

十速

TM57ME15B& ME15CG DATA SHEET

Rev 0.91

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description				
		New Release.TM57ME15 is revised to TM57ME15B				
0.90	Apr, 2018	1. Add high sink description (p5, p7)				
		2. Modify ordering information (p74)				
		1. 原 ME15B 增加一型號 ME15CG,合併為一份 DS-				
		TM57ME15B_ME15CG_E				
0.91	Aug, 2018	2. 加入 ME15CG 差異表(p7)				
		3. 移除 ME15 pahsed out 敘述(p7)				
		4. カル入 ME15CG ordering information(p74)				

DS-TM57ME15B_ME15CG_E 2 Rev 0.91, 2018/08/14

CONTENTS

AMI	ENDMENT HISTORY	2
CON	NTENTS	3
FEA	ATURES	5
BLO	OCK DIAGRAM	8
PIN	ASSIGNMENT	9
	DESCRIPTIONS	
	SUMMARY	
	NCTIONAL DESCRIPTION	
	CPU Core	
	1.1 Program ROM (PROM)	
	1.2 System Configuration Register (SYSCFG)	
	1.3 RAM Addressing Mode	14
	1.4 Programming Counter (PC) and Stack	15
2.	Reset	18
	2.1 Power on Reset	18
	2.2 Low Voltage Reset	
	2.3 External Pin Reset	
	2.4 Watchdog Timer Reset	21
3.	Clock Circuitry and Operation Mode	22
	3.1 System Clock	22
	3.2 Dual System Clock Modes Transition	
	3.3 Improve the Stability of FIRC/FXRC	
4.	Low Dropout Regulator	28
5.	Interrupt	30
6.	I/O Port	33
	6.1 PA0-6, PB0-3	33
	6.2 PA7	35
7.	Watchdog Timer (WDT) / Wakeup Timer (WKT)	37
8.	Timer0	40
9.	Timer2	44
10	0. PWM0: 8 bits PWM	46
	MORY MAP	
	TRUCTION SET	
ELE	ECTRICAL CHARACTERISTICS	69

1.	Absolute Maximum Ratings	69
2.	DC Characteristics	69
3.	Clock Timing	71
4.	Reset Timing Characteristics	71
5.	LVR Circuit Characteristics	71
6.	Characteristic Graphs	72
PAC	CKAGING INFORMATION	74

FEATURES

ROM: 1K x 14 bits MTP (Multi Time Programmable ROM)

RAM: 48 x 8 bits
 STACK: 5 Levels

3. I/O ports: Maximum 12 programmable I/O pins

• Open-Drain Output

• CMOS Push-Pull Output

• Schmitt Trigger Input with pull-up resistor option

• PA0~PA7, PB0~PB3 pin level change wake-up

• Up to 11 pins with high sink current (40mA).

4. System Oscillation Sources (Fsys):

• Fast-clock

- FIRC (Fast Internal RC): 16 MHz

- FXRC (Fast External R): 1~16MHz

- FXT (Fast Crystal): 1~16 MHz

• Slow-clock

- SIRC (Slow Internal RC): 128 KHz @VCC=3V

- SXT (Slow Crystal): 32768 Hz

5. System Clock Prescaler:

• System Oscillation Sources can be divided by 1/2/4/16 as System Clock (Fsys)

6. Dual System Clock:

- (FIRC or FXRC) + SIRC
- FXT + SIRC
- FIRC + SXT

7. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, Timer2, or Wake-up Timer keep running
- STOP Mode: All clocks stop, Timer2 and Wake-up Timer stop

8. Two Independent Timers

- Timer0 (TM0)
 - 8-bit timer divided by 1~256 pre-scale option, Reload/Interrupt/Stop function
- Timer2 (T2)
 - 15-bit Timer2 with 4 interrupt time period options
 - IDLE mode wake-up timer or used as one simple 15-bit time base

- Clock sources: Slow-clock (SIRC/SXT), Fsys/128

9. Interrupts

- Three External Interrupt pins
 - Two pins are falling edge triggered interrupt & wake-up functions
 - One pin is rising or falling edge triggered interrupt & wake-up functions
- Timer0/Timer2/WKT (wake-up) Interrupts
- PWM0 Interrupt
- LVD Interrupt

10. Wake-up Timer (WKT)

- Clocked by built-in RC oscillator with 4 adjustable interrupt times
 - 16 ms/32 ms/64 ms/128 ms @VCC=3V
 - 12 ms/24 ms/48 ms/96 ms @VCC=5V

11. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 4 adjustable reset times
 - 128 ms/256 ms/1024 ms/2048 ms @VCC=3V
 - 96 ms/192 ms/768 ms/1536 ms @VCC=5V
- Watchdog timer can be disabled/enabled in STOP mode

12. One PWM

- PWM0:
 - 8 bits, duty-adjustable, period-adjustable controlled PWM
 - PWM0 clock source: Fast-clock or FIRC 16 MHz, with 1~64 pre-scales

13. Reset Sources

Power On Reset/Watchdog Reset/Low Voltage Reset/External Pin Reset

14. Low Voltage Reset (LVR) Options and Low Voltage Detection (LVD):

If LVR is disabled, power on V_{CC} must exceed the lowest LVR level (~2.0V @25°C)

- 3-Level Low Voltage Reset: 2.0V/2.3V/2.9V
- 1-Level Low Voltage Detection: 2.3V

15. Operating Voltage:

- Fsys=16 MHz, 2.4~5.5V, power on V_{CC} must exceed the selected LVR level
- Fsys=8 MHz, 1.8~5.5V, power on V_{CC} must exceed the selected LVR level
- Fsys=4 MHz, 1.6~5.5V, power on V_{CC} must exceed the selected LVR level
- Fsys=1 MHz, 1.5~5.5V, power on V_{CC} must exceed the selected LVR level
- Fsys=SIRC, 1.3~5.5V, power on V_{CC} must exceed the selected LVR level
- Fsys=32768 Hz, 1.3~5.5V, power on V_{CC} must exceed the selected LVR level

16. Operating Temperature Range: -40°C to +85°C

17. Table Read Instruction: 14-bit ROM data lookup table

18. Instruction set: 39 Instructions

19. Instruction Execution Time

• 2 system clocks (Fsys) per instruction except branch

20. Programming connectivity support 5-wire (ICP) or 8-wire program

21. Package Types:

• SOP-8/SOP-14/DIP-8/DIP-14

22. Supported EV board on ICE

• EV board: EV8217

• Comparison between EV8217, **TM57ME15B**, **TM57ME15CG** and TM57PE15A


TM57ME15 had phased out on Nov. 2017, user can use TM57ME15B to replace TM57ME15.

	EV8217	TM57ME15B	TM57ME15CG	TM57PE15A
EV board	-	EV8217	EV8217	EV2786B
Fast-clock	FXT/FXRC/FIRC	FXT/FXRC/FIRC	FXT/FXRC/FIRC	FXT/FIRC
Slow-clock	SXT/SIRC	SXT/SIRC	SXT/SIRC	SXT/XRC/SIRC
Dual system clock	FIRC/FXRC + SIRC FIRC + SXT FXT + SIRC	FIRC/FXRC + SIRC FIRC + SXT FXT + SIRC	FIRC/FXRC + SIRC FIRC + SXT FXT + SIRC	FIRC + SIRC FIRC + XRC FIRC + SXT FXT + SIRC
LVR/LVD levels	LVR 2.0V/2.3V/2.9V LVD 2.3V	LVR 2.0V/2.3V/2.9V LVD 2.3V	LVR 2.0V/2.3V/2.9V LVD 2.3V	LVR 1.7V/2.3V/3.1V LVD 2.5V/3.3V
WDT/WKT timer @5V	WDT 128~2048ms WKT 16~128ms	WDT 128~2048ms WKT 16~128ms	WDT 128~2048ms WKT 16~128ms	WDT 12~96ms WKT 12~96ms
Pin wakeup	PA7~0, PB3~0 Level change wakeup	PA7~0, PB3~0 Level change wakeup	PA7~0, PB3~0 Level change wakeup	PA6~1, PB3~1 Low level wakeup
PA7 pullup	XRSTE=1, always pullup XRSTE=0, F/W controlled	XRSTE=1, always pullup XRSTE=0, F/Wcontrolled	XRSTE=1, always pullup XRSTE=0, F/Wcontrolled	Always F/W controlled
I/O I _{OL} @5V, V _{OL} =0.5V	PA7 20 mA The others 40 mA	PA7 20 mA The others 40 mA	PA7 20 mA The others 40 mA	PA7~0, PB3~0 20 mA
I/O R _{UP} @5V	40 ΚΩ	40 ΚΩ	20 ΚΩ	60 ΚΩ
Packages	SOP14/DIP14 SOP8/DIP 8	SOP14/DIP14 SOP8/DIP 8	SOP14/DIP14 SOP8/DIP 8	SOP14/DIP14

DS-TM57ME15B_ME15CG_E 7 Rev 0.91, 2018/08/14

BLOCK DIAGRAM

PIN ASSIGNMENT

INT1/PB0 1 PA6 2 PA5 3 VCC 4 XIN/FXRC/PA4 5 XOUT/TCOUT/PWM0B/PA3 6 VPP/nRESET/INT2/PA7 7	TM57ME15B DIP-14 SOP-14	14 PB1 13 PB2 12 PB3 11 VSS 10 PA0/INT0 9 PA2/TM0CKI 8 PA1/PWM0A
VCC 1 XIN/FXRC/PA4 2 XOUT/TCOUT/PWM0B/PA3 3 VPP/nRESET/INT2/PA7 4	TM57ME15B DIP-8 SOP-8	8 VSS 7 PA0/INT0 6 PA2/TM0CKI 5 PA1/PWM0A

DS-TM57ME15B_ME15CG_E 9 Rev 0.91, 2018/08/14

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA6 PB0-PB3	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS " push-pull " output or " open-drain " output. Pull-up resistors are assignable by software.
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input, or " open-drain " output. Pull-up resistors are assignable by software.
nRESET	I	External active low reset with internal pull-high
VCC, VSS	P	Power Voltage input pin and ground
VPP	I	PROM programming high voltage input
INT0-INT2	I	External interrupt input
XIN, XOUT	-	Crystal / Resonator oscillator connection for system clock.
TM0CKI	I	Timer0 counter mode input
PWM0A, PWM0B	О	8-bit PWM0 output
TCOUT	О	Instruction cycle clock divided by 2/4/8/16. The instruction cycle clock frequency is at Fsys/2.

