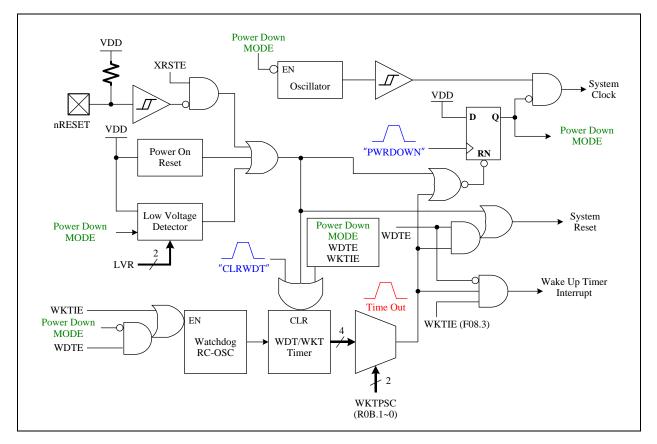
◊ Example: Switch operating mode to STOP mode

BSF	SLOWSTP	; Stop Slow-clock
BCF	WKTIE	; Disable WDT / WKT
MOVLW	xxx <u>00</u> xxxB	; Disable ATK
MOVWF	ATKCTL	
SLEEP		; Enter STOP mode

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL		—	-	SLOWSTP	FASTSTP	CPUCKS	CPUPSC	
R/W	_	_	_	R/W	R/W	R/W	R/W	
Reset	_	_	_	0	0	0	1	1

F0F.4SLOWSTP: Slow-clock stop
0: Slow-clock is running
1: Slow-clock stops running in Power-down mode

- F0F.3 **FASTSTP**: Fast-clock stop 0: Fast-clock is running 1: Fast-clock stops running
- F0F.2 **CPUCKS**: System clock source select 0: Slow-clock 1: Fast-clock (forbid using, when CPUPSC = 3)
- F0F.1~0 CPUPSC: System clock source prescaler. System clock source 00: divided by 8 01: divided by 4 10: divided by 2 11: divided by 1 (forbid using, when CPUCKS = 1)



3. Peripheral Functional Block

3.1 Watchdog Timer (WDT) / Wakeup Timer (WKT)

The WDT and WKT share the same internal RC Timer. The overflow period of WDT/WKT can be selected from 30 ms to 240 ms. The WDT/WKT is cleared by the CLRWDT instruction. If the Watchdog Reset is enabled (SYSCFG [6], WDTE = 1), the WDT generates the chip reset signal, otherwise, the WKT only generates overflow time out flag WKTIF" (F09.3). It generates WKT overflow time out interrupt if the WKTIE" (F08.3) bit is set. If WKTIE is cleared (no matter WDTE is 1 or 0), the internal RC Timer stops for power saving in Stop mode. If WKTIE and WDTE are all cleared, the internal RC Timer will also stop for power saving in normal mode. Refer to the following table and figure.

The WDT and WKT's behavior in different Mode are shown as below table.

Mode	WDTE	WKTIE	Watchdog RC Oscillator
	0	0	Stop
Normal Mode	0	1	
Normai Mode	1	0	Run
	1	1	
	0	0	Stop
Power-down Mode	0	1	Run
Power-down Mode	1	0	Stop
	1	1	Run

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GB1	GB0	RAMBK	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only 0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instructions 1: WDT time out occurs

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.3 **WKTIE**: Wakeup Timer interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.3 **WKTIF**: WKT interrupt event pending flag

This bit is set by H/W while WKT time out, write 0 to this bit will clear this flag

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
WDTCLR		WDTCLR									
R/W		W									
Reset	_	-	—	-	—	_	_	_			

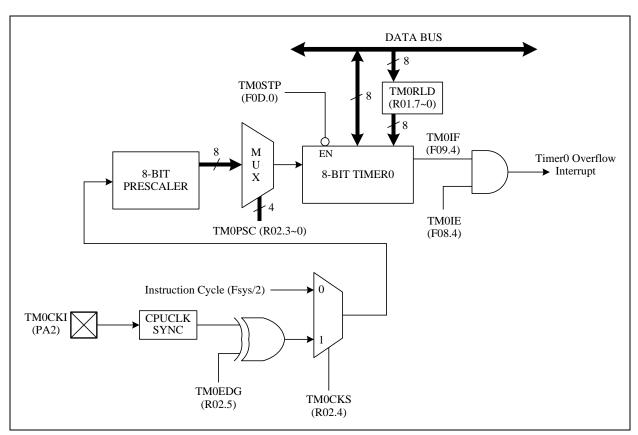
R04.7~0 WDTCLR: Write this register to clear WDT

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	Ι	Ι	-	INT0EDG	_	TRCNOE	WKTPSC	
R/W	_	_	-	W	_	W	W	
Reset	-	-	-	0	—	0	1	1

R0B.1~0 WKTPSC: WDT / WKT pre-scale select:

00: 30ms

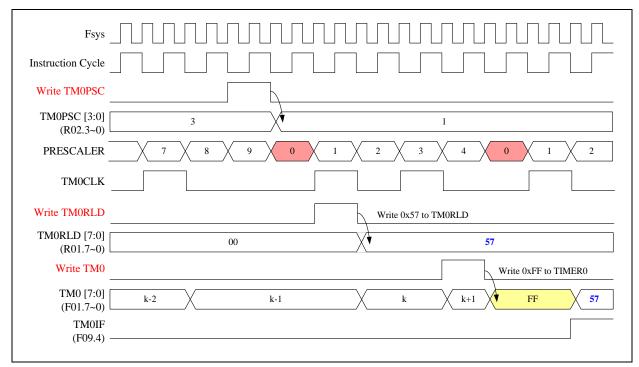
01: 60ms


10: 120ms

11: 240ms

3.2 Timer0: 8-bit Timer / Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising / falling input. The Timer0's increasing rate is determined by the TM0PSC (R02.3~0). The Timer0 can generate interrupt flag TM0IF (F09.4) and also reload the new data from TM0RLD (R01.7~0) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F0D.0) bit is set.



Timer0 Block Diagram

Timer Mode:

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD data, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set. The following timing diagram describes the Timer0 works in pure Timer mode.

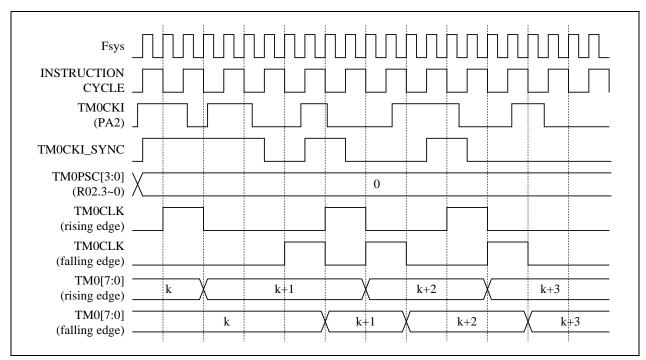
Timer0 works in Timer mode (TM0CKS = 0)

The equation of Timer0 interrupt frequency is as following:

Timer0 interrupt frequency = Instruction cycle frequency / TM0PSC / (256-TM0RLD)

◊ Example: Setup Timer0 work in Timer mode, Fsys = Fast-clock / CPUPSC = FIRC 8 MHz / 2 = 4 MHz

I		· · · · · · · · · · · · · · · · · · ·	
; Setup Tir	ner0 clock sou	rce and divider	
	MOVLW	00000 <u>0</u> <u>10</u> B	
	MOVWF	CLKCTL	; $CPUPSC = 10b$, divided by 2
	BSF	CPUCKS	; Set Fast-clock as system clock
	MOVLW	00x <u>0</u> <u>0100</u> B	; TM0CKS = 0, Timer0 clock is instruction cycle
	MOVWR	TM0CTL	; TM0PSC = $0100b$, divided by 16
; Setup Tir	ner0 reload da	ta	
-	MOVLW	80H	
	MOVWR	TMORLD	; Set Timer0 reload data = 128
; Setup Tir	ner0		
· 1	BSF	TM0STP	; Timer0 stops counting
	CLRF	TM0	; Clear Timer0 content
; Enable T	imer0 and inte	errupt function	
-	MOVLW	111 0 1111B	
	MOVWF	INTIF	; Clear Timer0 request interrupt flag
	BSF	TM0IE	; Enable Timer0 interrupt function
	BCF	TM0STP	; Enable Timer0 counting


Timer0 clock source is Fsys / 2 = 4 MHz / 2 = 2 MHz, Timer0 divided by 16

Timer0 interrupt frequency = 2 MHz / 16 / (256-128) = 976.56 Hz

Counter Mode:

If TM0CKS=1, then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle that means the high / low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer. The following timing diagram describes the Timer0 works in Counter mode.

Timer0 works in Counter mode (TM0CKS = 1) for TM0CKI

 \diamond Example: Setup Timer0 works in Counter mode ----.

; Setup Ti	imer0 clock sou	urce and	divider						
	MOVLW	00 <u>1 1</u>	<u>0000</u> B	; TM	0EDG = 1,	counting ed	ge is falling	edge	
	MOVWR	TMOC	CTL	; TM	0CKS = 1, 7	Timer0 cloc	k is TM0Ck	ζΙ Ι	
				; TM	0PSC = 000)0b, divided	by 1		
; Setup Ti	mer0								
	BSF	TM0S	STP	; Tim	ner0 stops co	ounting			
	CLRF	TM0		; Clear Timer0 content					
; Enable T	Fimer0 and rea BCF	nd Timer(TM0S		; Ena	ble Timer0	counting			
	BSF	TM0S	STP	; Tim	er0 stops co	ounting			
	MOVFW	TM0		; Rea	d Timer0 co	ontent			
F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0				TN	<i>A</i> 0	·			
R/W				R/	W				

11110				11	10		
R/W				R/	W		
Reset	0	0	0	0	0	0	
F01.7~0	TM0: Timer	0 content					

0

0

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D				VDDFLT	EMIIMPV	PWM0CLR	TM1STP	TM0STP
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	-	-	—	0	1	1	0	0

F0D.0 **TM0STP**: Timer0 counter stop

0: Timer0 is counting

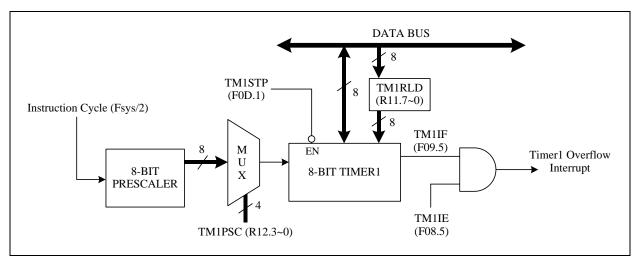
1: Timer0 stops counting

R01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TMORLD	TMORLD								
R/W	W								
Reset	0	0	0	0	0	0	0	0	

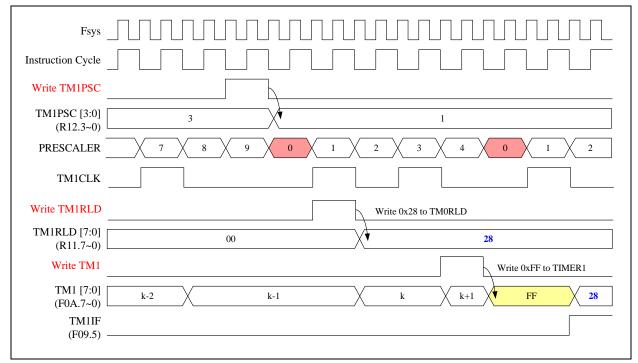
R01.7~0 TM0RLD: Timer0 reload data

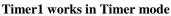
R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	_	_	TM0EDG	TM0CKS	TM0PSC			
R/W	—	—	W	W	W			
Reset		-	0	0	0	0	0	0

R02.5**TM0EDG:** TM0CKI (PA2) edge selection for Timer0 prescaler count0: TM0CKI rising edge for Timer0 prescaler count1: TM0CKI falling edge for Timer0 prescaler count


R02.4 **TM0CKS:** Timer0 clock source select 0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock 1: TM0CKI (PA2) as Timer0 prescaler clock

R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256




3.3 Timer1: 8-bit Timer with Pre-scale (PSC)

The Time1 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. It is almost the same as Timer0, except Timer1 doesn't have Counter Mode. Timer1 increases itself periodically and automatically rolls over based on the pre-scaled instruction cycle. The Timer1's increasing rate is determined by the TM1PSC (R12.3~0). The Timer1 can generate interrupt flag TM1IF (F09.5) and also reload the new data from TM1RLD (R11.7~0) when it rolls over. It generates Timer1 interrupt if the TM1IE (F08.5) bit is set. Timer1 can be stopped counting if the TM1STP (F0D.1) bit is set.

Timer1 Block Diagram

When the Timer1 prescaler (TM1PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer1 count. TM1CLK is the internal signal that causes the Timer1 to increase by 1 at the end of TM1CLK. TM1WR is also the internal signal that indicates the Timer1 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer1 counts from FFh to TM1RLD data, TM1IF (Timer1 Interrupt Flag) will be set to 1 and generate interrupt if TM1IE (Timer1 Interrupt Enable) is set. The timing diagram describes the Timer1 works in pure Timer mode is shown in above.