Programming pins:

Normal mode: VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP)

ICP mode: VCC/VSS/PA0/PA1/PA7 (VPP) -When using ICP (In-Circuit Program) mode, the PCB needs to remove all components of PA0, PA1, and PA7.

PIN SUMMARY

Pin Number					GF	PIO			A	lterna	te Function
				Inj	put	Out	tput	Reset			
14-SOP/DIP	8-SOP/DIP	Pin Name	Туре	Wake up	Ext. Interrupt	0.D	P.P	Function After Reset	PWM	High Sink	MISC
1	-	INT1/PB0	I/O	•	•	•	•	PB0		•	
2	-	PA6	I/O	•		•	•	PA6		•	
3	-	PA5	I/O	•		•	•	PA5		•	
4	1	VCC	P								
5	2	XIN/FXRC/PA4	I/O	•		•	•	PA4		•	XIN FXRC
6	3	XOUT/TCOUT/PWM0B/PA3	I/O	•		•	•	PA3	•	•	XOUT TCOUT
7	4	VPP/nRESET/INT2/PA7	I/O	•	•	•		PA7			nRESET
8	5	PWM0A/PA1	I/O	•		•	•	PA1	•	•	
9	6	TM0CKI/PA2	I/O	•		•	•	PA2		•	TM0CKI
10	7	INTO/PA0	I/O	•	•	•	•	PA0		•	
11	8	VSS	P								
12	-	PB3	I/O	•		•	•	PB3		•	
13	-	PB2	I/O	•		•	•	PB2		•	
14	-	PB1	I/O	•		•	•	PB1		•	

 $Symbol : P.P. \qquad = Push-Pull \ Output$

O.D. = Open Drain SYS = by SYSCFG bit HS = High Sink

FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Program ROM (PROM)

The MTP Program ROM of this device is 1K words, with an extra INFO area to store the SYSCFG. The ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG is readable no matter PROTECT is set or cleared, but PROTECT bit can be cleared only when PROTECT is not set or the contents of User Code area is erased. That is, unprotect the PROTECT bit needs to erase User Code first. If PORTECT bit is set, the contents of User Code are not readable by writer.

000	Reset Vector
001	Interrupt Vector
002	
	User Code
3FF	SYSCFG (INFO area)

1.1.1 Reset Vector (000H)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value

1.1.2 Interrupt Vector (001H)

When an interrupt occurs, the program counter (PC) points to the next instruction to be executed will be pushed onto the stack and jumps to address 001H.

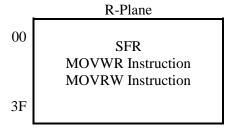
DS-TM57ME15B_ME15CG_E 12 Rev 0.91, 2018/08/14

1.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at MTP INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select clock source, LVR threshold voltage and chip operation mode by SYSCFG register. The 13th bit of SYSCFG is code protection selection bit. If this bit is 1, the data in PROM will be protected when user reads PROM.

Bit	13~0						
Default Value	0_0000_xxx0_xxxx						
Bit	Description						
	PROTEC	T : Code protection selection					
13	1	Enable					
	0	Disable					
	XRSTE:	External Pin (PA7) Reset Enable					
12	1	Enable					
	0	Disable (PA7 as input I/O pin)					
	LVR: Low	Voltage Reset Mode					
11~10	11	2.0V, Low Voltage Detection (LVD) when VDD below 2.3V LVD works only when LVD interrupt is enabled (LVDIE bit of INTIE register)					
11~10	10	Disable					
	01	2.3V					
	00	2.9V					
	WDTE: WDT Reset Enable						
0.0	11	Always Enable					
9~8	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode					
	0X	Disable					
7~5	Tenx Reserved						
	FRCSEL: FIRC/FXRC Select						
4	1	Select FXRC Oscillation. An external resistor connected between VCC and FXRC pins is required					
	0	Select FIRC Oscillation					
3~0	Tenx Reserved						

DS-TM57ME15B_ME15CG_E 13 Rev 0.91, 2018/08/14



1.3 RAM Addressing Mode

There are two Data Memory Planes in CPU, F-Plane and R-Plane.

The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

R-Plane can also be addressed directly or indirectly. Indirect Addressing is made by INDR register. The INDR register is not a physical register. Addressing INDR actually addresses the register whose address is contained in the RSR register (RSR is a pointer). The R-Plane is not bit-addressable and only support two MOVWR, MOVRW byte operating instructions.

·	F-Plane
00	SFR Bit Addressable
1F	
20	SRAM Bit Addressable
3F	
40	SRAM
4F	

1.4 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1Kx14 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 10 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[9:8] keeps unchanged. The STACK is 10-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W by setting the DPTR= { DPH, DPL } F-Plane registers.

♦ Example: To look up the PROM data located "TABLE" & "TABLE2".

ORG 000H ; Reset Vector

GOTO START

START:

MOVLW 00H

MOVWF INDEX ; Set lookup table's address.

LOOP:

MOVFW INDEX ; Move index value to W register.

CALL TABLE ; To lookup data, W=55H.

.

INCF INDEX, 1 ; Increment the index address for next address

GOTO LOOP ; Go to LOOP label.

. . . .

MOVLW (TABLE2 >> 8) & 0xff

MOVWF DPH ; DPH register (F0F.2~0)

MOVLW (TABLE2) & 0xff MOVWF DPL ; DPL register (F13.7~0)

TABRL ; W=86H TABRH ; W=19H

.

TABLE:

ADDWF PCL, 1; Add the W with PCL, the result back in PCL.

RETLW 55H ; W=55h when return RETLW 56H ; W=56H when return RETLW 58H ; W=58H when return

....

ORG 368H

TABLE2:

.DT 0x1986, 0x3719, 0x2983... ; 14-bit ROM data

1.4.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.4.2 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reset Value	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W		
Bit				Desci	ription					
7	GB1: Gene	eral Purpose	Bit 1							
6	GB0: Gene	eral Purpose	Bit 0							
5	GB3: Gene	eral Purpose	Bit 3							
4	0: after Po	TO: Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs								
3	0: after Po	PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction								
2	0: the resu	Z: Zero Flag0: the result of a logic operation is not zero1: the result of a logic operation is zero								
	DC: Decimal Carry Flag or Decimal/Borrow Flag									
		ADD in	struction		SUB instruction					
1	0: no carry				0: a borrow from the low nibble bits of the					
		rom the low	nibble bits o	f the result						
	occurs 1: no borrow									
	C: Carry Flag or/Borrow Flag									
0		ADD in	struction		SUB instruction					
	0: no carry	occurs from t	he MSR		0: a borrow occurs from the MSB 1: no borrow					
	1. a carry 0	ccurs monit	IIC IVIOD		1. 110 00110	VV				

DS-TM57ME15B_ME15CG_E 16 Rev 0.91, 2018/08/14

♦ Example: Write immediate data into STATUS register.

MOVLW 00H

MOVWF STATUS ; Clear STATUS register.

♦ Example: Bit addressing set and clear STATUS register.

BSF STATUS, 0; Set C=1.

BSF 03H, 5; Selection RAM Bank1

BCF STATUS, 0; Clear C=0.

BCF 03H, 5; Selection RAM Bank0

♦ Example: Determine the C flag by BTFSS instruction.

BTFSS STATUS, 0 ; Check the carry flag GOTO LABEL_1 ; If C=0, goto label_1 GOTO LABEL_2 ; If C=1, goto label_2

DS-TM57ME15B_ME15CG_E 17 Rev 0.91, 2018/08/14

2. Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Resets can be caused by Power on Reset (POR) , External Pin Reset (XRST) , Watchdog Timer Reset (WDTR) , or Low Voltage Reset (LVR) . The SYSCFG controls the Reset functionality. After Reset, the SFRs are initialized to their default value, the program counter (PC) is cleared, and the system starts running from the reset vector 000H place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset

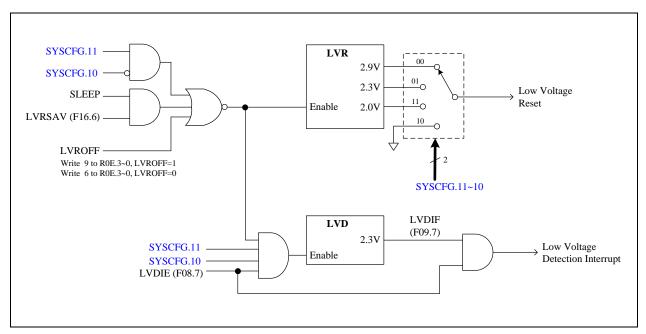
After Power-On-Reset, all system and peripheral control registers are then set to their default hardware reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value.

2.2 Low Voltage Reset

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by LVRE bits of SYSCFG register. As shown in the following LVR Selection Table, the corresponding value of LVRE bits for three LVR threshold levels 2.0V, 2.3V, and 2.9V are 11b, 01b, and 00b respectively.

The Low Voltage Detection (LVD) is designed and used for the pre-warning notice if supply voltage V_{CC} is lower than LVD threshold 2.3V. V_{CC} may continuously go downward to the LVR threshold level 2.0V if the supplied voltage source V_{CC} is a battery without charging. The system is noticed by hardware triggered LVD interrupt, and knows that the supply voltage V_{CC} is now below 2.3V. In this condition the LVDIF bit of INTIF register is set. Appropriate handles for the triggered LVD interrupt can be processed during executions of the corresponding ISR (Interrupt Service Routing). This feature is available only when the LVR level 2.0V is selected and LVD interrupt is enabled. Otherwise the LVD function is disabled.

LVR Selection Table:


LVRE bits	LVR level	Operating voltage
00	2.9V	$5.5V > V_{CC} > 3.0V$
01	2.3V	$5.5V > V_{CC} > 2.4V$
10	Disabled	5.5V >V _{CC}
11	2.0V	5.5V >V _{CC} >2.1V

User should take account of the minimum operating voltage for the range of the defined operating frequency. Please refer to Operating Voltage of DC characteristics for detail. If the operating voltage is

DS-TM57ME15B_ME15CG_E 18 Rev 0.91, 2018/08/14

lower than the selected LVR level and lower than the required minimum operating voltage, the system may enter dead-band and error occur.

LVR/LVD Funcional Block Diagram

Operation Mode	LVROFF	LVRSAV	LVDIE	LVRE	LVR	LVD	Function
	1	X	X	X	OFF	_	LVR disabled
	0	X	X	10	OFF	_	LVR disabled
FAST/SLOW	0	X	X	00	ON	_	LVR 2.9V
ras 1/slow	0	X	X	01	ON	-	LVR 2.3V
	0	X	0	11	ON	OFF	LVR 2.0V, LVD disabled
	0	X	1	11	ON	ON	LVR 2.0V, LVD 2.3V
	1	X	X	X	OFF	_	LVR disabled
	0	1	X	X	OFF	_	LVR disabled
	0	0	X	10	ON	_	LVR disabled
STOP/IDLE	0	0	X	00	ON	_	LVR 2.9V
	0	0	X	01	OFF	_	LVR 2.3V
	0	0	0	11	ON	OFF	LVR 2.0V, LVD disabled
	0	0	1	11	ON	ON	LVR 2.0V, LVD 2.3V

DS-TM57ME15B_ME15CG_E 19 Rev 0.91, 2018/08/14

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	LVDIE	T2IE	PWM0IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.7 **LVDIE:** Low voltage detection interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	LVDIF	T2IF	PWM0IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.7 **LVDIF:** Low voltage detection interrupt event pending flag

This bit is set by H/W when VCC below LVD threshold voltage, write 0 to this bit will clear this flag

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	LVRSAV	LDOSAV	MODE3V	_	_	_	_
R/W	_	R/W	R/W	R/W	_	_	_	_
Reset	-	1	1	0	_	_	-	_

F16.6 LVRSAV: LVR auto turn off in STOP/IDLE mode

0: The operation mode of LVR is defined by LVRE (SYSCFG.11~10) bits. It can also be forcibly turned off by writing the LVROFF register.

1: LVR is turned off automatically in STOP/IDLE mode

R0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
LVROFF	_	_	_	_	LVROFF				
R/W	_	_	_	_	R/W				
Reset	-	_	_	-	0				

R0E.3~0 LVROFF: Software controlled LVR power down

Write 09h to this register to forcibly turn off the LVR and LVD regardless the setting of LVRE (SYSCFG.11~10) bits and LVR is under the S/W power down state. The value of 01H will be returned if read LVROFF register.

Write 06h to this register will release the LVR from S/W power down state. In this case, LVR function is controlled by LVRE (SYSCFG.11~10) bits. The value of 00H will be returned if read LVROFF register.

DS-TM57ME15B_ME15CG_E 20 Rev 0.91, 2018/08/14

2.3 External Pin Reset

The External Pin Reset can be disabled or enabled by the SYSCFG register. It needs to keep at least 2 SIRC clock cycle long to be seen by the chip. XRST also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

2.4 Watchdog Timer Reset

WDT overflow Reset can be disabled or enabled by the SYSCFG register. It runs in Fast/Slow mode and runs or stops in IDLE/STOP mode. WDT overflow time period can be defined by WDTPSC. WDT is cleared by device reset or CLRWDT bit. WDT overflow Reset also set all the control registers to their default reset value. The TO bit of STATUS is set when WDT overflow Reset occurred. TO bit is cleared after Power On Reset, LVR Reset, and execution of CLRWDT/SLEEP instruction.

♦ Example: Handling WDT timeout condition

ORG 000H

GOTO START ; Jump to user program address.

ORG 010H

START:

BTFSS STATUS, TO ; If TO bit is set, then execute WDT timeout process

GOTO NEXT

WDT_Timeout_Process:

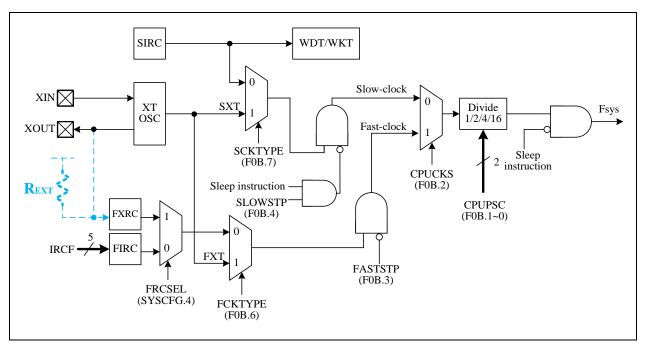
• • •

CLRWDT ; Clearing WDT is recommended

NEXT:

. . .

3. Clock Circuitry and Operation Mode


3.1 System Clock

The device is designed with dual-clock system. There are five kinds of clock source, i.e. SIRC (Slow Internal RC), SXT (Slow Crystal, 32 KHz), FXT (Fast Crystal, 1~16 MHz), FIRC/FXRC (Fast Internal RC/Fast External R) oscillators. Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the figure below.

The device provide two optional Fast RC oscillation modes; FIRC mode and FXRC mode, can be configured by writing FRCSEL bit of SYSCFG register. An external resistor \mathbf{R}_{EXT} connected between FXRC (XOUT/PA4) and VCC pins is required for FXRC mode oscillation. The resistance of \mathbf{R}_{EXT} determines its oscillating frequency. Higher resistance of \mathbf{R}_{EXT} makes FXRC oscillating frequency slower.

After reset, the device is running at Slow mode with 128 KHz SIRC. S/W should select the proper clock rate for chip operation safety. The higher $V_{\rm CC}$ allows the chip to run at higher System clock frequencies. To make sure that the device can run at a clock rate as high as 16 MHz smoothly, supply voltage $V_{\rm CC}$ higher than 2.4V is required.

The device also supports external clock mode. The first way, an external clock source can be fed into XIN (PA3) as clock input. The second way, a crystal or ceramic resonator connected between XIN (PA3) and XOUT (PA4) pins, corporate with on-chip XTOSC circuit, forms a precise and stable oscillator. In Fast mode, XTOSC oscillator is able to work in speed range of 1~16MHz. In Slow mode, XTOSC oscillator is optimized for 32.768 KHz resonators. Note that switching Fast-clock type from FIRC/FXRC mode to FXT mode by setting F0B.6 (FCKTYPE) is inhibited if FXRC has been configured as Fast RC oscillation mode. Otherwise FXRC circuits may not work properly.

Clock Scheme Block Diagram

DS-TM57ME15B_ME15CG_E 22 Rev 0.91, 2018/08/14

The CLKCTL (F0B) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow-clock type in Fast mode and change the Fast-clock type in Slow mode. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

The frequency of FIRC (Fast Internal RC) can be adjusted by IRCF (F1F). IRCF=00h/1Fh makes the frequency of FIRC be at the lowest/highest rate respectively. With this function, user can adjust the frequency of FIRC by firmware after power on. To make the frequency of FIRC close to 16 MHz, the initial value of IRCF varies chip by chip due to process variations. Note that IRCF register affects the FIRC oscillation mode only.

SLOW Mode:

The device enters its default mode, the SLOW mode, after power-on or reset. In this mode, the Fast-clock can be stopped (by FASTSTP=1, for power saving) or keep running (by FASTSTP=0), and Slow-clock is enabled. The default Slow-clock is SIRC.

FAST Mode:

The program is executed using Fast-clock as CPU clock (Fsys). To switch from SLOW mode to FAST mode successfully, the FASTSTP bit must be cleared in advance to start Fast-clock oscillation, and then set CPUCKS bit to 1. In this mode, The Timer0 block is also driven by Fast-clock, The PWM0 block can driven by FIRC/FXRC or Fsys. Timer2 (T2) can also be driven by Fast-clock by setting T2CKS=1 and CPUCKS=1.

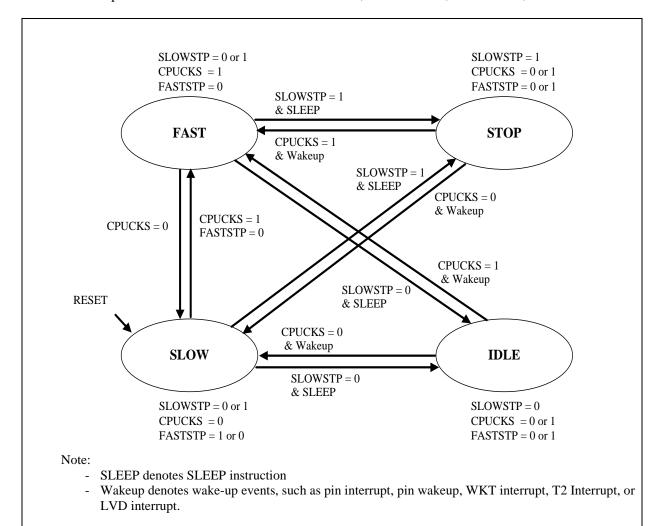
IDLE Mode:

If Slow-clock is enabled (SLOWSTP=0) and T2CKS=0 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock source keeps T2 block running. CPU stop fetching code and all blocks are stop except T2 related circuits.

Another way to keep clock oscillation in IDLE mode is setting WKTIE=1 before executing the SLEEP instruction. In such condition, the WKT keeps working and wake up CPU periodically.

T2 and WKT/WDT are independent and have their own control registers. It is possible to keep both T2 and WKT working and wake-up in the IDLE mode.

STOP Mode:


If Slow-clock and WKT/WDT are disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode. STOP mode is similar to IDLE mode. All oscillators are powered down and no clock sources are generated.

DS-TM57ME15B_ME15CG_E 23 Rev 0.91, 2018/08/14

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0	T2	Wakeup event
FAST	FIRC/FXRC/ FXT	Fast-clock	Run	Set by SLOWSTP	Run	Run	X
SLOW	SIRC/SXT	Slow-clock	Set by FASTSTP	Run	Run	Run	X
IDLE	SIRC/SXT	Stop	Stop	Run	Stop	Run	WKT/T2/ IO
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

DS-TM57ME15B_ME15CG_E 24 Rev 0.91, 2018/08/14

• Switch from FAST mode to SLOW mode

The following steps are suggested to be executed by order when system clock is switched from FAST mode to SLOW mode:

- (1) Enable Slow-clock (SLOWSTP=0)
- (2) Switch to Slow-clock (CPUCKS=0)
- (3) Stop Fast-clock optionally (FASTSTP=1)
- Example: Switch from FAST mode to SLOW mode and stop Fast-clock generation.