The equation of Timer1 interrupt frequency is as following:

Timer1 interrupt frequency = Instruction cycle frequency / TM1PSC / (256-TM1RLD)

◇ Example: CPU is running in SLOW mode, Fsys = Slow-clock / CPUPSC = SIRC 17 KHz / 2 = 8.5 KHz : Setup Timer1 clock source and divider

; Setup 11m	ier i clock sou	rce and divider	
	MOVLW	00000 <u>0 10</u> B	; Set Slow-clock as system clock
	MOVWF	CLKCTL	; $CPUPSC = 10b$, divided by 2
	MOVLW	0000 <u>0101</u> B	
	MOVWR	TM1CTL	; TM1PSC = 0101b, divided by 32
; Setup Tim	ner1 reload dat	ta	
	MOVLW	7CH	
	MOVWR	TM1RLD	; Set Timer1 reload data = 124
; Setup Tim	ner1		
	BSF	TM1STP	; Timer1 stops counting
	CLRF	TM1	; Clear Timer1 content
; Enable Ti	mer1 and inter	rrupt function	
	MOVLW	11 <u>0</u> 11111B	
	MOVWF	INTIF	; Clear Timer1 request interrupt flag
	BSF	TM1IE	; Enable Timer1 interrupt function
	BCF	TM1STP	; Enable Timer1 counting

Timer1 clock source is Fsys/2 = 8.5 KHz / 2 = 4.25 KHz, Timer1 divided by 32 Timer1 interrupt frequency = 4.25 KHz / 32 / (256-124) = 1.006 Hz

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.5 **TM1IE**: Timer1 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.5 **TM1IF**: Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1		TM1								
R/W				R/	W					
Reset	0	0 0 0 0 0 0 0 0 0								

F0A.7~0 TM1: Timer1 content

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D	—	—	-	VDDFLT	EMIIMPV	PWM0CLR	TM1STP	TM0STP
R/W	—	—	-	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	0	1	1	0	0

F0D.1 TM1STP: Timer1 counter stop

0: Timer1 is counting

1: Timer1 stops counting

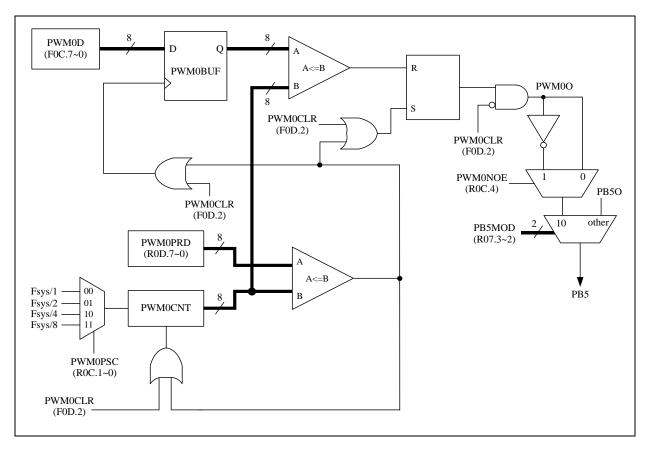
R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1RLD		TM1RLD								
R/W				V	V					
Reset	0	0 0 0 0 0 0 0 0 0								

R11.7~0 TM1RLD: Timer1 reload data

R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1CTL				—	TM1PSC				
R/W	_	_	_	_	W				
Reset	-	-	-	-	0	0	0	0	

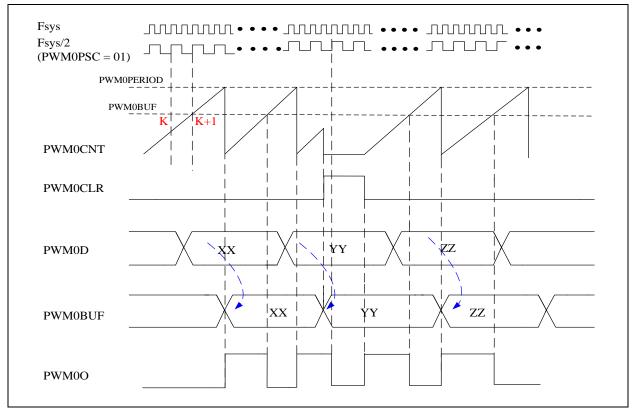
R12.3~0 TM1PSC: Timer1 prescaler. Timer1 clock source (Fsys/2)

0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256

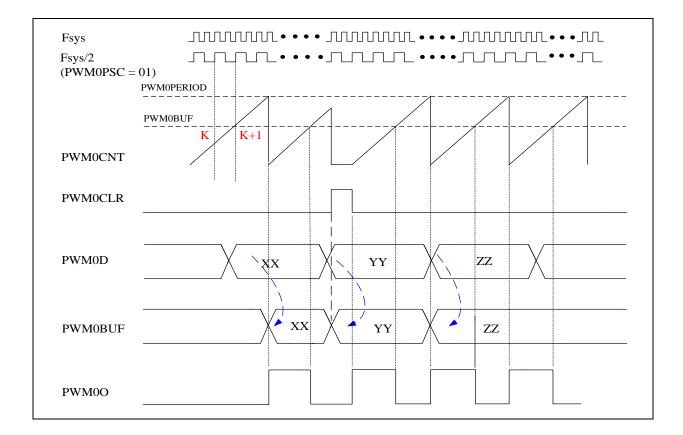


3.4 PWM0

TM57MT21A has a built-in 8-bit PWM generator. The source clock comes from system clock (Fsys) divided by 1, 2, 4, and 8 according to PWM0PSC (R0C.1~0). The PWM0 duty cycle can be changed with writing to PWM0D (F0C.7~0). Writing to PWM0D will not change the current PWM duty until the current PWM period complete. When current PWM period is finish, the new value of PWM0D will be updated to the PWM0BUF.


The PWM0 will be output to PB5 if PB5's Pin Mode "PB5MOD" (R07.3~2) is set as Mode2. The PWM0 output can be set as CMOS push-pull output mode or open-drain output mode. When PB5MOD = 2 and PBD [5] = 0, the PWM0 output is CMOS push-pull output mode. When PB5MOD = 2 and PBD [5] = 1, the PWM0 output is open-drain output mode. The complement of PWM0, PWM0N, will be output to PB5 if PWM0NOE (R0C.2) is set. Setting the PWM0CLR (F0D.2) bit will clear the PWM0 counter and load the PWM0D to PWM0BUF, PWM0CLR bit must be cleared so that the PWM0 counter can count. Figure shows the block diagram of PWM0

Note that the default value of PWM0CLR bit is '1'.



The next two Figures show the PWM0 waveforms. When PWM0CLR bit is set or PWM0BUF equals to zero, the PWM0 output is cleared to '0' no matter what its current status is. Once the PWM0CLR bit is cleared and PWM0BUF is not zero, the PWM0 output is set to '1' to begin a new PWM cycle. PWM0 output will be '0' when PWM0CNT is greater than or equal to PWM0BUF. PWM0CNT keeps counting up when equals to PWM0PRD (R0D.7~0), the PWM0 output is set to '1' again.

PWM0 Timing (PWM0CLR before PWM0CNT reaches PWM0BUF)

PWM0 Timing (PWM0CLR after PWM0CNT over PWM0BUF)

◇ Example: CPU is running in FAST mode, Fsys = Fast-clock / CPUPSC = FIRC 8MHz / 2 = 4 MHz ; Setup PWM0 prescaler, period, and duty BSF **PWM0CLR** ; PWM0CLR = 1, PWM0 clear and hold ; CLK setting MOVLW 00000 **1 10**B ; CPUCKS = 1, select Fast-clock as system clock MOVWF CLKCTL ; CPUPSC = 10b,System clock source divided by 2 ; PINMODE _setting MOVLW xxxx10xxB ; PB5MOD = 10bMOVWR PBMODH ; set PB5's Pin Mode as Mode2 (PWM0 output) BCF PBD, 5 ; set PWM output as CMOS push-pull output mode ; PWM_setting MOVLW 00000 <u>0 01</u>B ; PWM0NOE = 0, PWM0 positive output to PB5 MOVWR **PWM0CTL** ; PWM0PSC = 01b, divided by 2MOVLW FFH MOVWR **PWM0PRD** ; Set PWM0 period = FFh + 1 = 256MOVLW 80H MOVWF PWM0D ; Set PWM0 duty = 80h = 128; PWM0CLR = 0, PWM0 is running BCF **PWM0CLR**

PWM0 output duty = PWM0D / (PWM0PRD + 1) = 128 / (255 + 1) = 1/2

PWM clock = Fsys = 4 MHz, PWM clock divided by 2

PWM0 output frequency = 4 MHz / 2 / (255 + 1) = 7812.5 Hz

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0D		PWM0D								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F0C.7~0 **PWM0D**: PWM0 duty

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D				VDDFLT	EMIIMPV	PWM0CLR	TM1STP	TM0STP
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	—	—	-	0	1	1	0	0

F0D.2 **PWM0CLR**: PWM0 clear and hold

0: PWM0 is running

1: PWM0 is clear and hold

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMODH	PB7N	MOD	PB6N	IOD Pl		PB5MOD		PB4MOD	
R/W	V	V	W		V	V	V	V	
Reset	0	1	0	1	0	1	0	1	

- R07.3~2 **PB5MOD**: PB5 I/O mode control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2, PWM0 Output
 - PBD [5] = 1, Open Drain output
 - PBD [5] = 0, CMOS output
 - 11: Mode3

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL	—			_		PWM0NOE	PWM	0PSC
R/W	—			_		W	V	V
Reset	_			_		0	0	0

- R0C.2 **PWM0NOE**: PWM0 output select
 - 0: positive output
 - 1: negative output
- R0C.1~0 **PWM0PSC**: PWM0 prescaler, PWM0 clock source (Fsys)
 - 00: divided by 1
 - 01: divided by 2
 - 10: divided by 4
 - 11: divided by 8

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0PRD		PWM0PRD									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R0D.7~0 **PWM0PRD**: PWM0 period data

3.5 Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch applications. For most applications, it only requires an external capacitor component on CLD pin. The device support 14 channels touch key detection with S/W manual mode and 8 channels with H/W auto mode (ATK). Only one mode can be active at a time.

To use the Touch Key, user must setup the Pin Mode (*see section 4*) correctly as below table. Setting Mode0 for Touch Key pin can pull up the pin and reduce the Key's mutual interference. While a TK pin is under scanning, TM57MT21A will disable the pull up resistor automatically. TM57MT21A can also output the Touch Key clock to PB4 when PB4's Pin Mode PB4MOD (R07.1~0) is set as Mode2. If TRCNOE (R0B.2) is set, the negative Touch Key clock will output to PB4.

Pin Mode Setting for Touch Key	TK0~7	TK8~13	
Pin is not Touch Key	Mode0,1,2,3	Mode0,1,2,3	
Pin is Touch Key, Idling	Mode0	Mode0	
Pin is Touch Key, S/W Scanning	Mode0	Mode0	
Pin is Touch Key, H/W Auto Scan	Mode0	N/A	

Touch Key Block Diagram

3.5.1 S/W Manual Mode Touch Key Detection

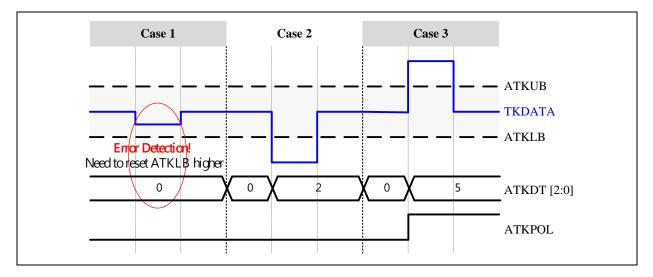
All Touch Key (TK0~TK13) can be used for S/W mode, it can be select by TKCHS (F10.3~0) bits. To start the S/W mode, user assigns ATKEN = 00b (F13.4~3) and TKPD = 0 (F11.4), then set the TKSOC (F10.7) bit to start touch key conversion, the TKSOC bit will be automatically cleared while end of conversion. However, if the system clock is too slow, H/W might lose the auto clear TKSOC capability. "TKEOC = 0" means conversion is in process, while "TKEOC = 1" means the conversion is finish. When conversion is finish, TKIF (F09.6) will be set to 1 and generate interrupt if TKIE (F08.6) is set. After TKEOC's (F11.3) edge rising, user must wait at least 10 μ s for next conversion. The touch key counting values is stored into the 10 bits touch key data count "TKDH (F11.1~0) , TKDL (F12.7~0)". If TKOVF (F11.2) is set, it means the conversion transaction exceeds period time. Reduce/Increase TKTMR (F10.6~4) can reduce/increase touch key data count to adapt the system board circumstances.

The Touch Key unit has an internal built-in reference capacitor to simulate the KEY behavior. Set TKCHS = 15 and start the S/W scan mode can get the TK Data Count of this reference capacitor. Since the internal capacitor never affected by water or mobile phone, it is useful for comparing the environment background noise.

♦ Example: S/W M	ode, Touch Key channe	l = TK5 (PA5).
------------------	-----------------------	----------------

I I I I I I I I I I I I I I I I I I I			-) ·
	MOVLW MOVWR BSF	xxxx <u>00</u> xxB PAMODH PAD, 5	; PAMODH[3:2] = 00b ; Set PA5MOD as Mode0 for touch key input ; Set PA5 is input with pull-up
	MOVLW MOVWF	<u>0 100 0101</u> B TKCTL1	; TKSOC = 0 ; TKTMR = 4, TKCHS = 5 (TK5)
	BCF ·	TKPD	; TKPD = 0
	BSF NOP	TKSOC	; TKSOC = 1, touch key start conversion
WAIT TK:			
_	BTFSS GOTO	TKEOC WAIT_TK	; Polling TKEOC ; Waiting touch key conversion finish
	MOVFW	TKCTL2	; Read TKDH [1:0]

; Read TKDL [7:0]


MOVFW

TKDL

3.5.2 H/W Auto Mode Touch Key Detection

Only TK0~TK7 are eligible for H/W auto mode by setting ATKNUM (F13.2~0) . This function can work in Idle mode and save the S/W effort as well as minimize the chip current consumption. To use this function, user need to set ATKEN \neq 0, TKPD=1 and PB4MOD \neq Mode2 (disable Touch Key clock output) to enable H/W fully control the TK unit. If ATKEN is set to "1", the ATK Interval Timer will generate an overflow flag after time out to trigger the touch key H/W auto mode starting. That can enable H/W control the touch key module fully. And then H/W automatically detects the TK0~TK7's TK Data Count at every 30/60/120/240 ms rate by ATKSIT (F13.6~5). TM57MT21A also offers the multi-time scanning function. If ATKEN is set to "2", H/W will scan each key 2 times and plus the scanning results together. H/W will scan each key 4 times when ATKEN is set to "3". It is effective to reduce environment influence. The examples are shown in below. If a keys' TK Data Count is less than the preset compare lower boundary (ATKnLB, n = 0~7) or more than the pre-set compare upper boundary (ATKnUB, n = 0~7), H/W will generate interrupt flag TKIF (F9.6) . It generates auto touch key interrupt and wake up CPU if the TKIE (F8.6) bit is set. At the same time, H/W will also record the compare result in the ATKDT (F14.2~0) and the scan polarity in the ATKPOL (F14.3). User can switch the TK module to S/W Manual Mode after the TK interrupt and identify/confirm the Key touch event.