BCF SLOWSTP ; Enable Slow-clock
BCF CPUCKS ; Switch to Slow-clock
BSF FASTSTP ; Stop Fast-clock generation

• Switch from SLOW mode to FAST mode

SLOW mode can be enabled by CPUCKS=0 in F0B register of F-plane. The following steps are suggested to be executed by order when system clock is switched from SLOW mode to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)
- (3) Stop Slow-clock optionally (SLOWSTP=1)
- Example: Switch from SLOW mode to FAST mode and stop Slow-clock generation.

BCF FASTSTP ; Enable Fast-clock BSF CPUCKS ; Fsys=Fast-clock

BSF SLOWTP ; Stop Slow-clock generation

IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT(WKTIE=1)
- (2) Switch T2 clock source to Slow-clock (T2CKS=0) and T2 wakeup function is enabled
- (3) Execute SLEEP instruction

CPU can be woken up from IDLE mode by external pin interrupt, WKT interrupt, T2 interrupt, LVD interrupt, and pin wakeup events.

♦ Example: Switch from FAST/SLOW mode to IDLE mode.

BCF SLOWSTP ; Enable Slow-clock

BCF F16 ; T2 clocked by Slow-clock

SLEEP ; Enter IDLE mode.

• STOP Mode Setting

The STOP mode can be configured by following setting in order:

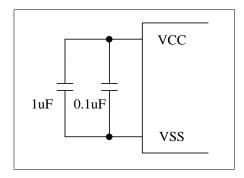
- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT/WDT (WKTIE=0, WDTE=10 or 0x)
- (3) Execute SLEEP instruction

CPU can be woken up from STOP mode by external pin interrupt, LVD interrupt, and pin wakeup events

♦ Example: Switch FAST/SLOW mode to STOP mode.

BSF SLOWSTP ; Stop Slow-clock generation BCF WKTIE ; Disable WKT interrupt SLEEP ; Enter STOP mode

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWRDN		PWRDN									
R/W		W									
Reset	-	-	_	-	_	_	_	_			

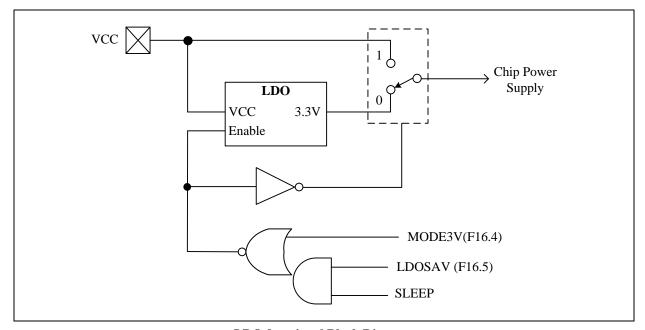

R03.7~0 **PWRDN:** Write this register to enter Power Down Mode

DS-TM57ME15B_ME15CG_E 26 Rev 0.91, 2018/08/14

3.3 Improve the Stability of FIRC/FXRC

CPU runs at either Fast-clock rate or Slow-clock rate controlled by firmware. In the FIRC mode, the on-chip oscillator generates 16 MHz system clock. In the FXRC mode, oscillating speed depends on the resistance of an external resistor connected between FXRC (XOUT/PA4) and VCC pins. In Slow Internal RC mode (SIRC), it provides a slower oscillation speed for power saving purpose. Since power noise degrades the performance of Internal Clock Oscillator, placing 1uF and 0.1uF decoupling capacitors between VCC and VSS pins as close as possible to improve the stability of FIRC/FXRC and the overall system.

Internal RC Mode


DS-TM57ME15B_ME15CG_E 27 Rev 0.91, 2018/08/14

4. Low Dropout Regulator

The device has a built-in internal low dropout regulator (LDO). When MODE3V=0, the voltage regulator outputs 3.3V power to the internal chip circuit. In the case of STOP/IDLE mode, user can also turn off LDO by setting LDOSAV=1 before executing SLEEP instruction to reduce current consumption. LDO resume its function when the device is woken up from STOP/IDLE mode.

When MODE3V=1, the LDO is turned off, and the internal circuit is powered directly from the VCC pin. Setting MODE3V=1 is recommended for an operating condition of $V_{\rm CC}$ <3.6V. If an application system needn't use the built-in LDO, turn off LDO to reduce chip current consumption by setting MODE3V=1 is recommended.

LDO functional Block Diagram

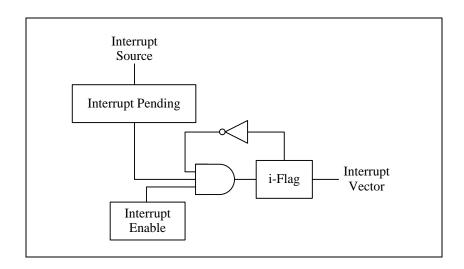
Operation Mode	MODE3V	LDOSAV	LDO On/Off
EAST/SLOW	1	X	OFF
FAST/SLOW	0	X	ON
	1	X	OFF
STOP/IDLE	0	1	OFF
	0	0	ON

DS-TM57ME15B_ME15CG_E 28 Rev 0.91, 2018/08/14

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	-	LVRSAV	LDOSAV	MODE3V	-	-	-	-
R/W	-	R/W	R/W	R/W	_	-	-	-
Reset	-	1	1	0	_	_	_	_

- F16.4 **MODE3V:** VCC Power Mode
 - 0: 5V mode (VCC > 3.6V), on-chip LDO is enabled. Chip is powered by the output of LDO.
 - 1: 3V mode (VCC <3.6V), on-chip LDO is disabled. Chip is powered by the DC voltage source fed through V_{CC} pin directly.
- F16.5 **LDOSAV:** Built-in LDO auto turn off in STOP/IDLE mode
 - 0: The operation mode of LDO is controlled by MODE3V bit.
 - 1: LDO is turned off automatically in STOP/IDLE mode.

DS-TM57ME15B_ME15CG_E 29 Rev 0.91, 2018/08/14



5. Interrupt

This device has 1 level, 1 vector and 8 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its interrupt enable control bit is 0 or 1. Because device has only one vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

♦ Example: Setup INT0 (PA0) interrupt request and rising edge trigger.

ORG 000H ; Reset vector.

GOTO START ; Goto user program address.

ORG 001H ; Interrupt vector.

GOTO INTO_ISR ; If INTO (PA0) input occurred rising edge.

ORG 002H

START:

MOVLW xxxxxx00B MOVWR PAMODL ; Enable INT0 (PA0) input pull up resistor.

MOVLW xxxxxxx1B

MOVWF PAD ; Release INT0 (PA0), it becomes Schmitt-trigger

; input mode with pull-up resistor

MOVLW $x \underline{1}xxxxxxB$

MOVWR R0B ; Set INT0 interrupt trigger as rising edge.

MOVLW 11111111<u>0</u>B

MOVWF INTIF ; Clear INT0 interrupt request flag

MOVLW 0000000<u>1</u>B

MOVWR INTIE ; Enable INT0 interrupt.

MAIN:

GOTO MAIN

INTO_ISR:

MOVWF GPR0 ; Store W data to GPR0 MOVFW STATUS ; Get STATUS data

MOVWF GPR1 ; Store STATUS data to GPR1

BTFSS INTOIF ; Check INTOIF bit.

GOTO EXIT_INT ; INT0IF=0, exit interrupt vector.

; INT1 interrupt service routine.

MOVLW 11111111<u>0</u>B

MOVWF INTIF ; Clear INT0 interrupt request flag

EXIT_INT:

MOVFW GPR1 ; Gat GPR1 data

MOVWF STATUS ; Restore STATUS data

MOVFW GPR0 ; Restore W data RETI ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	LVDIE	T2IE	PWM0IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.7 **LVDIE:** Low voltage detection interrupt enable

0: disable 1: enable

F08.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

F08.5 **PWM0IE:** PWM0 interrupt enable

0: disable 1: enable

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F08.3 **WKTIE:** Wakeup timer interrupt enable

0: disable 1: enable

F08.2 **INT2IE:** INT2 (PA7) interrupt enable

0: disable 1: enable

F08.1 **INT1IE:** INT1 (PB0) interrupt enable

0: disable

1: enable

F08.0 **INT0IE:** INT0 (PA0) interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	LVDIF	T2IF	PWM0IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.7 **LVDIF:** Low voltage detection interrupt event pending flag

This bit is set by H/W when VCC below LVD threshold voltage, write 0 to this bit will clear this flag

F09.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W for each T2 interrupt time period, write 0 to this bit will clear this flag

F09.5 **PWM0IF:** PWM0 interrupt event pending flag

This bit is set by H/W for each PWM0 time period, write 0 to this bit will clear this flag

F09.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F09.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

F09.1 **INT1IF:** INT1 (PB0) pin falling interrupt pending flag

This bit is set by H/W at INT1 pin's falling edge, write 0 to this bit will clear this flag

F09.0 **INT0IF:** INT0 (PA0) pin falling/rising interrupt pending flag

This bit is set by H/W at INT0 pin's falling/rising edge, write 0 to this bit will clear this flag

6. I/O Port

6.1 PA0-6, PB0-3

These pins can be used as Schmitt-trigger input, CMOS push-pull output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

The operations of four pin modes are listed as below.

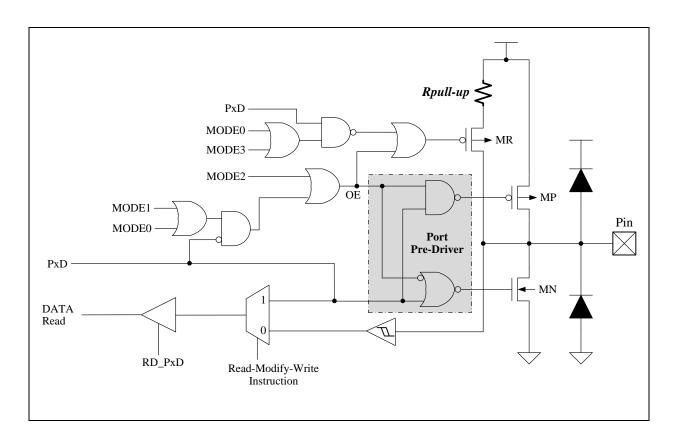
Pin Mode	PA0~PA6, PB0~PB3 pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Open Drain	0	Drive Low	N	N
Mode 0	Input with Pull-up	1	Pull-High	Y	Y
Mode 1	Open Drain	0	Drive Low	N	N
Mode 1	Input without Pull-up	1	Hi-Z	N	Y
Mode 2	CMOS Duch Dull Output	0	Drive Low	N	N
Mode 2	CMOS Push-Pull Output	1	Drive High	N	N
Mode 2	Open Drain	0	Drive Low	N	N
Mode 3	Wakeup	1	Pull-High	Y	Y

I/O Pin Function Table

Beside general purposed I/O port function, each pin may have one or more alternative functions, such as PWM outputs and/or pre-scaled instruction cycle clock output (TCOUT).

Pin Name	Interrupts	Clock Outputs	Others	Mode3
PA0	INT0			Wakeup
PA1			PWM0A	Wakeup
PA2				Wakeup
PA3		TCOUT	PWM0B	Wakeup
PA4				Wakeup
PA5				Wakeup
PA6				Wakeup
PA7	INT2			Wakeup
PB0	INT1			Wakeup
PB1				Wakeup
PB2				Wakeup
PB3				Wakeup

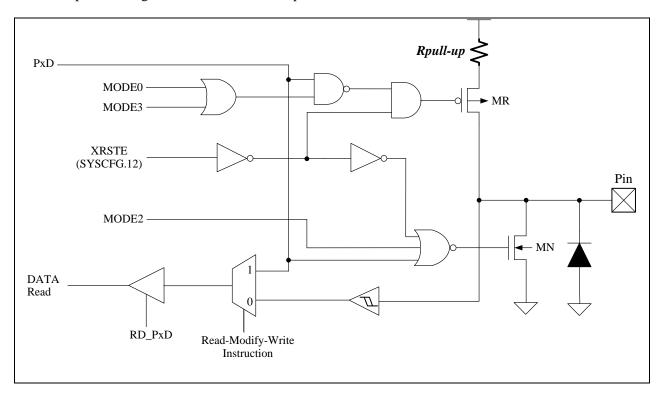
PortA/B multi-function Table


DS-TM57ME15B_ME15CG_E 33 Rev 0.91, 2018/08/14

The related SFR settings for PA0~PA6, PB0~PB3 pin alternative function are listed as below.

Alternative Function	Pin Mode	PxD SFR data	Pin Function	Related SFR setting
INT0 ~ INT2	Mode 0	1	Input with pull-up	F08 .INTxIE
	Mode 1	1	Input without pull-up	F08. INTxIE
PWM0A, PWM0B	X	X	PWM0 output (CMOS push-pull)	R0C. PWM0AOE R0C. PWM0BOE
TCOUT	X	X	Pre-scaled instruction cycle clock output (CMOS push-pull)	R0C. TCOE
XIN, XOUT x x		Crystal oscillation Note that these pins assigned to oscillators by firmware or SYSCFG bits have higher functional priority than other shared pin functions.	F0B. SCKTYP F0B. FCKTYP	

Mode Setting for Port Alternative Function



DS-TM57ME15B_ME15CG_E 34 Rev 0.91, 2018/08/14

6.2 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is setting by the PAD[7] (F05.7) bit. When the PAD [7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor is controlled by PA7MOD bits (R05.7~6) bits and the default value is disabled (i.e. PA7MOD=01) after system reset. If XRSTE (SYSCFG.12) is set, PA7 pin is configured to an external reset pin function.

Function list of PA7 is shown as below.

XRSTE	PAD[7]	Pin Mode	Pin State	Pull-up	Pin Function
1	X	Х	Pull-High	Yes	External reset pin with pull-up
0	X	Mode2	Hi-Z	No	Input without pull-up
0	0	Mode 0	Low	No	Output low without pull-up
0	1	Mode 0	Pull-High	Yes	Input with pull-high
0	0	Mode 1	Low	No	Output low without pull-up
0	1	Mode 1	Hi-Z	No	Input without pull-up
0	0	Mode 3	Low	No	Output low without pull-up
0	1	Mode 3	Pull-High	Yes	Wakeup with pull-up

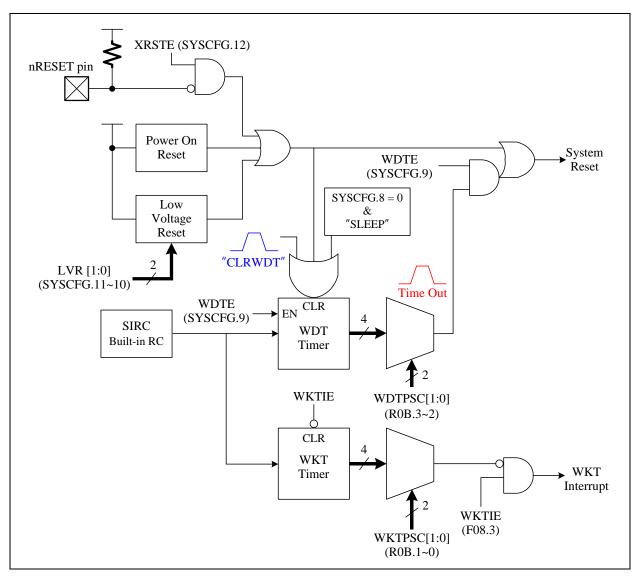
♦ Example: Read the state of PA7 pin.

Condition: XRSTE (SYSCFG.12) is set to "0".

BTFSS PAD,7

GOTO LOOP_A ; If PA7=0. GOTO LOOP_B ; If PA7=1.

DS-TM57ME15B_ME15CG_E 35 Rev 0.91, 2018/08/14


DS-TM57ME15B_ME15CG_E 36 Rev 0.91, 2018/08/14

7. Watchdog Timer (WDT) / Wakeup Timer (WKT)

The WDT and WKT share the same built-in internal Slow RC Oscillator (SIRC). Both of them have their own counters. The overflow period of WDT and WKT can be determined by their prescaler WDTPSC [1:0] and WKTPSC [1:0], respectively. The WDT timer is cleared by the CLRWDT instruction. If WDT is enabled (WDTE=SYSCFG.9~8=1x), the WDT generates the chip reset signal when WDT timed out. WDT stop counting after SLEEP instruction if WDTE was set to '10'. WDT timer keeps running when WDTE was set to '11', even if the device is in STOP mode.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF) . The WKT timer is cleared and stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless CPU operating mode.

WDT/WKT Block Diagram

DS-TM57ME15B_ME15CG_E 37 Rev 0.91, 2018/08/14

WDT can be cleared by CLRWDT instruction. It can also be cleared by writing WDTCLR (R04) register with any value.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN:

; Execute program.

CLRWDT ; Execute CLRWDT instruction.

. . .

GOTO MAIN

♦ Example: Clear watchdog timer by write WDTCLR register.

MAIN:

.. ; Execute program.

MOVWF WDTCLR ; Write any value into WDTCLR register.

. . .

GOTO MAIN

♦ Example: Setup WDT time and disable after executing SLEEP instruction.

MOVLW 0000<u>01</u>11B

MOVWR R0B ; Select WDT Time out=256 ms @5V

. . .

SLEEP

♦ Example: Set WKT period and interrupt function.

MOVLW 000001**10**B

MOVWR R0B ; Select WKT period=64 ms @5V.

MOVLW $1111\underline{0}111B$; Clear WKT interrupt request flag by using byte operation

; Don't use bit operation "BCF WKTIF" clear interrupt flag

MOVWF INTIF ; F-Plane 09H

MOVLW 00001000B; Enable WKT interrupt function

MOVWF F08

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	LVDIE	T2IE	PWM0IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	LVDIF	T2IF	PWM0IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

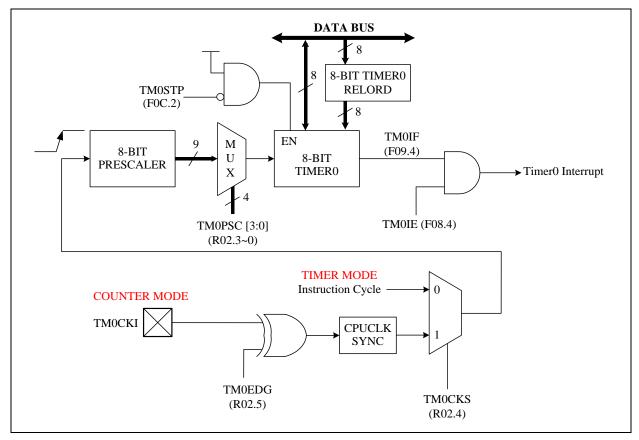
F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	HWAUTO	INT0EDG	T2PSC		WDTPSC		WKTPSC	
R/W	R/W	R/W	R/	R/W		R/W	R/W	R/W
Reset	0	0	00		1	1	1	1

R0B.3~2 **WDTPSC:** WDT period (@VCC=3V) 00: 128 ms 01: 256 ms 10: 1024 ms 11: 2048 ms

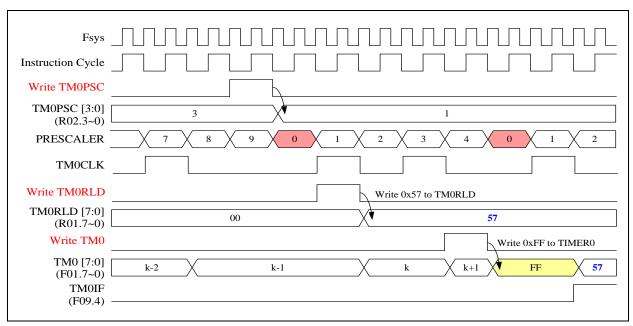
R0B.1~0 **WKTPSC:** WKT period (@VCC=3V)


00: 16 ms 01: 32 ms 10: 64 ms 11: 128 ms

39 Rev 0.91, 2018/08/14 DS-TM57ME15B_ME15CG_E

8. Timer0

The Timer0 is an 8-bit wide register of F-Plane 01h (TM0). It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register in R-Plane. The Timer0 always generates TM0IF when its count rolls over. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.