◇ Example: ATKEN = 1 (normal ATK scanning), ATKNUM = 7 (scan 8 keys)

Scan Sequence:	TK0	TK1	TK2	TK3	TK4	TK5	TK6	TK7
TKDATA:	10 bits							
ATKUB/ATKLB:	10 bits							

 \diamond Example: ATKEN = 2 (2 times scanning), ATKNUM = 4 (scan 5 keys)

Scan Sequence:	TK0	TK0	TK1	TK1	TK2	TK2	TK3	TK3	TK4	TK4
TKDATA:	(9 bits -	+ 9 bits)	(9 bits +	- 9 bits)	(9 bits -	- 9 bits)	(9 bits -	+ 9 bits)	(9 bits +	- 9 bits)
ATKUB/ATKLB:	10	bits	101	bits	10	bits	10	bits	10	bits

◇ Example: ATKEN = 3 (4 times scanning) , ATKNUM = 2 (scan 3 keys)

Scan Sequence:	TK0	TK0	TK0	TK0	TK1	TK1	TK1	TK1	TK2	TK2	TK2	TK2
TKDATA:	(8 bits +	- 8 bits -	+ 8 bits -	+ 8 bits)	(8 bits +	- 8 bits +	+ 8 bits -	+ 8 bits)	(8 bits +	- 8 bits -	- 8 bits -	+ 8 bits)
ATKUB/ATKLB:		10	bits			10	bits			10	bits	

◊ Example: H/W Auto Mode, Touch Key auto scan number is 3 keys, 2 times scanning

. r	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
	ORG	001H	; All interrupt vector
	GOTO	INT	
START:	ORG	002H	
	MOVLW MOVWF	xxxxx <u>111</u> B PAD	; Set PAD [2:0] = 111b
	MOVLW MOVWR	xx 00 <u>00</u> 00 B PAMODL	; Set PA2~0 Pin Mode as Mode0
	MOVLW	xxxxxx00B	; Make sure PB4 Pin Mode is not Mode2
	MOVWR	PBMODH	; Disable TK clock output
	MOVLW	<u>0</u> 100xxxxB	; TKSOC = 0, TKTMR = 4
	MOVWF	TKCTL1	; ATK will control the TK channels automatically
	MOVLW	x <u>11 00 010</u> B	; ATKNUM = 010b (TK auto scan number = 3)
	MOVWF	ATKCTL	; ATKEN = 00b (disable H/W Auto Mode)
			; AKTSIT = 11b, scan period = 240 ms
	BSF	TKPD	; TKPD = 1
SET_BOU	NDARY:		
	MOVLW	01H	; Set TK0 compare upper boundary
	MOVWR	ATKOUBH	; Set ATK0UB = 450
	MOVLW	C2H	
	MOVWR	ATKOUBL	
	MOVLW	01H	; Set TK0 compare lower boundary
	MOVWR	ATK0LBH	; Set ATK0LB = 350
	MOVLW	5EH	
	MOVWR	ATK0LBL	
	MOVLW	01H	; Set TK1 compare upper boundary
	MOVWR	ATK1UBH	; Set ATK1UB = 380
	MOVLW	7CH	
	MOVWR	ATK1UBL	
	MOVLW	01H	; Set TK1 compare lower boundary
	MOVWR	ATK1LBH	; Set ATK1LB = 340
	MOVLW	54H	
	MOVWR	ATK1LBL	
	MOVLW	03H	; Set TK2 compare upper boundary
	MOVWR	ATK2UBH	; Set ATK2UB = 1023 (don't care upper boundary)
	MOVLW	FFH	
	MOVWR	ATK2UBL	

	MOVLW MOVWR MOVLW MOVWR	01H ATK2LBH 88H ATK2LBL	; Set TK2 compare lower boundary ; Set ATK2LB = 392
	MOVLW MOVWF BSF	1 <u>0</u> 111111B INTIF TKIE	; Clear TK interrupt request flag ; Enable TK interrupt
MAIN:	MOVLW MOVWF	x 11 <u>10</u> 010 B ATKCTL	; ATKEN = 10b ; TK H/W auto Mode 2 times scanning
MAIN.	SLEEP :		; Set system into IDLE mode
	GOTO	MAIN	
INT:			
	MOVWF MOVFW	20H STATUS	; Store W data to SRAM 20H ; Get STATUS data
	MOVIW	21H	; Store STATUS data to SRAM 21H
	BTFSC GOTO	TKIF INT_TK	; Check TKIF bit
EXIT_IN	 Г:		
	MOVFW	21H	; Get SRAM 21H data
	MOVWF MOVFW	STATUS 20H	; Restore STATUS data ; Restore W data
	RETI	_0.1	; Return from interrupt
INT_TK:			
	MOVLW MOVWF	1 <u>0</u> 111111B INTIF	; Clear TK interrupt request flag
	MOVFW	ATKDT	, clear fix menupt request hag
	MOVWF GOTO	22H EXIT_INT	; Store ATK scan result to SRAM 22H

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.6 **TKIE**: Touch Key Interrupt Enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.6 **TKIF**: Touch Key interrupt event pending flag This bit is set by H/W while Key's TK Data Count is over the pre-set compare threshold range (H/W auto mode) or TK is end of conversion (S/W manual mode), write 0 to this bit will clear this flag

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKCTL1	TKSOC		TKTMR		TKCHS				
R/W	R/W		R/W			R/W			
Reset	0	1 0 0			1	1	1	1	

F10.7 **TKSOC**: Touch Key start of conversion, rising edge to start H/W auto cleared while end of conversion

F10.6~4 **TKTMR**: Touch Key conversion time 000: shortest

... 111: longest

F10.3~0 **TKCHS**: Touch Key channel select

0000: TK0 (PA0) 0001: TK1 (PA1) 0010: TK2 (PA2) 0011: TK3 (PA3) 0100: TK4 (PA4) 0101: TK5 (PA5) 0110: TK6 (PA6) 0111: TK7 (PD7) 1000: TK8 (PB0) 1001: TK9 (PB1) 1010: TK10 (PB2) 1011: TK11 (PB3) 1100: TK12 (PB4) 1101: TK13 (PB5) 1110: Undefined

1111: Internal reference capacitor

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL2	-	-		TKPD	TKEOC	TKOVF	TKDH	
R/W	_	_	_	R/W	R	R	R	
Reset	_	_	_	1	0	0	0	0

- F11.4 **TKPD**: Touch Key power down 0: Touch Key running 1: Touch Key power down
- F11.3 **TKEOC**: Touch Key end of conversion 0: conversion is in process 1: end of conversion
- F11.2 **TKOVF**: Touch Key counter overflow flag 0: not overflow 1: overflow

F11.1~0 **TKDH**: Touch Key data MSB [9:8]

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKDL		TKDL								
R/W		R								
Reset	0	0 0 0 0 0 0 0 0								

F12.7~0 **TKDL**: Touch Key data LSB[7:0]

F13	Bit 7	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATKCTL	_	ATKSIT		ATI	ATKEN		ATKNUM			
R/W	_	R/W		R/W		R/W				
Reset	_	1 1		0	0	1	1	1		

F13.6~5 ATKSIT: Touch Key auto scan interval time

- 00: 30ms
- 01: 60ms
- 10: 120ms
- 11: 240ms

F13.4~3 ATKEN: Touch Key auto scan mode enable 00: disable H/W Auto Mode
01: enable H/W Auto Mode (1 time scanning)
10: enable H/W Auto Mode (2 times scanning)
11: enable H/W Auto Mode (4 times scanning)

F13.2~0 **ATKNUM**: Touch Key auto scan channel number

000: only scan 1 channel (TK0)

- 001: scan 2 channels (TK0 ~ TK1)
- 010: scan 3 channels (TK0 ~ TK2)
- 011: scan 4 channels (TK0 ~ TK3) 100: scan 5 channels (TK0 ~ TK4)
- 100: scan 5 channels (TK0 \sim TK4) 101: scan 6 channels (TK0 \sim TK5)
- 110: scan 7 channels (TK0 ~ TK6)
- 111: scan 8 channels (TK0 ~ TK7)

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKDT					ATKPOL		ATKDT	
R/W	_	_	_	_	R		R	
Reset	_	_	_	_	0	0	0	0

F14.3 **ATKPOL:** Touch Key auto scan polarity 0: TK data is lower than lower boundary 1: TK data is higher than upper boundary

F14.2~0	ATKDT : Touch Key auto scan result
---------	---

- 000: TK0 has a touch event
- 001: TK1 has a touch event
- 010: TK2 has a touch event
- 011: TK3 has a touch event
- 100: TK4 has a touch event
- 101: TK5 has a touch event
- 110: TK6 has a touch event
- 111: TK7 has a touch event

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODH	PB7N	MOD	PB6MOD		PB5MOD		PB4MOD	
R/W	V	V	V	V	W		V	V
Reset	0	1	0	1	0	1	0	1

R07.1~0 **PB4MOD**: PB4 I/O mode control

- 00: Mode0
- 01: Mode1
- 10: Mode2, Touch Key clock output
- 11: Mode3

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	—	_	INT0EDG	—	TRCNOE	WKT	TPSC
R/W	—	—	_	W	—	W	V	V
Reset	-	-	-	0	—	0	1	1

R0B.2 **TRCNOE:** Touch Key clock output select

- 0: positive output
- 1: negative output

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK0UBH	-	_	—	_	—	_	ATK(UBH
R/W	—	—	—	—	—	—	V	V
Reset	_	-	-	-	-	-	0	0

R14.1~0 **ATK0UBH:** Auto Touch Key TK0 upper boundary MSB [9:8]

R15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK0UBL		ATK0UBL								
R/W		W								
Reset	1	1 1 1 1 1 1 1 1								

R15.7~0 ATK0UBL: Auto Touch Key TK0 upper boundary LSB [7:0]

R16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK0LBH	_	_	_	_	_	_	ATK(DLBH
R/W	_	_	_	_	_	_	V	V
Reset	-	_	_	_	_	—	0	0

R16.1~0 **ATK0LBH:** Auto Touch Key TK0 lower boundary MSB [9:8]

R17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK0LBL		ATK0LBL								
R/W		W								
Reset	0	0 0 0 0 0 0 0 0								

R17.7~0 ATK0LBL: Auto Touch Key TK0 lower boundary LSB [7:0]

R18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK1UBH	_	_	_	_	_	-	ATK1	UBH
R/W	—	—	_	-	—	—	V	V
Reset	-	_	-	_	-	—	0	0

R18.1~0 ATK1UBH: Auto Touch Key TK1 upper boundary MSB [9:8]

R19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK1UBL		ATK1UBL							
R/W		W							
Reset	1	1	1	1	1	1	1	1	

R19.7~0 ATK1UBL: Auto Touch Key TK1 upper boundary LSB [7:0]

R1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK1LBH	_	_	_	_	_	_	ATK1LBH	
R/W	_	_	-	-	_	—	W	
Reset	—	-	—	—	—		0	0

R1A.1~0 ATK1LBH: Auto Touch Key TK1 lower boundary MSB [9:8]

R1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK1LBL		ATK1LBL									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R1B.7~0 ATK1LBL: Auto Touch Key TK1 lower boundary LSB [7:0]

R1C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK2UBH		_			—	—	ATK2UBH	
R/W	_	_	_	_	_	_	W	
Reset	-	-	-	-	—	_	0	0

R1C.1~0 ATK2UBH: Auto Touch Key TK2 upper boundary MSB [9:8]

R1D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK2UBL		ATK2UBL									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R1D.7~0 **ATK2UBL:** Auto Touch Key TK2 upper boundary LSB [7:0]

R1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK2LBH	_	—	_	_	_	_	ATK2LBH	
R/W	_	_	_	_	_	_	W	
Reset	_	_	_	_	_	_	0	0

R1E.1~0 **ATK2LBH:** Auto Touch Key TK2 lower boundary MSB [9:8]

R1F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK2LBL		ATK2LBL									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R1F.7~0 ATK2LBL: Auto Touch Key TK2 lower boundary LSB [7:0]

R20	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK3UBH	_	_	_	_	—	_	ATK3UBH	
R/W	_	_	—	—	—	—	W	
Reset	—	-	-	—	—	—	0	0

R20.1~0 ATK3UBH: Auto Touch Key TK3 upper boundary MSB [9:8]

R21	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK3UBL		ATK3UBL									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R21.7~0 ATK3UBL: Auto Touch Key TK3 upper boundary LSB [7:0]

R22	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK3LBH	_	_	_	_	_	_	ATK3LBH	
R/W	_	_	—	-	—	—	W	
Reset	-	-	—	—	—		0	0

R22.1~0 ATK3LBH: Auto Touch Key TK3 lower boundary MSB [9:8]

R23	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK3LBL		ATK3LBL									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R23.7~0 ATK3LBL: Auto Touch Key TK3 lower boundary LSB [7:0]

R24	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK4UBH	_	_	_	_	_	_	ATK4UBH	
R/W	_	_	_	_	—	_	W	
Reset	-	-	-	-	_	_	0	0

R24.1~0 ATK4UBH: Auto Touch Key TK4 upper boundary MSB [9:8]

R25	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK4UBL		ATK4UBL									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R25.7~0 **ATK4UBL:** Auto Touch Key TK4 upper boundary LSB [7:0]

R26	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK4LBH	_	_	_	_	_	_	ATK4LBH	
R/W	_	_	_	_	_	_	W	
Reset	—	_	_	_	_	—	0	0

R26.1~0 **ATK4LBH:** Auto Touch Key TK4 lower boundary MSB [9:8]

R27	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK4LBL		ATK4LBL								
R/W		W								
Reset	0	0	0	0	0	0	0	0		

R27.7~0 ATK4LBL: Auto Touch Key TK4 lower boundary LSB [7:0]

R28	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK5UBH	_	_	_	_	—	_	ATK5UBH	
R/W	_	_	—	—	—	—	W	
Reset	—	-	-	—	—	—	0	0

R28.1~0 ATK5UBH: Auto Touch Key TK5 upper boundary MSB [9:8]

R29	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK5UBL		ATK5UBL								
R/W		W								
Reset	1	1	1	1	1	1	1	1		

R29.7~0 ATK5UBL: Auto Touch Key TK5 upper boundary LSB [7:0]

R2A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK5LBH	_	_	_	_	_	_	ATK5LBH	
R/W	_	_	—	_	—	—	W	
Reset	—	-	—	—	—		0	0

R2A.1~0 ATK5LBH: Auto Touch Key TK5 lower boundary MSB [9:8]

R2B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK5LBL		ATK5LBL								
R/W		W								
Reset	0	0	0	0	0	0	0	0		

R2B.7~0 ATK5LBL: Auto Touch Key TK5 lower boundary LSB [7:0]

R2C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK6UBH	_	_	_	_	_	_	ATK6UBH	
R/W	_	_	_	_	—	_	W	
Reset	-	-	-	-	_	_	0	0

R2C.1~0 ATK6UBH: Auto Touch Key TK6 upper boundary MSB [9:8]

R2D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ATK6UBL		ATK6UBL									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R2D.7~0 ATK6UBL: Auto Touch Key TK6 upper boundary LSB [7:0]

R2E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK6LBH	_	_	_	_	_	_	ATK6LBH	
R/W	_	_	_	_	_	_	W	
Reset	—	_	—	—	—	_	0	0

R2E.1~0 **ATK6LBH:** Auto Touch Key TK6 lower boundary MSB [9:8]

R2F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK6LBL		ATK6LBL								
R/W		W								
Reset	0	0	0	0	0	0	0	0		

R2F.7~0 ATK6LBL: Auto Touch Key TK6 lower boundary LSB [7:0]

R30	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK7UBH	—	_	_	_	—	_	ATK7UBH	
R/W	—	_	—	-	—	—	W	
Reset		-	-	-	—	—	0	0

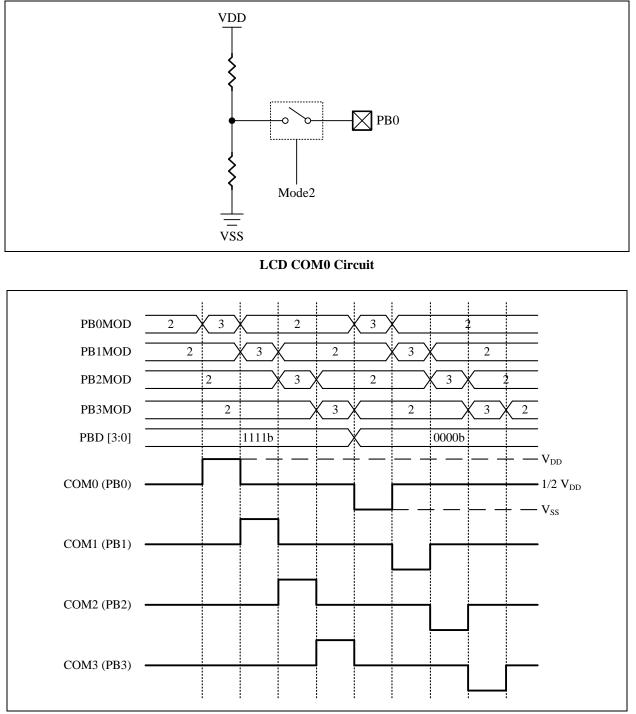
R30.1~0 ATK7UBH: Auto Touch Key TK7 upper boundary MSB [9:8]

R31	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK7UBL		ATK7UBL								
R/W		W								
Reset	1	1	1	1	1	1	1	1		

R31.7~0 ATK7UBL: Auto Touch Key TK7 upper boundary LSB [7:0]