Timer0 Block Diagram

DS-TM57ME15B_ME15CG_E 40 Rev 0.91, 2018/08/14

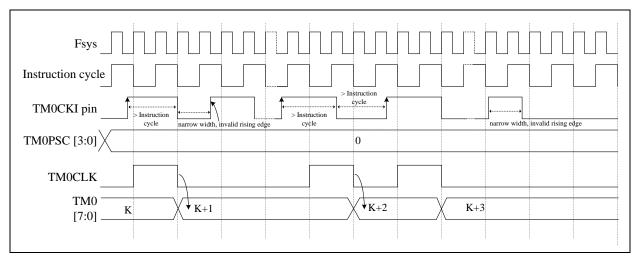
The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time=Instruction cycle time/TM0PSC/ (256-TM0)


♦ Example: Setup TM0 work in Timer mode

; Setup T	M0 clock source	e and divider	
	MOVLW	0000 <u>0101</u> B	; R02.4 = 0, Setup TM0 clock=Instruction cycle
	MOVWR	R02	; R02.3~0=5 (TM0PSC)
			; TM0 clock prescaler=Instruction cycle divided by 32
; Set TM	0 timer.		
	BSF	TM0STP	; Disable TM0 counting (Default "0").
	MOVLW	156	
	MOVWF	TM0	; Write 156 into TM0 register of F-Plane. (F01)
	MOVLW	124	
	MOVWR	TM0RLD	; Write 156 into TM0RLD register of R-Plane. (R01)
. Englala '	TMO times and	into amount from ation	
; Enable		interrupt function.	
	MOVLW	111 <u>0</u> 1111B	; Clear TM0 request interrupt flag by byte operation
	MOVWF	INTIF	; F-Plane 09H
	MOVLW	000 <u>1</u> 0000B	; Enable TM0 interrupt function
	MOVWR	INTIE	; F-Plane 08H
	BCF	TM0STP	; Enable TM0 counting (Default "0").

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0), TM0CKS=1

♦ Example: Setup TM0 work in Counter mode and clock source from TM0CKI pin (PA2)

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 00**110000**B

MOVWR R02; R02.5=1, Select TM0 prescaler counting edge=falling

edge.

; R02.4=1, Setup TM0 clock=TM0CKI pin (PA2)

; R02.3~0=0 (TM0PSC)

; TM0 clock prescaler=Instruction cycle divided by 1

; Set TM0 timer and stop TM0 counting.

BSF TM0STP ; Disable TM0 counting (Default "0").

MOVLW 00H

MOVWF TM0 ; Write 0 into TM0 register of F-Plane 01H.

; Start TM0 count and read TM0 counter.

BCF TM0STP ; Enable TM0 counting.

NOP

NOP

NOP

BSF TM0STP ; Disable TM0 counting (Default "0")

MOVFW TM0

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0		TM0							
R/W									
Reset	0	0	0	0	0	0	0	0	

F01 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.4 **TM0IF:** Timer0 interrupt event pending flag
This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

0

F₀C Bit 6 Bit 5 Bit 4 Bit 1 Bit 7 Bit 3 Bit 2 Bit 0 MF0C T2CKS T2CLR **VCCFLT CLKFLT TM0STP** PWM0CLR PWM0PSC R/W R/W R/W R/W R/W R/W R/W R/W R/W

0

0

0

0

0

F0C.2 **TM0STP:** Timer0 counter stop 0: Release 1: Stop counting

0

0

Reset

R01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0RLD		TMORLD							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

R01 TM0RLD: Timer0 Reload Data

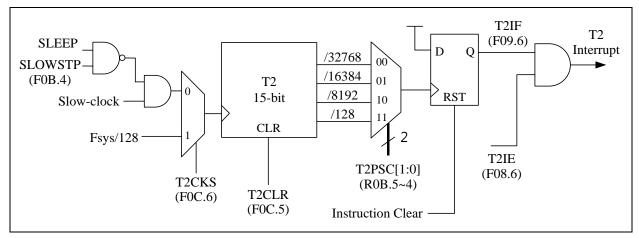
R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	-	-	TM0EDG	TM0CKS		TM0	PSC	
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

R02.5 **TM0EDG:** Timer0 prescaler counting edge for TM0CKI pin

0: rising edge 1: falling edge

R02.4 **TM0CKS:** Timer0 prescaler clock source

0: Instruction cycle 1: TM0CKI pin (PA2 pin)


R02.3~0 TM0PSC: Timer0 prescaler. Timer0 prescaler clock source divided by

0000: /1 0001: /2 0010: /4 0011: /8 0100: /16

9. Timer2

Timer2 (T2) is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. The clock source is used to generate time base interrupt and T2 counter block clock. It is selected by T2CKS (F0C.6). The T2's 15-bit content cannot be read by instructions. It generates interrupt flag T2IF (F09.6) with the clock divided by 32768, 16384, 8192, or 128 depends on the T2PSC[1:0] (R0B.5~4) bits. The following figure shows the block diagram of T2.

T2 Block Diagram

⋄ Example: CPU is running at FAST mode, Fsys=Fast-clock=FIRC 1 MHz

T2 clock source is Fsys/128

; Setup FIRC frequency

MOVLW 000000**00**B

MOVWF CLKCTL ; FIRC is 1 MHz

; Setup T2 clock source and divider

BSF T2CKS ; T2CKS=1, T2 clock source is Fsys/128

MOVLW 00**01**11111B

MOVWR R0B ; T2PSC=01b, divided by 16384 BSF T2CLR ; T2CLR=1, clear T2 counter

; Enable T2 interrupt function

MOVLW 10111111B

MOVWF INTIF ; Clear T2 request interrupt flag BSF T2IE ; Enable T2 interrupt function

T2 clock source is Fsys/128=1 MHz/128=7812.5 Hz, T2 divided by 16384

T2 interrupt frequency=7813 Hz/16384=0.477 Hz

T2 interrupt period=1/0.477 Hz=2.09s

♦ Example: CPU is running at SLOW mode, Fsys=Fast-clock=SIRC

T2 clock source is SIRC

; Setup T2 clock source and divider

BCF T2CKS ; T2CKS=0, T2 clock source is Slow-clock

MOVLW 00**00**1111B

MOVWR R0B ; T2PSC=00b, divided by 32768 BSF T2CLR ; T2CLR=1, clear T2 counter

; Enable T2 interrupt function

MOVLW 10111111B

MOVWF INTIF ; Clear T2 request interrupt flag BSF T2IE ; Enable T2 interrupt function

T2 clock source is Slow-clock=128 KHz @3V, T2 divided by 32768

T2 interrupt frequency=128K Hz/32768=3.90625 Hz

T2 interrupt period=1/3.90625 Hz=256ms

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	LVDIE	T2IE	PWM0IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.6 **T2IE:** Timer1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	LVDIF	T2IF	PWM0IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	VCCFLT	T2CKS	T2CLR	CLKFLT	TM0STP	PWM0CLR	PWM	0PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

F0C.6 **T2CKS:** T2 clock source selection

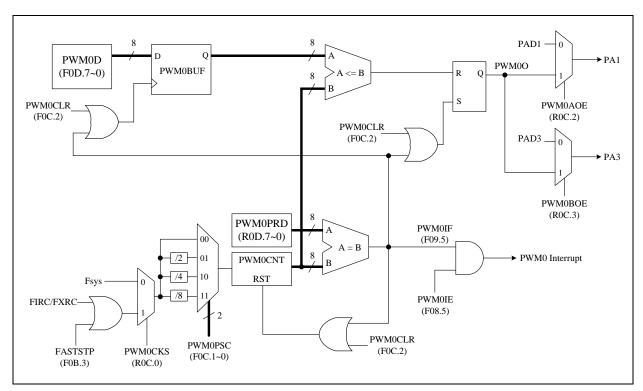
0: disable 1: enable

F0C.5 **T2CLR:** T2 counter clear

Write 1 to clear T2. This bit is cleared H/W automatically.

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	HWAUTO	INT0EDGE	T2F	PSC	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W		R/W		R/W	
Reset	0	0	0	0	11		11	

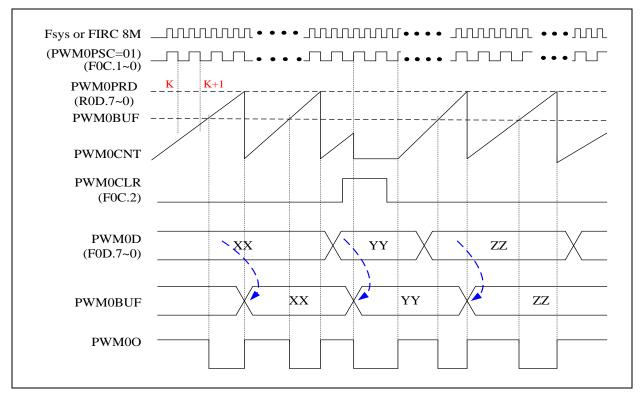
R2F.3~0 **T2PSC:** T2 prescaler clock source


00: divided by 32768 01: divided by 16384 10: divided by 8292 11: divided by 128

10. PWM0: 8 bits PWM

The chip has a built-in 8-bit PWM generator. The source clock comes from Fsys or FIRC/FXRC divided by 1, 2, 4, and 8. If PWM source clock is select to FIRC/FXRC, FASTSTP (F0B.3) must be cleared. Otherwise FIRC/FXRC will not oscillate at slow mode. The PWM0 duty cycle can be changed with writing to PWM0D (F0D.7~0). Writing to PWM0D will not change the current PWM0 duty until the current PWM0 period completes. When finish current PWM0 period, the new value of PWM0D will be updated to the PWM0BUF.