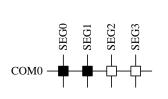
R32	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATK7LBH					-	_	ATK7LBH	
R/W	—	—	—	—	_	—	W	
Reset	-	_	-	-	_	—	0	0

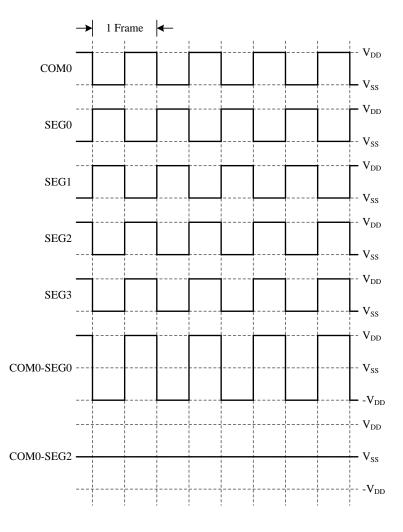
R32.1~0 ATK7LBH: Auto Touch Key TK7 lower boundary MSB [9:8]


R33	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK7LBL		ATK7LBL								
R/W		W								
Reset	0	0	0	0	0	0	0	0		

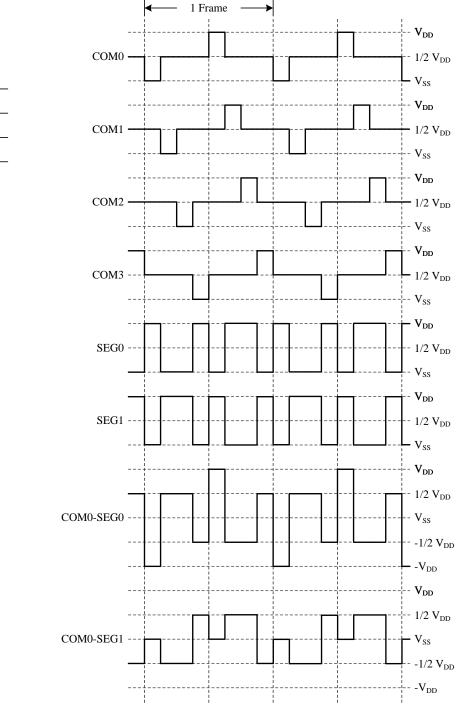
R33.7~0 ATK7LBL: Auto Touch Key TK7 lower boundary LSB [7:0]

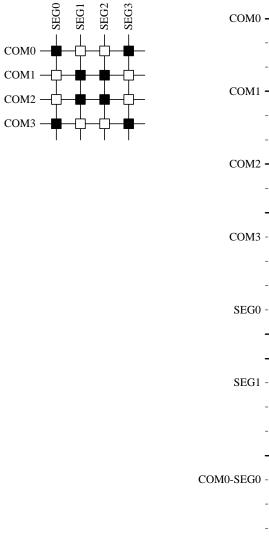
3.6 S/W controlled LCD Driver


The TM57MT21A supports an S/W controlled method to driving LCD. It is capable of driving the LCD panel with 52 dots (Max.) by 4 Commons (COM) and 13 Segments (SEG). The PB0~PB3 are used for Common pins COM0~COM3 and others pins (PA0~PA7, PB4~PB7, PD7) can be used for Segment pins. It is capable of driving 1/2 bias when PB0~PB3's Pin Mode are set to Mode2. Refer to the following figures.



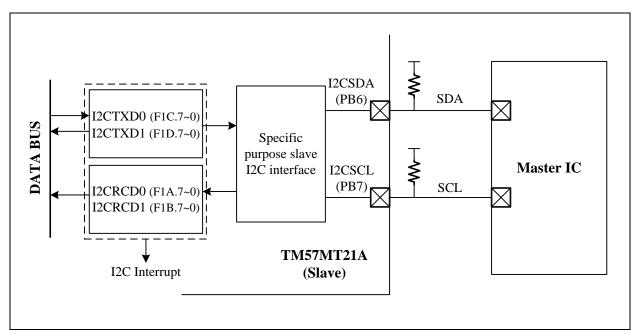
S/W Controlled LCD COM Scanning


Static Waveform

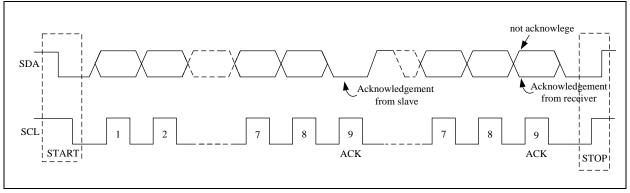


1/4 Duty, 1/2 Bias Output Waveform

♦ Example: 1	/4 Duty, 1/2 B	ias, LCD COM scanning	r 2
SET_MOD	DE:		
	MOVLW	<u>10 10 10 10</u> B	
	MOVWR	PBMODL	; Set PB0 - PB3 as Mode2 (1/2 V _{DD} output)
FRAME_S			
	MOVLW	xxxx <u>1111</u> B	
	MOVWF	PBD	
COM0_H:			;One frame scan start
	MOVLW	<u>10 10 10 11</u> B	; Set PB0 as Mode3 (CMOS output)
	MOVWR	PBMODL	; PB1, PB2, PB3 as Mode2
COM1_H:			
	MOVLW	<u>10 10 11 10</u> B	; Set PB1 as Mode3
	MOVWR	PBMODL	; PB0, PB2, PB3 as Mode2
COM2_H:			
	MOVLW	<u>10 11 10 10</u> B	; Set PB2 as Mode3
	MOVWR	PBMODL	; PB0, PB1, PB3 as Mode2
COM3_H:			
	MOVLW	<u>11 10 10 10</u> B	; Set PB3 as Mode3
	MOVWR	PBMODL	; PB0, PB1, PB2 as Mode2
		00005	
	MOVLW	xxxx <u>0000</u> B	
	MOVWF	PBD	
COM0_L:		10 10 10 110	
	MOVLW	<u>10 10 10 11</u> B PBMODL	; Set PB0 as Mode3
COMILL	MOVWR	PBMODL	; PB1, PB2, PB3 as Mode2
COM1_L:	MOVIW	10 10 11 100	Set DD1 og Mode2
	MOVLW MOVWR	<u>10 10 11 10</u> b PBMODL	; Set PB1 as Mode3 ; PB0, PB2, PB3 as Mode2
COM2 L.	MOVWR	PDMODL	; PD0, PD2, PD5 as Mode2
COM2_L:	MOVLW	10 11 10 10D	· Sat DD2 as Mode2
	MOVLW	<u>10 11 10 10</u> b PBMODL	; Set PB2 as Mode3 ; PB0, PB1, PB3 as Mode2
COM2 L		FDMODL	, \mathbf{FD} , \mathbf{FD} , \mathbf{FD} as \mathbf{M} ode2
COM3_L:	MOVLW	11 10 10 10D	; Set PB3 as Mode3
	MOVLW	<u>11 10 10 10</u> B PBMODL	
		FDIVIUDL	; PB0, PB1, PB2 as Mode2 ;One frame scan end
			,One frame scan enu

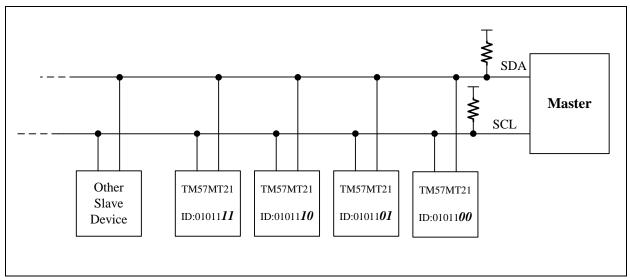

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODL	PB3I	MOD	PB2MOD		PB1MOD		PB0MOD	
R/W	V	V	W		W		W	
Reset	0	1	0	1	0	1	0	1

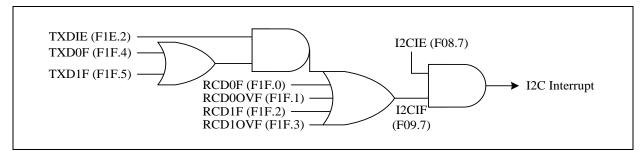
- R08.7~6 **PB3MOD**: PB3 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.5~4 **PB2MOD**: PB2 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.3~2 **PB1MOD**: PB1 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.1~0 **PB0MOD**: PB0 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3



3.7 Specific Purpose Slave I2C Interface

Specific purpose slave I2C interface in TM57MT21A could be used for data transmission. This interface is based on a standard I2C (Inter-Integrated Circuit), and TM57MT21A is always as a slave mode. When the master node (another IC or device) sends the correct ID through I2C, it can read data from the register I2CTXD0 (F1C.7~0) and I2CTXD1 (F1D.7~0) of TM57MT21A or write data to the register I2CRCD0 (F1A.7~0) and I2CRCD1 (F1B.7~0) of TM57MT21A.


Slave I2C Interface Block Diagram


I2C Protocol

To use the slave I2C interface, the I2CEN (F1E.3) bit has to be set. TM57MT21A supports 4 slave device IDs by setting I2CID (F1E.1~0). TM57MT21A can generate the transmitting flag TXD0F (F1F.4) and TXD1F (F1F.5) when data transmitting finished. It generates the receiving flag RCD0F (F1F.0) and RCD1F (F1F.2) when data receiving finished. It can also generate the receiving overflow flag RCD00VF (F1F.1) and RCD10VF (F1F.3) when data receiving finished but the receiving flag is not cleared. If one of those I2C flags is set, the I2C interrupt flag I2CIF (F09.7) will be generated. It generates I2C interrupt if the I2CIE (F08.7) bit is set. The transmitting interrupt can be disabled by setting TXDIE (F1E.2). Refer to the following table and figure.

I2C Parallel Connection Application Circuit

Slave I2C Interrupt Block Diagram

RCDxOVF	RCDxF	I2CIF	STATE
0	0	0	IDLE
0	1	1	Data received to I2CRCDx register
1	1	1	Data overflow occurred at I2CRCDx register

TXDIE	TXDxF	I2CIF	STATE
0	Х	Х	Disable the transmitting interrupt
1	0	0	IDLE
1	1	1	Data in I2CTXDx is transmitting finish

	S Start	P Stop
Master write Data to I2C_RCD0 of TM57MT21		
S 0 1 0 1 1 A 0 k d	k Slave Ack	K Master Ack
Slave ID 8bits Data to I2C_RCD0	d Data from M	laster to Slave
Master write Data to I2C_RCD0 & I2C_RCD1 of TM57MT21	D Data from SI	ave to Master
S 0 1 0 1 1 A A 0 k d d d k A 0 k A 0 k A P	A Slave ID Las	st 2 bits (Default : 00)
Slave ID 8bits Data to I2C_RCD0 8bits Data to I2C_RCD1		
Master read Data from I2C_TXD0 of TM57MT21		
S 0 1 0 1 1 A 1 k D		
Slave ID 8bits Data from I2C_TXD0		
Master read Data from I2C_TXD0 & I2C_TXD1 of TM57MT21		
S 0 1 0 1 A A 1 k D D D D D D K D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>		
Slave ID 8bits Data from I2C_TXD0 8bits Data from I2C_TXD1		

Table of TM57MT21A I2C Commands

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.7 **I2CIE**: I2C Receive/Transmit Data finished Interrupt Enable 0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I2CIF	TKIF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.7 **I2CIF**: I2C interrupt event pending flag

This bit is set by H/W while

a. I2CRCD0 or I2CRCD1 receive data finished

b. I2CRCD0 or I2CRCD1 data overflow occurred

c. I2CTXD0 or I2CTXD1 data transmit finished

write 0 to this bit will clear this flag and slave I2C related flags

F1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CRCD0		I2CRCD0								
R/W		R								
Reset	0	0	0	0	0	0	0	0		

F1A.7~0 I2CRCD0: The receiving register 0 of slave I2C

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CRCD1		I2CRCD1								
R/W		R								
Reset	0	0	0	0	0	0	0	0		

F1C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CTXD0		I2CTXD0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F1B.7~0 I2CRCD1: The receiving register 1 of slave I2C

F1C.7~0 I2CTXD0: The transmitting register 0 of slave I2C

F1D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CTXD1		I2CTXD1						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

F1D.7~0 I2CTXD1: The transmitting register 1 of slave I2C

F1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CCTL	_	_	_	—	I2CEN	TXDIE	I2C	CID
R/W	_	_	_	—	R/W	R/W	R/	W
Reset	-	-	-	-	0	0	0	0

F1E.3 **I2CEN:** Slave I2C interface enable 0: disable 1: enable

F1E.2 **TXDIE**: Slave I2C transmitting interrupt enable 0: disable 1: enable

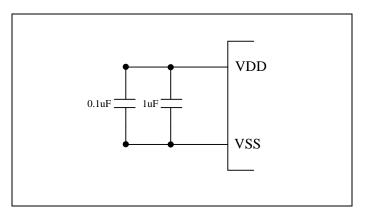
F1E.1~0 I2CID: Slave I2C ID last 2 bits

F1F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CFLAG		—	TXD1F	TXD0F	RCD10VF	RCD1F	RCD00VF	RCD0F
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	—	—	0	0	0	0	0	0

F1F.5 **TXD1F**: Slave I2C transmitting data register 1 flag This bit is set by H/W while I2CTXD1 data transmitting finished, write 0 to this bit will clear this flag

- F1F.1 **RCD0OVF**: Slave I2C receiving data register 0 overflow This bit is set by H/W while receiving data to I2CRCD0 overflow, write 0 to this bit will clear this flag
- F1F.0 **RCD0F**: Slave I2C receiving data register 0 flag This bit is set by H/W while data receiving to I2CRCD0 finished, write 0 to this bit will clear this flag

F1F.4 **TXD0F**: Slave I2C transmitting data register 0 flag This bit is set by H/W while I2CTXD0 data transmitting finished, write 0 to this bit will clear this flag


F1F.3 **RCD1OVF**: Slave I2C receiving data register 1 overflow This bit is set by H/W while receiving data to I2CRCD1 overflow, write 0 to this bit will clear this flag

F1F.2 **RCD1F**: Slave I2C receiving data register 1 flag This bit is set by H/W while data receiving to I2CRCD1 finished, write 0 to this bit will clear this flag

3.8 System Clock Oscillator

System clock can be operated in two different oscillation modes. The two oscillation modes are FIRC and SIRC. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 8 MHz system clock. For the operation voltage can be protected by LVR, we suggest setting the FIRC/2 = 4 MHz as system clock. In the Slow Internal RC mode (SIRC), the on-chip oscillator generates 17 KHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 μ F and 0.1 μ F very close to VDD / VSS pins to improve the stability of clock and the overall system.

Internal RC Mode

4. I/O Port

4.1 PA0-6, PB0-7, PD7

These pins can be used as Schmitt-trigger input, CMOS push-pull output or Open-drain output. The pullup resistor is assignable to each pin by S/W setting. User can set each pin by their Pin Mode register. There are 4 kinds of pin modes Mode0, Mode1, Mode2 and Mode3 for each pin can be selected.