The PWM0 will be output to PA1 if PWM0AOE (R0C.2) is set or PA0 if PWM0BOE (R0C.3) is set. With I/O mode setting, the PWM0 output can be set as CMOS push-pull or open-drain output mode. The PWM0 period complete will generate an interrupt when PWM0IE (F08.5) is set. Setting the PWM0CLR (F0C.2) bit will clear the PWM0 counter and load the PWM0D to PWM0BUF, PWM0CLR bit must be cleared so that the PWM0 counter can count. Figure shows the block diagram of PWM0.



PWM0 Block Diagram

Figure shows the PWM0 waveforms. When PWM0CLR (F0C.2) bit is set or PWM0BUF equals to PWM0D, the PWM0 output is cleared to '0' no matter what its current status is. Once the PWM0CLR bit is cleared and PWM0BUF is not zero, the PWM0 output is set to '1' to begin a new PWM cycle. PWM0 output will be '0' when PWM0CNT greater than or equals to PWM0BUF. PWM0CNT keeps counting up when equals to PWM0PRD (R0D.7~0), the PWM0 output is set to '1' again.

DS-TM57ME15B_ME15CG_E 46 Rev 0.91, 2018/08/14

PWM0 Timing Diagram

♦ Example: CPU is running at FAST mode, Fsys=Fast-clock=FIRC 4 MHz

; Setup PWM0 prescaler, period, and duty

MOVLW 00000**101**B ; PWM0CLR=1, PWM0 clear and hold MOVWF F₀C ; PWM0PSC=01b, divided by 2 (Fsys/2)

MOVLW 0000**11**0**1**B ; PWM clock source is Fsys

; PWM0AOE=1, PWM0 output to PA1 pin **MOVWR** R₀C ; PWM0BOE=1, PWM0 output to PA3 pin

MOVLW FFH

MOVWR PWM0PRD ; Set PWM0 period=FFH + 1=256

MOVLW H08

; Set PWM0 duty=80H=128 **MOVWF** PWM0D

BCF PWM0CLR ; PWM0CLR=0, PWM0 is running

; Enable PWM0 interrupt function

MOVLW 11**0**111111B

MOVWF INTIF ; Clear PWM0 request interrupt flag **BSF** PWM0IE ; Enable PWM0 interrupt function

PWM0 output duty=PWM0D/ (PWM0PRD + 1) = 128/(255 + 1) = 1/2

Fsys=4 MHz, PWM0 divided by 2

PWM0 output/interrupt frequency=4 MHz/2/ (255 + 1) =7812.5 Hz

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	LVDIE	T2IE	PWM0IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.1 **PWM0IE**: PWM0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	LVDIF	T2IF	PWM0IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.1 **PWM0IF**: PWM0 interrupt event pending flag

This bit is set by H/W while PWM0 overflows, write 0 to this bit will clear this flag

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SCKTYPE	FCKTYPE	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	R/W	_	R/W	R/W	R/W	R/	W
Reset	0	0	-	0	0	0	1	1

F0B.3 **FASTSTP**: Fast-clock & FIRC/FXRC Enable / Disable

0: Fast-clock & FIRC/FXRC enable 1: Fast-clock & FIRC/FXRC disable

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	VCCFLT	T2CKS	T2CLR	CLKFLT	TM0STP	PWM0CLR	PWM	0PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	1	0	0

F0C.2 **PWM0CLR**: PWM0 clear and hold

0: PWM0 is running

1: PWM0 is cleared and hold

F0C.1~0 **PWM0PSC**: PWM0 clock source prescaler

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0D		PWM0D									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

F0D.7~0 **PWM0D**: PWM0 duty

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0PRD		PWM0PRD									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R0D.7~0 **PWM0PRD**: PWM0 period data

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL	TCOE	_	TCO	PSC	PWM0BOE	PWM0AOE	_	PWM0CKS
R/W	R/W	_	R/	W	R/W	R/W	_	R/W
Reset	0	_	0	0	0	0	_	0

R0C.3 **PWM0BOE:** PWM0 non-inverted output to PA3 pin

0: disable

1: enable

R0C.2 **PWM0AOE:** PWM0 non-inverted output to PA1 pin

0: disable 1: enable

R0C.0 **PWM0CKS:** PWM Clock source select

0: Fsys

1: FIRC/FXRC

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF	L			Function related to: Indirect F-Plane SFR/RAM Access
INDF	00.7~0	R/W	1	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(F01) TM0				Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 counter
(F02) PCL				Function related to: Program Counter
PCL	02.7~0	R/W	0	Low-byte of Program Counter (PC[7~0])
(F03) STATUS				Function related to: STATUS
GB1	03.7	R/W	0	General purpose bit
GB0	03.6	R/W	0	General purpose bit
GB3	03.5	R/W	0	General purpose bit
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
С	03.0	R/W	0	Carry flag
(F04) FSR				Function related to: Indirect F-Plane SFR/RAM Access
GB2	04.7	R/W	0	General purpose bit
FSR	04.6~0	R/W	00	F-plane file select register, indirect address mode pointer
(F05) PAD				Function related to: Port A
PAD	05.7~0	R	FF	Port A pin or "data register" state
PAD	05.7~0	W	0	Port A output data register
(F06) PBD				Function related to: Port B
DDD	06.3~0	R	FF	Port B pin or "data register" state
PBD	06.3~0	W	0	Port B output data register

Name	Address	R/W	Rst	Description
(F08) INTIE				Function related to: Interrupt Enable
LVDIE	08.7	R/W	0	Low Voltage Detection (LVD) interrupt enable 1: enable 0: disable This bit is valid only when LVRE (SYSCFG.11~10) =11b
T2IE	08.6	R/W	0	T2 interrupt enable, 1: enable 0: disable
PMW0IE	08.5	R/W	0	PWM0 interrupt enable 1: enable 0: disable
TM0IE	08.4	R/W	0	Timer0 interrupt enable 1: enable 0: disable
WKTIE	08.3	R/W	0	Wakeup Timer interrupt enable 1: enable, WKT timer runs 0: clear and stop WKT timer
INT2IE	08.2	R/W	0	INT2 pin (PA7) interrupt enable 1: enable 0: disable
INT1IE	08.1	R/W	0	INT1 pin (PB0) interrupt enable 1: enable 0: disable
INT0IE	08.0	R/W	0	INT0 pin (PA0) interrupt enable 1: enable 0: disable
(F09) INTIF				Function related to: Interrupt Flag
LVDIF	09.7	R	0	Low voltage detection (LVD) interrupt event pending flag, set by H/W while VCC below 2.3V. LVD function is available only when LVRE (SYSCFG.11~10) =11b and LVDIE=1
		W	-	write 0: clear this flag; write 1: no action
T2IF	09.6	R	0	T2 interrupt event pending flag, set by H/W while T2 interrupt period completes
		W	-	write 0: clear this flag; write 1: no action
PWM0IF	09.5	R	0	Timer1 interrupt event pending flag, set by H/W while PWM0 period completes
		W	-	write 0: clear this flag; write 1: no action
TM0IF	09.4	R	0	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W	-	write 0: clear this flag; write 1: no action
WKTIF	09.3	R	0	WKT interrupt event pending flag, set by H/W while WKT time out
WKIIF	09.3	W	-	write 0: clear this flag; write 1: no action
INT2IF	09.2	R	0	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge
		W	-	write 0: clear this flag; write 1: no action
INT1IF	09.1	R	0	INT1 (PA1) interrupt event pending flag, set by H/W at INT1 pin's falling edge
		W	-	write 0: clear this flag; write 1: no action
INT0IF	09.0	R	0	INT0 (PA6) interrupt event pending flag, set by H/W at INT0 pin's rising/falling edge
		W	-	write 0: clear this flag; write 1: no action
(F0A) PCH				Function related to: PROGRAM COUNT
-	0a.7~3	-	_	Reserved, read as 0
РСН	0a.1~0	R/W	0	2 MSBs of Program Counter (PC[9:8])

Name	Address	R/W	Rst	Description
(F0B) CLKCTI	L			Function related to: system clock (Fsys)
SCKTYPE	0b.7	R/W	0	Slow-clock Type 0: SIRC 1: SXT
FCKTYPE	0b.6	R/W	0	Fast-clock Type 0: FIRC/FXRC 1: FXT
-	0b.5	-	-	Reserved
SLOWSTP	0b.4	R/W	0	Stop Slow-clock in Stop Mode 0: Slow-clock run 1: Slow-clock stop
FASTSTP	0b.3	R/W	0	Stop Fast-clock 0: Fast-clock run 1: Fast-clock stop
CPUCKS	0b.2	R/W	0	System clock source selection 0: Slow-clock is selected as system clock source 1: Fast-clock is selected as system clock source
CPUPSC	0b.1~0	R/W	11	System clock source prescaler. Clock source is divided by 00: /16 01: /4 10: /2 11: /1
(F0C) MF0C				Function related to: TM0/T2/PWM0/VCC Filter/Clock Filter
VCCFLT	0c.7	R/W	0	Power noise filter 0: disable 1: enable
T2CKS	0c.6	R/W	0	T2 clock source selection 0: Slow-clock 1: Fsys/128
		R	0	Read as 0
T2CLR	0c.5	W	-	Write 1 to this bit to clear T2 counter. This bit is then cleared by hardware automatically
CLKFLT	0c.4	R/W	0	System clock filter selection 0: Filter is assigned to Fast-clock source 1: Filter is assigned to Slow-clock source
TM0STP	0c.3	R/W	0	Stop Timer0 0: TM0 run 1: TM0 stop
PWM0CLR	0c.2	R/W	0	PWM0 clear and stop 1: PWM0 counter is cleared and stoped 0: PWM0 counter run
PWM0PSC	0c.1~0	R/W	00-	PWM0 clock source prescaler. Clock source is divided by 00: /1, 01: /2, 10: /4, 11: /8
(F0D) PWM0D				Function related to: PWM0
PWM0D	0d.7~0	R/W	0	PWM0 duty cycle