Mode	PA0-6, PB0-7, PD7 pin function		PXn SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	On on Ducin		0	Drive Low	Ν	Ν
Mode U		Open Drain	1	Pull-up	Y	Y
Mode 1	Open Drain		0	Drive Low	N	Ν
Mode 1			1	Hi-Z	N	Y
		Walta un	0	Drive Low	N	Ν
		Wake-up	1	Pull-up	Y	Y
Mode 2	Alternative	LCD COM	Х	-	N	Ν
Mode 2	Function	Touch Key Clock output	Х	TRCOUT	Ν	Ν
			0		N	Ν
		PWM output		PWM0	by PWM0	Ν
Mode 3		CMOS Output	0	Drive Low	Ν	Ν
widde 5		CMOS Output		Drive High	N	Ν

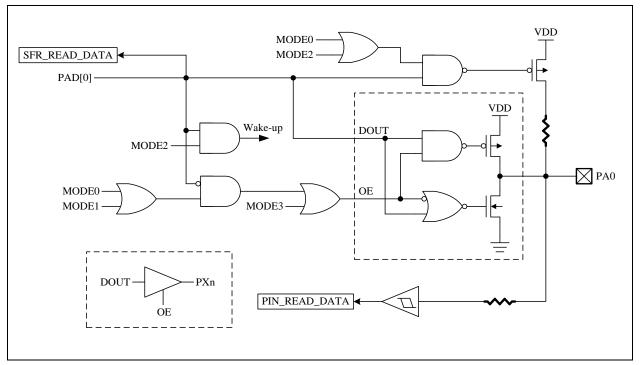
PA0-6, PB0-7, PD7 I/O Pin Function Table

If a PA0-6, PB0-7, PD7 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry. Beside I/O port function, each PA0-6, PB0-7, PD7 pin has one or more alternative functions, Wake-up, LCD COM, Touch Key clock output or PWM output. Most of the functions are activated by setting the individual pin mode control SFR to Mode2. Reading the pin data (PA0-6, PB0-7, PD7) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the other instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

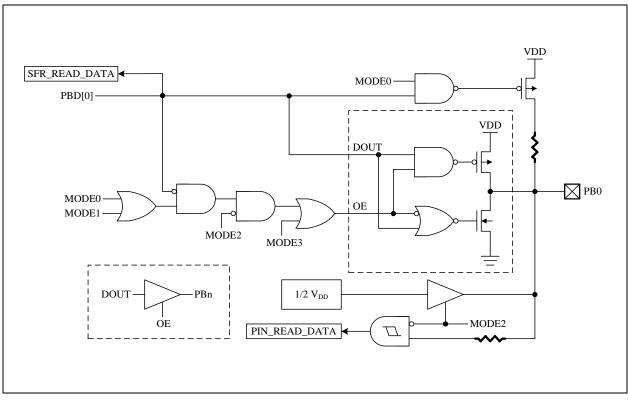
Pin Name	Wake-up	INT	TK	LCD	others	Mode2
PA0	Y		TK0			Wake-up
PA1	Y		TK1			Wake-up
PA2	Y		TK2		TM0CKI	Wake-up
PA3	Y		TK3			Wake-up
PA4	Y		TK4			Wake-up
PA5	Y		TK5			Wake-up
PA6	Y		TK6			Wake-up
PB0			TK8	COM0		COM0
PB1			TK9	COM1		COM1
PB2			TK10	COM2		COM2
PB3			TK11	COM3		COM3
PB4		INT0	TK12		TRCOUT	TRCOUT
PB5			TK13		PWM0	PWM0
PB6	Y	INT2			I2CSDA	Wake-up
PB7	Y				I2CSCL	Wake-up
PD7	Y		TK7			Wake-up

PA0-6, PB0-7, PD7 multi-function Table	PA0-6, 1	PB0-7, P	D7 m	ulti-function	Table
--	----------	----------	------	---------------	-------

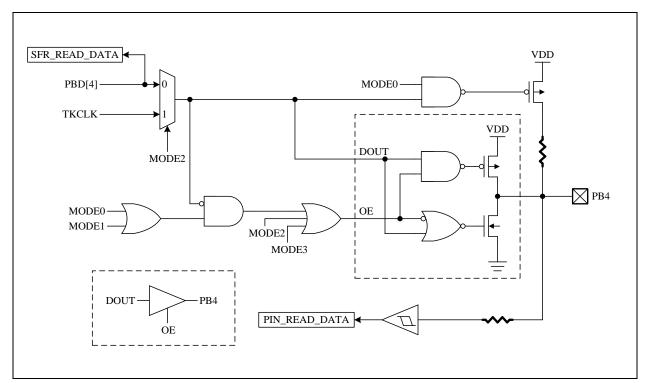
Alternative Function	Mode	PXn SFR data	Pin State	Other necessary SFR setting
TM0CKI,	0	1	Input with Pull-up	TM0CTL,
INT0, INT2	1	1	Input	INTIE
I2CSCL	0	1	Input with Pull-up	
IZCSCL	1	1	`Input	I2CCTL
I2CSDA 0 1		Х	Input with Pull-up / Open Drain Output	IZCEIL
		Х	Input / Open Drain Output	
TRCOUT	2	Х	Touch Key Clock Output (CMOS Push-Pull)	
Wake-up	2	1	Input with Pull-up	
			Touch Key Idling with Pull-up	
TK0~TK13	0	1	Touch Key Scanning without Pull-up (automatically)	TKCTL1
COM0~COM3	2	Х	$1/2 V_{DD}$ output	
PWM0	2	0	PWM CMOS Push-Pull Output	
F W WIU	2	1	PWM Open Drain Output	

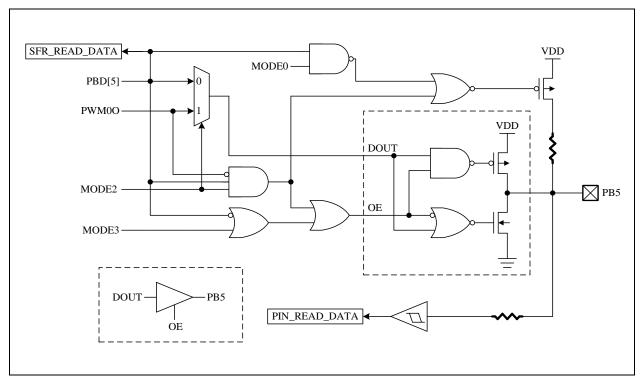

The necessary SFR setting for PA0-6, PB0-7, PD7 pin's alternative function is list below.

Mode Setting for PA0-6, PB0-7, PD7 Alternative Function


For tables above, a "CMOS Output" pin means it can sink and drive at least 4mA current. It is not recommended to use such pin as input function.

An "Open Drain" pin means it can sink at least 4mA current but only drive a small current (< 20μ A). It can be used as input or output function and typically needs an external pull up resistor.


PA0 Pin Structure


PB0 Pin Structure

PB4 Pin Structure

PB5 Pin Structure

♦ Example: Set PA0 as Schmitt-trigger input with pull-up (Mode0)

MOVLW xxxxxxx <u>1</u> B	
MOVWF PAD	
MOVLW xxxxxx 00 B	
MOVWR PAMODL ; Set PA0 as Schmitt-trigge	r input with pull-up

◊ Example: Set PA0 as Schmitt-trigger input without pull-up (Mode1)

MOVLW	xxxxxxx 1 B	
MOVWF	PAD	
MOVLW	xxxxxx 01 B	
MOVWR	PAMODL	; Set PA0 as Schmitt-trigger input without pull-up

♦ Example: Set PA0 as Schmitt-trigger input with pull-high and low level wake up control (Mode2)

MOVLW MOVWF	xxxxxxx <u>1</u> B PAD	
MOVLW MOVWR	xxxxxx <u>10</u> B PAMODL	; Set PA0 as Schmitt-trigger input with pull-high ; and enable low level wake up

◊ Example: Set PA0 as CMOS push-pull output mode and drive Low (Mode3)

MOVLW	xxxxxxx 0 B	; PAD [0] = 0
MOVWF	PAD	; Set PA0 as CMOS push-pull output Low
MOVLW	xxxxxx 11 B	
MOVWR	PAMODL	

 \diamond Example: Set PB0-3 as LCD COM with 1/2 V_{DD} bias output (Mode2)

MOVLW	xxxx <u>xxxx</u> B	; PBD [3:0] don't care
MOVWF	PBD	
MOVLW	<u>10 10 10 10</u> B	
MOVWR	PBMODL	; Set PB0-3 as LCD COM

◊ Example: Set PB5 as PWM0 open-drain output mode (Mode2)

MOVLW	xx <u>0</u> xxxxxB	; PBD $[5] = 0$
MOVWF	PBD	; Set PB5 as PWM0 open-drain output mode
MOVLW	xxxx <u>10</u> xxB	
MOVWR	PBMODH	

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PAD		PAD										
R/W		R/W										
Reset	1	1 1 1 1 1 1 1										

F05.7~0 **PAD:** PA7~PA0 data

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PBD	PBD										
R/W		R/W									
Reset	1	1 1 1 1 1 1 1 1									

F06.7~0 **PBD:** PB7~PB0 data

F07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDD	PDD7			—	-	—		—
R/W	R/W	_	_	_	_	_	_	_
Reset	1	-	-	—	—	—	—	—

F07.7 **PDD7:** PD7 data

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	I2CIE	TKIE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.2 **INT2IE**: INT2 (PB6) pin interrupt enable 0: disable 1: enable

F08.0 **INTOIE**: INTO (PB4) pin interrupt enable 0: disable

1: enable

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKCTL1	TKSOC	TKTMR			TKCHS				
R/W	R/W		R/W			R/W			
Reset	0	1 0 0			1	1	1	1	

F10.3~0	TKCHS: Touch key cl	hannel select
	0000: TK0 (PA0)	1000: TK8 (PB0)
	0001: TK1 (PA1)	1001: TK9 (PB1)
	0010: TK2 (PA2)	1010: TK10 (PB2)
	0011: TK3 (PA3)	1011: TK11 (PB3)
	0100: TK4 (PA4)	1100: TK12 (PB4)
	0101: TK5 (PA5)	1101: TK13 (PB5)
	0110: TK6 (PA6)	1110: Undefined
	0111: TK7 (PD7)	1111: Internal reference capacitor

F1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CCTL	_	_	_	_	I2CEN	TXDIE	I2CID	
R/W	_	_	_	_	R/W	R/W	R/W	
Reset	-	—	-	-	0	0	0	0

F1E.3 **I2CEN:** Slave I2C interface enable 0: disable

1: enable

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0CTL		-	TM0EDG	TM0CKS	TM0PSC				
R/W	_	_	W	W	W				
Reset	-	-	0	0	0 0 0 0				

R02.4 **TM0CKS:** Timer0 clock source select

0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock

1: TM0CKI (PA2) as Timer0 prescaler clock

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODH	—	-	PA6MOD		PA5MOD		PA4MOD	
R/W	—	_	W		W		W	
Reset	_	-	0	1	0	1	0	1

R05.5~4 **PA6MOD**: PA6 Pin Mode Control

- 00: Mode0
- 01: Mode1

10: Mode2, input with pull-up / wake-up

11: Mode3

R05.3~2 **PA5MOD**: PA5 Pin Mode Control

- 00: Mode0
- 01: Mode1
- 10: Mode2, input with pull-up / wake-up
- 11: Mode3

R05.1~0 **PA4MOD**: PA4 Pin Mode Control

- 00: Mode0
- 01: Mode1
- 10: Mode2, input with pull-up / wake-up
- 11: Mode3

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAMODL	PA3I	MOD	PA2MOD		PA1MOD		PA0MOD		
R/W	V	W		W		W		W	
Reset	0	1	0	1	0	1	0	1	

R06.7~6 PA3MOD: PA3 Pin Mode Control

00: Mode0

01: Mode1

10: Mode2, input with pull-up / wake-up

11: Mode3

- R06.5~4 **PA2MOD**: PA2 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, input with pull-up / wake-up
 - 11: Mode3
- R06.3~2 **PA1MOD**: PA1 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, input with pull-up / wake-up 11: Mode3
- R06.1~0 **PA0MOD**: PA0 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, input with pull-up / wake-up 11: Mode3
- R07 Bit 7 Bit 5 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PBMODH PB7MOD PB6MOD PB5MOD PB4MOD R/W W W W W Reset 0 1 0 1 0 1 0 1
 - R07.7~6 **PB7MOD**: PB7 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, input with pull-up / wake-up 11: Mode3
- R07.5~4 **PB6MOD**: PB6 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, input with pull-up / wake-up 11: Mode3
- R07.3~2 **PB5MOD**: PB5 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2 PWM0 Output (PBD[5]-
 - 10: Mode2, PWM0 Output (PBD[5]=1, Open Drain output; PBD[5]=0, CMOS push-pull output) 11: Mode3
- R07.1~0 **PB4MOD**: PB4 Pin Mode Control 00: Mode0 01: Mode1
 - 10: Mode2, Touch Key clock output (CMOS push-pull output)
 - 11: Mode3

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMODL	PB31	MOD	PB2N	MOD	PB11	MOD	PB0MOD		
R/W	V	W W			V	V	V	V	
Reset	0	1	0	1	0	1	0	1	

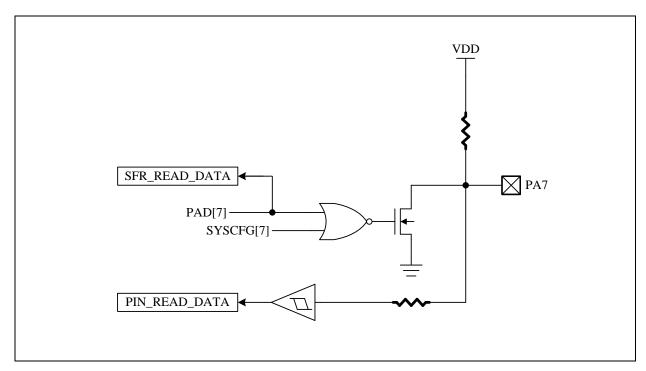
- R08.7~6 **PB3MOD**: PB3 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.5~4 **PB2MOD**: PB2 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.3~2 **PB1MOD**: PB1 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3
- R08.1~0 **PB0MOD**: PB0 Pin Mode Control 00: Mode0 01: Mode1 10: Mode2, LCD COM 1/2 V_{DD} output 11: Mode3

R0A	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDMOD	PD71	MOD	_	—	—	—		—
R/W	V	V	-	—	—	—	—	—
Reset	0	1	-	-	-	-	-	—

R0A.7~6 **PD7MOD**: PD7 Pin Mode Control

00: Mode0

01: Mode1


10: Mode2, input with pull-up / wake-up

11: Mode3

4.2 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is setting by the PAD [7] (F05.7) bit. When the PAD [7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor is always connected to this pin. When SYSCFG [7] is set, PA7 is only used in Schmitt-trigger input for external active low reset.

How to control PA7 status can be concluded as following list.

SYSCFG [7]	PAD [7]	PIN STATE	Pull-up	Mode
0	0	Low	No	Open-drain output low
0	1	High	Yes	Input with pull-up
1	Х	High	Yes	Reset input with pull-up

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description				
(F00) INDF	-			Function related to: RAM W/R				
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register				
(F01) TM0 Function related to: Timer0								
TM0	01.7~0	R/W	0	Timer0 content				
(F02) PCL Function related to: Program Counter								
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]				
(F03) STATUS				Function related to: STATUS				
GB1	03.7	R/W	0	General purpose bit 1				
GB0	03.6	R/W	0	General purpose bit 0				
RAMBK	03.5	R/W	0	SRAM Bank selection, 0: Bank0, 1: Bank1				
ТО	03.4	R	0	WDT timeout flag				
PD	03.3	R	0	Power-down mode flag				
Z	03.2	R/W	0	Zero flag				
DC	03.1	R/W	0	Decimal Carry flag or Decimal / Borrow flag				
С	03.0	R/W	0	Carry flag or / Borrow flag				
(F04) FSR				Function related to: RAM W/R / Table Read				
GB2	04.7	R/W	0	General purpose bit 2				
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer				
(F05) PAD	·			Function related to: Port A				
		R	-	PA7 pin or "data register" state				
PAD	05.7	W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode				
	05.6~0	R	-	Port A pin or "data register" state				
	05.0~0	W	7F	Port A output data register				
(F06) PBD				Function related to: Port B				
PBD	06.7~0	R	-	Port B pin or "data register" state				
rdd	00.7~0	W	FF	Port B output data register				
(F07) PDD				Function related to: Port D				
0007	07.7	R	-	Port D pin or "data register" state				
PDD7	07.7	W	1	Port D output data register				

Name	Address	R/W	Rst	Description
(F08) INTIE				Function related to: Interrupt Enable
				I2C receive / transmit data finished interrupt enable
I2CIE	08.7	R/W	0	0: disable
				1: enable
				Touch Key interrupt enable
TKIE	08.6	R/W	0	0: disable
				1: enable
TM1IE	08.5	R/W	0	Timer1 interrupt enable 0: disable
	08.5	IX/ W	0	1: enable
				Timer0 interrupt enable
TM0IE	08.4	R/W	0	0: disable
				1: enable
				Wakeup Timer interrupt enable
WKTIE	08.3	R/W	0	0: disable
				1: enable
DUTOUT		D 411	0	INT2 (PB6) pin interrupt enable
INT2IE	08.2	R/W	0	0: disable
			-	1: enable INT1 (PA7) pin interrupt enable
INT1IE	08.1	R/W	0	0: disable
	00.1	10 11	0	1: enable
				INTO (PB4) pin interrupt enable
INTOIE	08.0	R/W	0	0: disable
				1: enable
(F09) INTIF				Function related to: Interrupt Flag
			-	I2C interrupt event pending flag, set by H/W while
		R		a. I2CRCD0 or I2CRCD1 receive new data finished
I2CIF	09.7	I.		b. I2CRCD0 or I2CRCD1 data overflow occurred
				c. I2CTXD0 or I2CTXD1 data transmit finished 0: clear this flag and slave I2C related flags
		W	0	1: no action
				Touch Key interrupt event pending flag, set by H/W while Key's TK Data
		R	-	Count is over the pre-set compare threshold range (H/W auto mode) or TK is
TKIF	09.6			end of conversion (S/W manual mode)
			0	0: clear this flag
		W	0	1: no action
		R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
TM1IF	09.5	W	0	0: clear this flag
				1: no action
	00.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
TM0IF	09.4	W	0	0: clear this flag
		R	-	1: no action WKT interrupt event pending flag, set by H/W while WKT time out
WKTIF	09.3	ĸ	-	0: clear this flag
WKIII	07.5	W	0	1: no action
		R	-	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge
INT2IF	09.2			0: clear this flag
		W	0	1: no action
		R	-	INT1 interrupt event pending flag, set by H/W at INT1 pin's falling edge
INT1IF	09.1	W	0	0: clear this flag
		vv	U	1: no action
		R	-	INT0 interrupt event pending flag, set by H/W at INT0 pin's falling / rising edge
INTOIF	09.0	W	0	0: clear this flag
		••		1: no action

Name	Address	R/W	Rst	Description
(F0A) TM1				Function related to: Timer1
TM1	0a.7~0	R/W	0	Timer1 content
(FOC) PWM0D				Function related to: PWM0
PWM0D	0c.7~0	R/W	0	PWM0 duty
(F0D) MF0D				Function related to: VDDFLT / EMI Improve / PWM0 / Timer1 / Timer0
VDDFLT	0d.4	R/W	0	Power noise filter 0: disable 1: enable
EMIIMPV	0d.3	R/W	1	EMI improve 0: disable 1: enable
PWM0CLR	0d.2	R/W	1	PWM0 clear and hold 0: PWM0 is running 1: PWM0 is clear and hold
TM1STP	0d.1	R/W	0	Timer1 counter stop 0: Timer1 is counting 1: Timer1 stops counting
TM0STP	0d.0	R/W	0	Timer0 counter stop 0: Timer0 is counting 1: Timer0 stops counting
(F0E) IRCF				Function relate to: Trim FIRC
IRCF	0e.5~0	R/W		FIRC frequency adjustment
(F0F) CLKCTL				Function related to: System Clock
SLOWSTP	0f.4	R/W	0	Slow-clock stop 0: Slow-clock is running 1: Slow-clock stops running in Power-down mode
FASTSTP	0f.3	R/W	0	Fast-clock stop 0: Fast-clock is running 1: Fast-clock stops running
CPUCKS	0f.2	R/W	0	System clock source select 0: Slow-clock 1: Fast-clock (forbid using when CPUPSC=3)
CPUPSC	0f.1~0	R/W	3	System clock source prescaler. System clock source 00: divided by 8 01: divided by 4 10: divided by 2 11: divided by 1 (forbid using when CPUPSC=3)
(F10) TKCTL1				Function related to: Touch Key
TKSOC	10.7	R/W	0	Touch Key start of conversion, rising edge to start H/W auto cleared while end of conversion
TKTMR	10.6~4	R/W	4	Touch Key conversion time 000: shortest 111: longest
TKCHS	10.3~0	R/W	F	Touch Key channel select0000: TK0 (PA0)1000: TK8 (PB0)0001: TK1 (PA1)1001: TK9 (PB1)0010: TK2 (PA2)1010: TK10 (PB2)0011: TK3 (PA3)1011: TK11 (PB3)0100: TK4 (PA4)1100: TK12 (PB4)0101: TK5 (PA5)1101: TK13 (PB5)0110: TK6 (PA6)1110: Undefined0111: TK7 (PD7)1111: Internal reference capacitor

Name	Address	R/W	Rst	Description
(F11) TKCTL2				Function related to: Touch Key
TKPD	11.4	R/W	1	Touch Key Power Down 0: Touch Key running 1: Touch Key power down
TKEOC	11.3	R	1	Touch Key end of conversion 0: conversion is in process 1: end of conversion
TKOVF	11.2	R	0	Touch Key counter overflow flag 0: not overflow 1: overflow
TKDH	11.1~0	R	0	Touch Key data MSB [9~8]
(F12) TKDL				Function related to: Touch Key
TKDL	12.7~0	R	0	Touch Key data LSB [7~0]
(F13) ATKCTL	<u>. </u>			Function related to: Touch Key
ATKSIT	13.6~5	R/W	3	Touch Key auto scan interval time 00:30ms 01: 60ms 10: 120ms 11: 240ms
ATKEN	13.4~3	R/W	0	Touch Key auto scan mode enable 00: disable H/W Auto Mode 01: enable H/W Auto Mode (1 time scanning) 10: enable H/W Auto Mode (2 times scanning) 11: enable H/W Auto Mode (4 times scanning)
ATKNUM	13.2~0	R/W	7	Touch Key auto scan channel number 000: only scan 1 channel (TK0) 001: scan 2 channels (TK0~TK1) 010: scan 3 channels (TK0~TK2) 011: scan 4 channels (TK0~TK3) 100: scan 5 channels (TK0~TK4) 101: scan 6 channels (TK0~TK5) 110: scan 7 channels (TK0~TK6) 111: scan 8 channels (TK0~TK7)
(F14) ATKDT				Function related to: Touch Key
ATKPOL	14.3	R	0	Touch Key auto scan polarity 0: Touch Key counter data is lower than lower boundary 1: Touch Key counter data is higher than upper boundary
ATKDT	14.2~0	R	0	Touch Key auto scan result 000: TK0 has a touch event 001: TK1 has a touch event 010: TK2 has a touch event 011: TK3 has a touch event 100: TK4 has a touch event 101: TK5 has a touch event 110: TK6 has a touch event 111: TK7 has a touch event
(F1A) I2CRCD0				Function related to: Slave I2C
I2CRCD0	1a.7~0	R	0	The receiving register 0 of slave I2C
(F1B) I2CRCD1			<u> </u>	Function related to: Slave I2C
I2CRCD1	1b.7~0	R	0	The receiving register 1 of slave I2C

Name	Address	R/W	Rst	Description									
(F1C) I2CTXD0		-		Function related to: Slave I2C									
I2CTXD0	1c.7~0	R/W	0	The transmitting register 0 of slave I2C									
(F1D) I2CTXD1				Function related to: Slave I2C									
I2CTXD1	1d.7~0	R/W	0	The transmitting register 1 of slave I2C									
(F1E) I2CCTL				Function related to: Slave I2C									
I2CEN	1e.3	R/W	0	Slave I2C interface enable 0: disable 1: enable									
TXDIE	1e.2	R/W	0	Slave I2C transmitting interrupt enable 0: disable 1: enable									
I2CID	1e.1~0	R/W	0	Slave I2C ID last 2 bits									
(F1F) I2CFLAG				Function related to: Slave I2C									
TXD1F	1f.5	R	-	Slave I2C transmitting data register 1 flag, set by H/W while I2CTXD1 data transmitting finished									
	11.5	W	0	0: clear this flag 1: no action									
TXD0F	1f 4	1f /	1f 4	1f.4	1f 4	1f 4	1f 4	R	-	Slave I2C transmitting data register 0 flag, set by H/W while I2CTXD0 data transmitting finished			
	11.4	W	0	0: clear this flag 1: no action									
RCD10VF	1f.3	R	-	Slave I2C receiving data register 1 overflow, set by H/W while receiving data to I2CRCD1 overflow									
	11.5	W	0	0: clear this flag 1: no action									
RCD1F	1f 2	1f 2	1f.2	1f 2	1f 2	1f 2	1f.2	1f.2	1f.2	1f.2	R	-	Slave I2C receiving data register 1 flag, set by H/W while data receiving to I2CRCD1 finished
		W	0	0: clear this flag 1: no action									
RCD00VF	1f.1	R	-	Slave I2C receiving data register 0 overflow, set by H/W while receiving data to I2CRCD0 overflow									
		W	0	0: clear this flag 1: no action									
RCD0F	1f.0	R	-	Slave I2C receiving data register 0 flag, set by H/W while data receiving to I2CRCD0 finished									
		W	0	0: clear this flag 1: no action									
User Data Memor	-		,										
	20~27	R/W	-	SRAM common area (8 bytes)									
SRAM	28~7f	R/W	-	SRAM Bank0 area (RAMBK=0, 88 bytes)									
	28~7f	R/W	-	SRAM Bank1 area (RAMBK=1, 88 bytes)									

R-Plane

Name	Address	R/W	Rst	Description
(R08) PBMODL				Function related to: Port B
PB3MOD	08.7~6	W	1	PB3~PB0 I/O mode control
PB2MOD	08.5~4	W	1	00: Mode0
PB1MOD	08.3~2	W	1	01: Mode1
PB0MOD	08.1~0	W	1	10: Mode2, LCD COM $1/2 V_{DD}$ output
	00.1 0			11: Mode3
(R09) PDMOD		[r r	Function related to: Port D
				PD7 I/O mode control
PD7MOD	0076	w	1	00: Mode0 01: Mode1
PD/MOD	09.7~6	vv	1	
				10: Mode2, input with pull-up / wake-up 11: Mode3
(R0B) MR0B		<u> </u>	<u> </u>	Function related to: INT0 / TRCOUT / WDT
(KUD) WIKUD	1	[r r	
INT0EDG	0b.4	w	0	INT0 pin (PB4) edge interrupt event 0: falling edge to trigger
INTOEDO	00.4	vv	0	1: rising edge to trigger
				Touch Key clock output select
TRCNOE	0b.2	W	0	0: positive output
IRCIVOL	CINOE 00.2	**	U	1: negative output
				WDT / WKT pre-scale selections:
				00: 30mS
WKTPSC	0b.1~0	W	3	01: 60mS
WRIIDC		••	5	10: 120mS
				11: 240mS
(R0C) PWM0CT	L		LL	Function related to: PWM0
· · · · ·				PWM0 output select
PWM0NOE	0c.2	W	0	0: positive output
				1: negative output
				PWM0 prescaler, PWM0 clock source (Fsys)
				00: divided by 1
PWM0PSC	0c.1~0	W	0	01: divided by 2
				10: divided by 4
				11: divided by 8
(R0D) PWM0PR	1			Function related to: PWM0
PWM0PRD	0d.7~0	W	FF	PWM0 period data
(R11) TM1RLD				Function related to: Timer1
TM1RLD	11.7~0	W	0	Timer1 reload Data
(R12) TM1CTL			,	Function related to: Timer1
				Timer1 prescaler. Timer1 clock source (Fsys/2)
				0000: divided by 1
				0001: divided by 2
TM1PSC				0010: divided by 4
	12.3~0	W	0	0011: divided by 8
	12.3~0		U	0100: divided by 16
				0101: divided by 32
				0110: divided by 64
				0111: divided by 128
				1xxx: divided by 256

Name	Address	R/W	Rst	Description
(R14) ATK0UBH				Function related to: Touch Key
ATK0UBH	14.1~0	W	0	Auto Touch Key TK0 upper boundary MSB [9:8]
(R15) ATK0UBL				Function related to: Touch Key
ATK0UBL	15.7~0	W	FF	Auto Touch Key TK0 upper boundary LSB [7:0]
(R16) ATK0LBH				Function related to: Touch Key
ATK0LBH	16.1~0	W	0	Auto Touch Key TK0 lower boundary MSB [9:8]
(R17) ATK0LBL				Function related to: Touch Key
ATK0LBL	17.7~0	W	0	Auto Touch Key TK0 lower boundary LSB [7:0]
(R18) ATK1UBH				Function related to: Touch Key
ATK1UBH	18.1~0	W	0	Auto Touch Key TK1 upper boundary MSB [9:8]
(R19) ATK1UBL				Function related to : Touch Key
ATK1UBL	19.7~0	W	FF	Auto Touch Key TK1 upper boundary LSB [7:0]
(R1A) ATK1LBH				Function related to: Touch Key
ATK1LBH	1a.1~0	W	0	Auto Touch Key TK1 lower boundary MSB [9:8]
(R1B) ATK1LBL				Function related to: Touch Key
ATK1LBL	1b.7~0	W	0	Auto Touch Key TK1 lower boundary LSB [7:0]
(R1C) ATK2UBH				Function related to: Touch Key
ATK2UBH	1c.1~0	W	0	Auto Touch Key TK2 upper boundary MSB [9:8]
(R1D) ATK2UBL				Function related to: Touch Key
ATK2UBL	1d.7~0	W	FF	Auto Touch Key TK2 upper boundary LSB [7:0]
(R1E) ATK2LBH				Function related to: Touch Key
ATK2LBH	1e.1~0	W	0	Auto Touch Key TK2 lower boundary MSB [9:8]
(R1F) ATK2LBL				Function related to: Touch Key
ATK2LBL	1f.7~0	W	0	Auto Touch Key TK2 lower boundary LSB [7:0]
(R20) ATK3UBH				Function related to: Touch Key
ATK3UBH	20.1~0	W	0	Auto Touch Key TK3 upper boundary MSB [9:8]
(R21) ATK3UBL				Function related to: Touch Key
ATK3UBL	21.7~0	W	FF	Auto Touch Key TK3 upper boundary LSB [7:0]
(R22) ATK3LBH				Function related to: Touch Key
ATK3LBH	22.1~0	W	0	Auto Touch Key TK3 lower boundary MSB [9:8]
(R23) ATK3LBL				Function related to: Touch Key
ATK3LBL	23.7~0	W	0	Auto Touch Key TK3 lower boundary LSB [7:0]
(R24) ATK4UBH				Function related to: Touch Key
ATK4UBH	24.1~0	W	0	Auto Touch Key TK4 upper boundary MSB [9:8]
(R25) ATK4UBL			1	Function related to: Touch Key
ATK4UBL	25.7~0	W	FF	Auto Touch Key TK4 upper boundary LSB [7:0]
(R26) ATK4LBH				Function related to: Touch Key
ATK4LBH	26.1~0	W	0	Auto Touch Key TK4 lower boundary MSB[9:8]
(R27) ATK4LBL			1	Function related to: Touch Key
ATK4LBL	27.7~0	W	0	Auto Touch Key TK4 lower boundary LSB [7:0]

Name	Address	R/W	Rst	Description		
(R28) ATK5UBH				Function related to: Touch Key		
ATK5UBH	28.1~0	W	0	Auto Touch Key TK5 upper boundary MSB [9:8]		
(R29) ATK5UBL				Function related to: Touch Key		
ATK5UBL	29.7~0	W	FF	Auto Touch Key TK5 upper boundary LSB [7:0]		
(R2A) ATK5LBH				Function related to: Touch Key		
ATK5LBH	2a.1~0	W	0	Auto Touch Key TK5 lower boundary MSB [9:8]		
(R2B) ATK5LBL				Function related to: Touch Key		
ATK5LBL	2b.7~0	W	0	Auto Touch Key TK5 lower boundary LSB [7:0]		
(R2C) ATK6UBH				Function related to: Touch Key		
ATK6UBH	2c.1~0	W	0	Auto Touch Key TK6 upper boundary MSB [9:8]		
(R2D) ATK6UBL				Function related to: Touch Key		
ATKUB6L	2d.7~0	W	FF	Auto Touch Key TK6 upper boundary LSB [7:0]		
(R2E) ATK6LBH				Function related to: Touch Key		
ATK6LBH	2e.1~0	W	0	Auto Touch Key TK6 lower boundary MSB [9:8]		
(R2F) ATK6LBL				Function related to: Touch Key		
ATK6LBL	2f.7~0	W	0	Auto Touch Key TK6 lower boundary LSB [7:0]		
(R30) ATK7UBH				Function related to: Touch Key		
ATK7UBH	30.1~0	W	0	Auto Touch Key TK7 upper boundary MSB [9:8]		
(R31) ATK7UBL				Function related to: Touch Key		
ATK7UBL	31.7~0	W	FF	Auto Touch Key TK7 upper boundary LSB [7:0]		
(R32) ATK7LBH				Function related to: Touch Key		
ATK7LBH	32.1~0	W	0	Auto Touch Key TK7 lower boundary MSB [9:8]		
(R33) ATK7LBL				Function related to: Touch Key		
ATK7LBL	33.7~0	W	0	Auto Touch Key TK7 lower boundary LSB [7:0]		

Instruction Set

Each instruction is a 14-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations listed in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description	
f	F-Plane Register File Address	
r	R-Plane Register File Address	
b	Bit address	
k	Literal. Constant data or label	
d	Destination selection field, 0: Working register, 1: Register file	
W	Working Register	
Z	Zero Flag	
С	Carry Flag	
DC	Decimal Carry Flag	
PC	Program Counter	
TOS	Top Of Stack	
GIE	Global Interrupt Enable Flag (i-Flag)	
[]	Option Field	
()	Contents	
	Bit Field	
В	Before	
А	After	
←	Assign direction	

Mnemor	nic	Op Code	Cycle	Flag Affect	Description
		Byte-Oriente	ed File R	egister Instru	ction
ADDWF	f, d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f, d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f, d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f, d	00 0011 dfff ffff	1	Ζ	Decrement "f"
DECFSZ	f, d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f, d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f, d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f, d	00 0100 dfff ffff	1	Ζ	OR W with "f"
MOVFW	F	00 1000 Offf ffff	1	-	Move "f" to W
MOVWF	F	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	R	00 0000 00rr rrrr	1	-	Move W to "r"
RLF	f, d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f, d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f, d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f, d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	F	00 1000 dfff ffff	1	Z	Test if "f" is zero
XORWF	f, d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriente	d File Re	egister Instruc	tion
BCF	f, b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f, b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f, b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f, b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Cont	rol Instruction	n
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 00kk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		00 0000 0000 0100	1	TO, PD	Clear WDT/WKT Timer
GOTO	k	11 00kk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		00 0000 0000 0011	1	TO, PD	Go into standby mode, Clock oscillation stops
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW	Add Literal "k" and V	W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W register are added to the eight-bit literal 'k' and the result is	
	placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}10$
		A: W = 0x25

ADDWF	Add W and "f"	
Syntax	ADDWF f [,d]	
Operands	f:00h ~ 5Fh d:0,1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register $If 'd'$ is 1, the result is stored head in register 'f'.	
Cycle	in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2
-		A: W = 0xD9, FSR = 0xC2

ANDLW	Logical AND Litera	ıl ''k'' with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W)$ 'AND' (k)	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W regist placed in the W register.	er are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
•		A: W = 0x03

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	$f: 00h \sim 5Fh d: 0, 1$	
Operation	$(destination) \leftarrow (W)$ 'AN	D' (f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W	
-	register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	ANDWF FSR, 1	B: W = 0x17, FSR = 0xC2
-		A: W = 0x17, FSR = 0x02

BCF	Clear "b" bit of "f"		
Syntax	BCF f [,b]		
Operands	f:00h~3Fh b:0~7		
Operation	$(f.b) \leftarrow 0$		
Status Affected	-		
OP-Code	01 000b bbff ffff		
Description	Bit 'b' in register 'f' is cleared.		
Cycle	1		
Example	BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$	
±		$A : FLAG_REG = 0x47$	
		_	

BSF	Set "b" bit of "f"		
Syntax	BSF f[,b]		
Operands	$f: 00h \sim 3Fh b: 0 \sim 7$		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	01 001b bbff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1		
Example	BSF FLAG_REG, 7	$B : FLAG_REG = 0x0A$ $A : FLAG_REG = 0x8A$	

BTFSC	Test "b" bit of "f", skip if cle	ear(0)	
Syntax	BTFSC f [,b]		
Operands	$f: 00h \sim 3Fh \ b: 0 \sim 7$		
Operation	Skip next instruction if $(f.b) = 0$		
Status Affected	-		
OP-Code	01 010b bbff ffff		
Description	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' in register 'f' is '1', then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction.		
Cycle	1 or 2		
Example	LABEL1 BTFSC FLAG, 1	B : PC = LABEL1	
	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = FALSE$	
	FALSE	if $FLAG.1 = 1$, $PC = TRUE$	

BTFSS	Test "b" bit of "f", skip if	f set(1)	
Syntax	BTFSS f[,b]		
Operands	$f: 00h \sim 3Fh \ b: 0 \sim 7$		
Operation	Skip next instruction if $(f.b) = 1$		
Status Affected	-		
OP-Code	01 011b bbff ffff		
Description	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' in register 'f' is '1', then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction.		
Cycle	1 or 2		
Example	LABEL1 BTFSS FLAG, 1 TRUE GOTO SUB1 FALSE	B : PC = LABEL1 A : if FLAG.1 = 0, PC = TRUE if FLAG.1 = 1, PC = FALSE	

_

CALL	Call subroutine "k"	
Syntax	CALL k	
Operands	K : 00h ~ 3FFh	
Operation	Operation: TOS \leftarrow (PC)+ 1, PC	$.9 \sim 0 \leftarrow k$
Status Affected	-	
OP-Code	10 00kk kkkk kkkk	
Description	Call Subroutine. First, return add	dress (PC+1) is pushed onto the stack. The 10-bit
-	immediate address is loaded into	PC bits <9:0>. CALL is a two-cycle instruction.
Cycle	2	
Example	LABEL1 CALL SUB1	B : PC = LABEL1
-		A : PC = SUB1, TOS = LABEL1+1

CLRF	Clear "f"	
Syntax	CLRF f	
Operands	f : 00h ~ 5Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' are cleared and the Z bit is set.	
Cycle	1	
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$
-		A : FLAG_REG = $0x00$, Z = 1

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	(W) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared and Zero bit (Z) is set.	
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog T	imer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer $\leftarrow 0$	0h
Status Affected	TO,PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction clears the Watchdog Timer.	
Cycle	1	-
Example	CLRWDT	B: WDT counter = ?
-		A : WDT counter = $0x00$

COMF	Complement "f"		
Syntax	COMF f [,d]		
Operands	f : 00h ~ 5Fh, d : 0, 1		
Operation	(destination) \leftarrow (\overline{f})		
Status Affected	Z	Ζ	
OP-Code	00 1001 dfff ffff		
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.		
Cycle	1		
Example	COMF REG1,0	B : REG1 = $0x13$ A : REG1 = $0x13$, W = $0xEC$	

DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 5Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1,	
-	the result is stored back in register 'f'.	
Cycle	1	
Example	DECF CNT, 1	B : CNT = 0x01, Z = 0
-		A : $CNT = 0x00, Z = 1$

DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	f : 00h ~ 5Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip next instruction if result	is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description	The contents of register 'f' are decremented. If 'd' is W register. If 'd' is 1, the result is placed back in reg next instruction is executed. If the result is 0, then a making it a 2 cycle instruction.	ister 'f'. If the result is 1, the
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1 B : PC = LAB	EL1
	GOTO LOOP $A: CNT = CN$	T - 1
	CONTINUE if CNT=0,	PC = CONTINUE
	if CNT≠0,	PC = LABEL1+1

GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 00h ~ 3FFh	
Operation	$PC.9 \sim 0 \leftarrow k$	
Status Affected	-	
OP-Code	11 00kk kkkk kkkk	
Description	GOTO is an unconditional branch.	The 10-bit immediate value is loaded into PC
-	bits <9:0>. GOTO is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 GOTO SUB1	B: PC = LABEL1
-		A: PC = SUB1

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 5Fh	
Operation	(destination) \leftarrow (f) + 1	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the	
	W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	
Example	INCF CNT, 1	B: CNT = 0xFF, Z = 0
		A : CNT = $0x00$, Z = 1

INCFSZ	Increment "f", Skip if 0
Syntax	INCFSZ f [,d]
Operands	f : 00h ~ 5Fh, d : 0, 1
Operation	(destination) \leftarrow (f) + 1, skip next instruction if result is 0
Status Affected	
OP-Code	00 1111 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1 INCFSZ CNT, 1 $B : PC = LABEL1$
	GOTO LOOP CONTINUE $A : CNT = CNT + 1$ if $CNT=0$, $PC = CONTINUE$ if $CNT\neq0$, $PC = LABEL1+1$

IORLW	Inclusive OR Li	teral with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the V placed in the W regis	W register is OR'ed with the eight-bit literal 'k'. The result is ster.
Cycle	1	
Example	IORLW 0x35	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}9\mathbf{A}$
		A: W = 0xBF, Z = 0

IORWF	Inclusive OR W with	n "f"
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 5Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the	
	W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	
Example	IORWF RESULT, 0	B: RESULT = 0x13, W = 0x91
-		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 5Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register f are moved to W register.	
Cycle	1	C C
Example	MOVF FSR, 0	B : W = ?
-		A: W \leftarrow f, if W = 0 Z = 1

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.	
Cycle	1	
Example	MOVLW 0x5A	B: W = ?
-		A: W = 0x5A

MOVWF	Move W to "f"		
Syntax	MOVWF f		
Operands	f : 00h ~ 5Fh		
Operation	$(f) \leftarrow (W)$		
Status Affected	-		
OP-Code	00 0000 1fff ffff		
Description	Move data from W register to register 'f'.		
Cycle	1		
Example	MOVWF REG1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F	

MOVWR	Move W to "r"	
Syntax	MOVWR r	
Operands	r : 00h ~ 12h	
Operation	$(r) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 00rr rrrr	
Description	Move data from W register to register 'r'.	
Cycle	1	-
Example	MOVWR REG1	B : REG1 = 0xFF, W = 0x4F
-		A: REG1 = 0x4F, W = 0x4F

NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	Z
OP-Code	00 0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -

RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$	
Status Affected	-	
OP-Code	00 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to	
	the PC. Interrupts are enabled. This is a two-cycle instruction.	
Cycle	2	
Example	RETI $A : PC = TOS, GIE = 1$	

RETLW	Return with Literal in V	V
Syntax	RETLW k	
Operands	k : 00h ~ FFh	
Operation	$PC \leftarrow TOS, (W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1000 kkkk kkkk	
Description	•	he eight-bit literal 'k'. The program counter is k (the return address). This is a two-cycle
Cycle	2	
Example	CALL TABLE	$\mathbf{B}:\mathbf{W}=0\mathbf{x}07$
L.	:	A: W = value of k8
	TABLE ADDWF PCL,1	
	RETLW k1	
	RETLW k2	
	:	
	RETLW kn	

RET	Return from Subroutine		
Syntax	RET		
Operands	-		
Operation	$PC \leftarrow TOS$		
Status Affected	-		
OP-Code	00 0000 0100 0000		
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is		
-	loaded into the program counter. This is a two-cycle instruction.		
Cycle	2		
Example	RET $A: PC = TOS$		

RLF	Rotate Left f through Carry	
Syntax	RLF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	C Register f	
Status Affected	С	
OP-Code	00 1101 dfff ffff	
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	RLF REG1,0 B : REG1 = 1110 0110, C = 0	
-	A : REG1 = 1110 0110	
	$W = 1100 \ 1100, C = 1$	

RRF	Rotate Right "f" through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	C
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRF REG1,0 B : REG1 = 1110 0110, C = 0 A : REG1 = 1110 0110 W = 0111 0011, C = 0

SLEEP	Go into standby mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO,PD
OP-Code	00 0000 0000 0011
Description	Go into SLEEP mode with the oscillator stops.
Cycle	1
Example	SLEEP -
-	

SUBWF	Subtract W from "f"		
Syntax	SUBWF f [,d]		
Operands	f : 00h ~7Fh, d : 0, 1		
Operation	$(destination) \leftarrow (f) - (W)$		
Status Affected	C, DC, Z		
OP-Code	00 0010 dfff ffff		
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		
Cycle	1		
Example	SUBWF REG1,1	B : REG1 = 3, W = 2, C = ?, Z = ?	
		A : $REG1 = 1$, $W = 2$, $C = 1$, $Z = 0$	
	SUBWF REG1,1	B : REG1 = 2, W = 2, C = ?, Z = ?	
		A : REG1 = 0, W = 2, C = 1, Z = 1	
	SUBWF REG1,1	B : REG1 = 1, W = 2, C = ?, Z = ? A : REG1 = FFh, W = 2, C = 0, Z = 0	

SWAPF	Swap Nibbles in "f"		
Syntax	SWAPF f [,d]		
Operands	f: 00h ~7Fh, d: 0, 1		
Operation	(destination, 7~4) \leftarrow (f.3~0), (destination.3~0) \leftarrow (f.7~4)		
Status Affected	-		
OP-Code	00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPF REG1, 0	B : REG1 = 0xA5 A : REG1 = 0xA5, W = 0x5A	

TESTZ	Test if "f" is zero		
Syntax	TESTZ f		
Operands	f : 00h ~ 7Fh		
Operation	Set Z flag if (f) is 0		
Status Affected	Z		
OP-Code	00 1000 1fff ffff		
Description	If the content of register 'f' is 0, Zero flag is set to 1.		
Cycle	1		
Example	TESTZ REG1	B : REG1 = 0, Z = ?	
-		A : REG1 = 0, Z = 1	

XORLW	Exclusive OR Litera	al with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W regresult is placed in the W r	gister are XOR'ed with the eight-bit literal 'k'. The egister.
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
		A: W = 0x1A

XORWF	Exclusive OR W wit	h "f"
Syntax	XORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) XOF	R (f)
Status Affected	Z	. /
OP-Code	00 0110 dfff ffff	
Description		s of the W register with register 'f'. If 'd' is 0, the result If 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5 $A : REG = 0x1A, W = 0xB5$

Electrical Characteristics

1. Absolute Maximum Ratings ($T_A = 25$ °C)

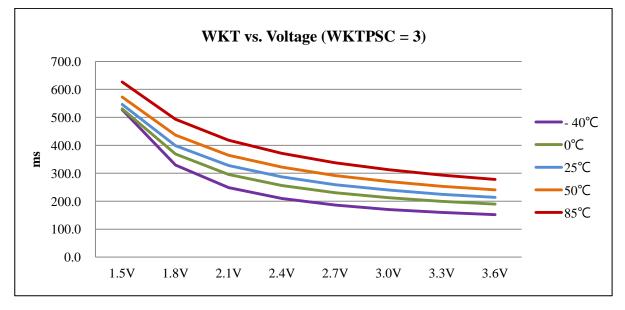
Parameter	Rating	Unit
Supply voltage	V_{SS} - 0.3 to V_{SS} + 4.0	
Input voltage	$V_{SS} - 0.3$ to $V_{CC} + 0.3$	V
Output voltage	$V_{SS} - 0.3$ to $V_{CC} + 0.3$	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum Operating Voltage	4.0	V
Operating temperature	-40 to +85	ംറ
Storage temperature	-65 to +150	

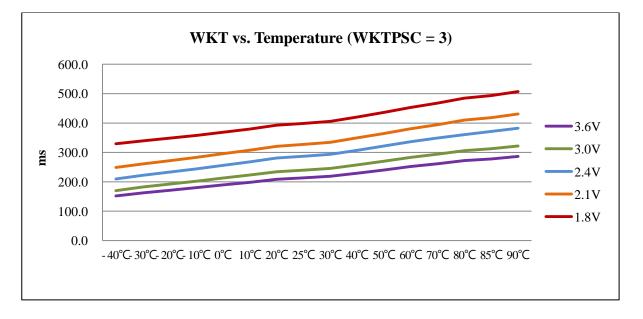
2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 1.3$ V to 4.0V)

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
		FAST mo	1.5	_	3.6		
Operating Voltage	V_{DD}	FAST mo	de, 25°C, Fsys = 2 MHz	1.3	_	3.6	V
		SLOW mo	ode, 25°C, Fsys = 17 KHz	1.3	_	3.6	
Input High Voltage	V_{IH}	All Input, except PA7	$V_{DD} = 3V$	$0.6V_{DD}$	_	-	v
1 0 0		PA7		$0.7V_{DD}$	_	_	
Input Low Voltage	V _{IL}	All Input	$V_{DD} = 3V$	-	_	$0.2V_{\text{DD}}$	V
I/O Port Source Current	I _{OH}	All Output	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	2	4	-	mA
I/O Port Sink Current	I _{OL}	All Output	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	5	10	-	mA
Input Leakage Current (pin high)	I _{ILH}	All Input	$V_{\rm IN}=V_{\rm DD}$	-	_	1	۸
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{\rm IN} = 0V$	-	_	-1	μA
		FAST mode,	$V_{DD} = 3V$, FIRC = 4 MHz	-	0.7	_	
		LVR enable, WDT enable	$V_{DD} = 3V$, FIRC = 2 MHz	_	0.5	_	mA
		SLOW mode, LVR enable	$V_{DD} = 3V$, SIRC = 17 KHz	-	3.5	-	
Supply Current	I _{DD}	IDLE mode, LVR enable	$V_{DD} = 3V$, SIRC = 17 KHz	-	1.5	_	
		IDLE mode, LVR disable	$V_{DD} = 3V$, SIRC = 17 KHz	-	1.1	-	μΑ
		STOP mode, LVR enable	$V_{DD} = 3V$	_	0.6	_	
		STOP mode, LVR disable	$V_{DD} = 3V$	_	_	0.1	

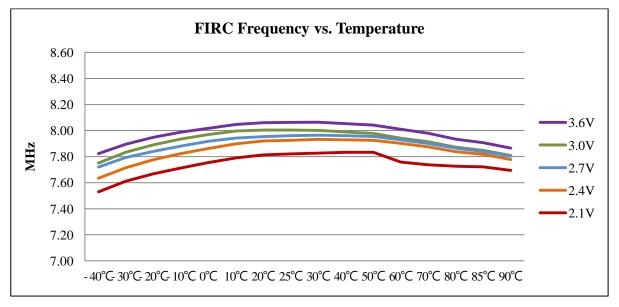
System Clock Frequency	Fsys	$V_{DD} = 1.5V$ $V_{DD} = 1.3V$	_	_	4 2	MHz
LVR Reference	V _{LVR}	$T_A = 25^{\circ}C$	_	2.2	_	V
Voltage		**	—	1.9	—	V
LVR Hysteresis Voltage	V _{HYST}	$T_A = 25^{\circ}C$	_	±0.1	_	V
Low Voltage Detection time	t _{LVR}	$T_A = 25^{\circ}C$	100	Ι	_	μs
Pull-Up Resistor	R _P	$V_{IN} = 0 V$, $V_{DD} = 3V$, All Pins except PA7	—	235	—	KΩ
		$V_{IN} = 0 V, V_{DD} = 3V, PA7$	_	160	_	K32

3. Clock Timing ($T_A = -40^{\circ}C$ to $+85^{\circ}C$)


Parameter	Condition	Min	Тур	Max	Unit	
Fast Internal RC Frequency	25° C, V _{DD} = $2.1 \sim 4.0$ V	7.8	.8 8 8.2		MHz	
	-40° C ~ 85°C, V _{DD} = 2.1 ~ 4.0V	7.6	8	8.4	MHZ	


4. Reset Timing Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3V$)

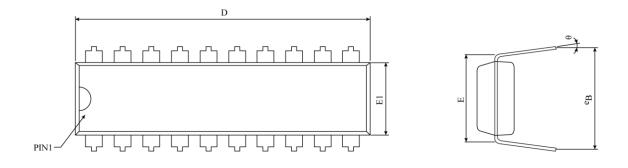
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{DD} = 3 V \pm 10 \%$	3	-	-	μs
WKT/WDT time	$V_{DD} = 3V, WKTPSC = 3$	-	240	-	ms
CPU start up time	$V_{DD} = 3V$	-	35	-	ms

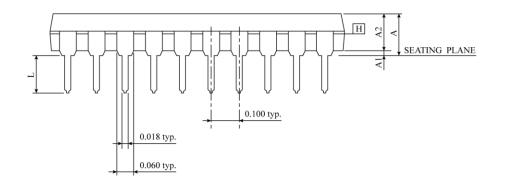

5. Characteristic Graphs



Note. Due to the variation of manufacturing process, this LVR will slightly vary between different chips.

Packaging information


Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.


The ordering information:

Ordering number	Package
TM57MT21A-MTP	Wafer / Dice blank chip
TM57MT21A-COD	Wafer / Dice with code
TM57MT21A-MTP-05	DIP 20-pin (300 mil)
TM57MT21A-MTP-21	SOP 20-pin (300 mil)
TM57MT21A2QSOP-MTP-27	SSOP-20 (150mil)
TM57MT21A2Q44-MTP-97	QFN-20 (4x4x0.75-0.5mm)
TM57MT21A-MTP-03	DIP 16-pin (300 mil)
TM57MT21A-MTP-16	SOP 16-pin (150 mil)

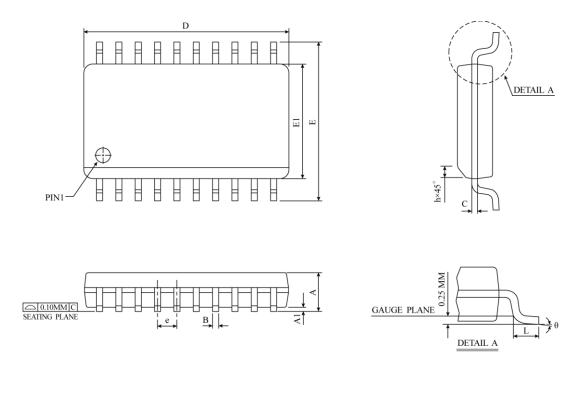
20-DIP Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	-	-	4.445	-	-	0.175
A1	0.381	-	-	0.015	-	-
A2	3.175	3.302	3.429	0.125	0.130	0.135
D	25.705	26.061	26.416	1.012	1.026	1.040
E	7.620	7.747	7.874	0.300	0.305	0.310
E1	6.223	6.350	6.477	0.245	0.250	0.255
L	3.048	3.302	3.556	0.120	0.130	0.140
е _В	8.509	9.017	9.525	0.335	0.355	0.375
θ	0°	7.5°	15°	0°	7.5°	15°
JEDEC	MS-001 (AD)					

NOTES :

1. ${}^{\rm ``D''}$, ${}^{\rm ``E1''}$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

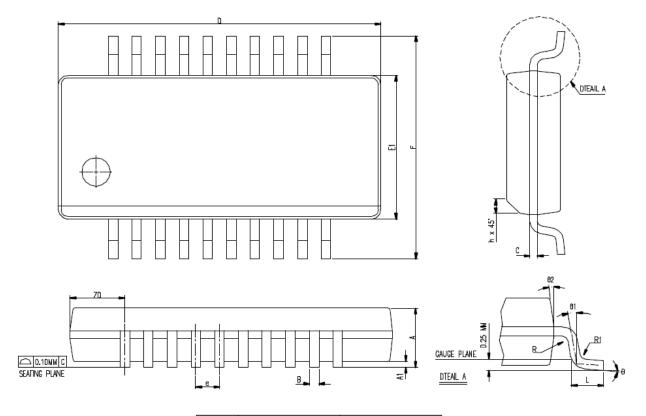
2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.


3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE II COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

20-SOP Package Dimension

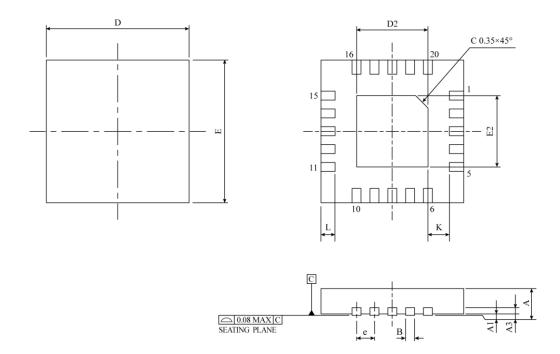


SYMBOL	DI	MENSION IN M	1M	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC				0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC			MS-01	3 (AC)			

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

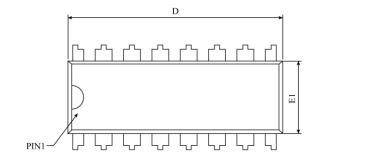
20-SSOP Package Dimension

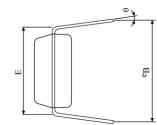
SYMEOL	DIME	NSION IN	NM -	DIMENSION IN INCH		
STINEUL	WIN_	NOM.	MAX	MIN.	NCM.	MAX
A	1.35	1.63	1.75	0.053	0.D64	D.069
A1	D, 10	0,15	0.25	0.004	0.D06	D,010
A2			1.50			0.059
В	D.2D		0.30	0.008		D.012
С	D.1B		0.25	0.007		D.010
e	0	.635 BAS	SIC	0	.D25 BAS	SIC
D	8.56	B.66	8.74	0.337	0.341	D.344
E	5.79	5.99	6.20	0.228	0.236	0.244
E1	3.81	3.91	3.99	0.15D	0.154	D.157
L	D.41	0.635	1.27	0.016	0.D25	0.050
h	D.25		0.50	0.01D		D.020
ZD	1.4732REF			0	.058 REF	
R1	0.20		0.33	0.008		0.013
R	0.20			D.0D8		
Û	ď		6*	Û,		8
61	5			Q,		
62	5	10	15	5	101	15
JEDEC			₩0-1	37 (AD)		

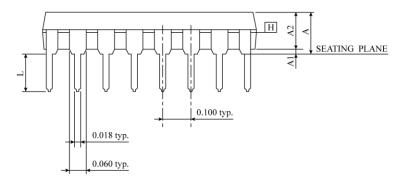

▲ *NOTES : DIMENSION D DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.

20-QFN Package Dimension




SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.03	0.05	0.000	0.001	0.002
A3		0.20 REF.	-		0.008 REF.	
В	0.20	0.25	0.30	0.008	0.001	0.012
D	4.00 BSC			0.157 BSC		
E		4.00 BSC		0.157 BSC		
e		0.50 BSC		0.020 BSC		
K	0.20	-	-	0.008	-	-
E2	2.40	2.48	2.55	0.094	0.097	0.100
D2	2.40	2.48	2.55	0.094	0.097	0.100
L	0.35	0.45	0.55	0.014	0.018	0.022
JEDEC		W(V) GGD-11				


* NOTES : DIMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

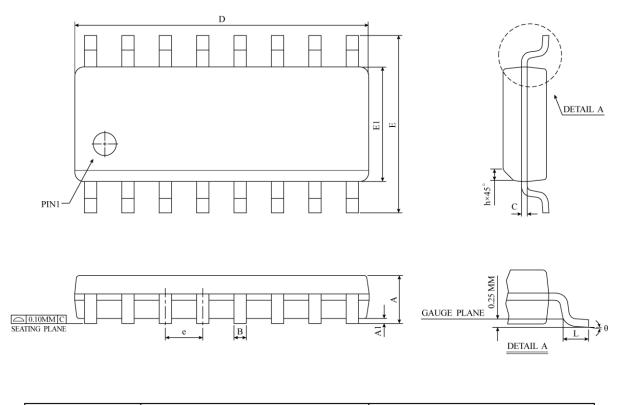
16-DIP Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH				
	MIN	NOM	MAX	MIN	NOM	MAX		
А	-	-	4.369	-	-	0.172		
A1	0.381	0.673	0.965	0.015	0.027	0.038		
A2	3.175	3.302	3.429	0.125	0.130	0.135		
D	18.669	19.177	19.685	0.735	0.755	0.775		
Е	7.620 BSC			0.300 BSC				
E1	6.223	6.350	6.477	0.245	0.250	0.255		
L	2.921	3.366	3.810	0.115	0.133	0.150		
е _В	8.509	9.017	9.525	0.335	0.355	0.375		
θ	0°	7.5°	15°	0°	7.5°	15°		
JEDEC	MS-001 (BB)							

NOTES :

1. ${\rm ``D''}$, ${\rm ``E1''}$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.


3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

16-SOP Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e	1.27 BSC			0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AC)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED $0.15\ \text{MM}$ ($0.006\ \text{INCH}$) PER SIDE.