DS-TM57ME15B_ME15CG_E 52 Rev 0.91, 2018/08/14

Name	Address	R/W	Rst	Description
(F16) MF16	•			Function related to: LDO / LVR
-	16.7	-	-	Reserved, read as 0
LVRSAV	16.6	R/W	1	LVR (1.5V/2.3V/2.9V) auto turn off in STOP/IDLE mode 1: LVR is turn off automatically in STOP/IDLE mode 0: The operation mode of LVR is defined by LVRE (SYSCFG.11~10) bits. It can also be turned off forcibly by writing the LVROFF register.
LDOSAV	16.5	R/W	1	On-chip LDO auto turn off in STOP/IDLE mode 1: LDO is turn off automatically in STOP/IDLE mode 0: The operation mode of LDO is controlled by MODE3V bit
MODE3V	16.4	R/W	0	 VCC power mode 1: 3V mode (Vcc <3.6V), on-chip LDO is disabled. The power of chip is directly supplied from VCC pin. 0: 5V mode (Vcc >3.6V), on-chip LDO is enabled. The power of chip is supplied from the output voltage of LDO.
-	16.3~0	-	-	Reserved, read as 0s
(F1C) RSR				Function related to: Indirect R-Plane SFR/RAM Access
RSR	1c.7~0	R/W	00	R-plane file select register
(F1D) DPL				Function related to: Table Read
DPL	1d.7~0	R/W	0	Table read low address, data ROM pointer (DPTR) low byte
(F1E) DPH				Function related to: Table Read
DPH	1e.1~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
(F1F) IRCF				Function related to: Internal RC
IRCF	1f.4~0	R/W	-	FIRC frequency adjustment: 00H: Lowest frequency 1FH: Highest frequency
User Data RAN	M			
FRAM	20~4F	R/W	-	FRAM area (48 Bytes)

DS-TM57ME15B_ME15CG_E 53 Rev 0.91, 2018/08/14

R-Plane

Name	Address	R/W	Rst	Description
(R00) INDR				Function related to: Indirect R-Plane SFR/RAM Access
INDR	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(R01) TM0RI	Ĺ D			Function related to: TM0
TM0RLD	01.7~0	R/W	0	Timer0 reload Data
(R02) TM0C7	ΓL			Function related to: TM0
_	02.7~6	-	-	Reserved
TM0EDG	02.5	R/W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge 1: falling edge
TM0CKS	02.4	R/W	0	Timer0 prescaler clock source 0: Instruction cycle 1: TM0CKI pin (PA2 pin)
TM0PSC	02.3~0	R/W	0	Timer0 clock source prescaler. Clock source is divided by 0000: /1 0100: /16 1xxx: /256 0001: /2 0101: /32 0010: /4 0110: /64 0011: /8 0111: /128
(R03) PWRD	N			Function related to: Power Down
PWRDN	03	W	-	Write this register to enter STOP/IDLE Mode. (Same as 'SLEEP' instruction)
(R04) WDTC	LR			Function related to: WDT
WDTCLR	04	W	-	Write this register to clear WDT timer. (Same as 'CLRWDT' instruction)
(R05) PAMO	DH			Function related to: Port A
PA7MOD	05.7~6	R/W	01	PA7 I/O mode control 00: Mode0, open-drain with internal pull-up 01: Mode1, open-drain without internal pull-up 10: Mode2, input without internal pull-up 11: Mode3, wakeup enable, internal pull-up automatically
PA6MOD	05.5~4	R/W	01	PA6~PA4 I/O mode control
PA5MOD	05.3~2	R/W	01	00: Mode0, open-drain with internal pull-up
PA4MOD	05.1~0	R/W	01	01: Mode1, open-drain without internal pull-up 10: Mode2, CMOS push-pull output 11: Mode3, wakeup enable, internal pull-up automatically
(R06) PAMO	DL		ı	Function related to: Port A
PA3MOD	06.7~6	R/W	01	PA3~PA0 I/O mode control
PA2MOD	06.5~4	R/W	01	00: Mode0, open-drain with internal pull-up
PA1MOD	06.3~2	R/W	01	01: Mode1, open-drain without internal pull-up 10: Mode2, CMOS push-pull output
PA0MOD	06.1~0	R/W	01	11: Mode3, wakeup enable, internal pull-up automatically
(R08) PBMO	DL			Function related to: Port B
PB3MOD	08.7~6	R/W	01	PB3~PB0 I/O mode control
PB2MOD	08.5~4	R/W	01	00: Mode0, open-drain with internal pull-up
PB1MOD	08.3~2	R/W	01	01: Mode1, open-drain without internal pull-up 10: Mode2, CMOS push-pull output
PB0MOD	08.1~0	R/W	01	11: Mode3, wakeup enable, internal pull-up automatically

Name	Address	R/W	Rst	Description		
(R0B) MR0B				Function related to: WREG & STATUS/INTO/WDT/WKT		
HWAUTO	0b.7	R/W	0	Shadow registers of WREG and STATUS. The values of WREG and STATUS are saved/restored into/from their shadow register when an interrupt is served/completed, respectively. For STATUS register, all bits are saved/restored except TO and PD flags 0:disable 1: Enable		
INT0EDG	0b.6	R/W	0	INT0 pin (PA0) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger		
T2PSC	0b.5~4	R/W	00	Timer2 clock source prescaler. Clock source is divided by 00: /32768		
WDTPSC	0b.3~2	R/W	11	WDT time period selection: 00: 128ms		
WKTPSC	0b.1~0	R/W	11	WKT time period selection: 00: 16ms		
(R0C) MR0C				Function related to: TCOUT/PWM0		
TCOE	0c.7	R/W	0	Post-scaled instruction cycle clock output (TCOUT) enable 0: disable 1:enable		
-	0c.6	-	-	Reserved		
TCOPSC	0c.5~4	R/W	00	TCOUT postscaler selection. Clock output is divided by 00: /2 01: /4 10: /8 11: /16		
PWM0BOE	0c.3	R/W	0	PWM0B output enable 0: disable 1: enable		
PWM0AOE	0c.2	R/W	0	PWM0A output enable 0: disable 1: enable		
-	0c.1	-	-	Reserved		
PWM0CKS	0c.0	R/W	0	PWM0 clock source selection 0: select Fsys 1: select FIRC/FXRC		
(R0D) PWM0	PRD			Function related to: PWM0		
PWM0PRD	0d.7~0	R/W	FF	PWM0 period register		
(R0E) LVRO	(R0E) LVROFF Function related to: LVR					
LVROFF	0e.0	R	0	This bit shows the status of S/W LVR power down 0: LVR function is controlled by LVRE bits (SYSCFG.11~10) 1: LVR is now under S/W power down state		
	0e.3~0	W	-	S/W controlled LVR power down. 09h: S/W forcibly power down the LVR 06h: release from S/W power down state.		

DS-TM57ME15B_ME15CG_E 55 Rev 0.91, 2018/08/14

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
	Option Field
()	Contents
•	Bit Field
В	Before
A	After
←	Assign direction

DS-TM57ME15B_ME15CG_E 56 Rev 0.91, 2018/08/14

Mnemonic		Op Code	Cycle	Flag Affect	Description
	Byte-Oriented File Register Instruction				n
ADDWF	f, d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f, d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	F	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f, d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f, d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f, d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f, d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f, d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f, d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 Offf ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	r	01 1110 00rr rrrr	1	-	Move W to "r"
MOVRW	r	01 1111 00rr rrrr	1	-	Move "r" to W
RLF	f, d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f, d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f, d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f, d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f, d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	1
BCF	f, b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f, b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f, b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f, b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		01 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkK	2	-	Return with Literal in W
SLEEP		01 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW Add Literal "k" and W

 $\begin{array}{lll} \text{Syntax} & & \text{ADDLW k} \\ \text{Operands} & & \text{k}:00\text{h} \sim \text{FFh} \\ \text{Operation} & & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & & \text{C, DC, Z} \\ \end{array}$

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W=0x10

A: W = 0x25

ADDWF Add W and "f"

Syntax ADDWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

SyntaxANDLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow (W)$ AND k

Status Affected Z

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A: W = 0x03

ANDWF AND W with "f"

SyntaxANDWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation(destination) \leftarrow (W) AND (f)

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A : W = 0x17, FSR = 0x02

BCF Clear "b" bit of "f"

Syntax BCF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

Example BCF FLAG_REG, 7 B: FLAG_REG =0xC7

A: FLAG_REG =0x47

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code 01 001b bbff ffff

Description Bit 'b' in register 'f' is set.

Cycle 1

Example BSF FLAG_REG, 7 B: FLAG_REG =0x0A

 $A : FLAG_REG = 0x8A$

BTFSC Test "b" bit of "f", skip if clear(0)

Syntax BTFSC f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A : if FLAG.1 =0, PC =FALSE

FALSE ... if FLAG.1 =1, PC =TRUE

BTFSS Test "b" bit of "f", skip if set(1)

Syntax BTFSS f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 1

Status Affected -

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSS FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 = 0, PC = TRUE

FALSE ... if FLAG.1 =1, PC =FALSE

CALL Call subroutine "k"

Syntax CALL k
Operands k: 000h ~ FFFh

Operation: TOS \leftarrow (PC) + 1, PC.11 \sim 0 \leftarrow k

Status Affected

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC =LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRF Clear "f"

SyntaxCLRF fOperands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example CLRF FLAG_REG B: FLAG_REG =0x5A

A : FLAG_REG =0x00, Z =1

CLRW Clear W

Syntax CLRW

Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W =0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer \leftarrow 00h

Status Affected TO, PD

OP-Code 01 1110 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

COMF Complement "f"

COMF f [.d] Svntax $f: 00h \sim 7Fh, d: 0, 1$ Operands Operation $(destination) \leftarrow (\bar{f})$

Status Affected

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example COMF REG1, 0 B : REG1 = 0x13

A: REG1 = 0x13, W = 0xEC

Decrement "f" **DECF**

Syntax DECF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - 1$ Status Affected Z

OP-Code 00 0011 dfff ffff

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle

DECF CNT, 1 Example B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

Decrement "f", Skip if 0 **DECFSZ**

DECFSZ f [,d] Syntax $f: 00h \sim 7Fh, d: 0, 1$ Operands

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

> register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

LABEL1 DECFSZ CNT, 1 B: PC =LABEL1 Example

A:CNT=CNT-1GOTO LOOP

CONTINUE if CNT =0, PC =CONTINUE if CNT $\neq 0$, PC =LABEL1 + 1

GOTO Unconditional Branch

Syntax GOTO k **Operands** k: 000h ~ FFFh Operation $PC.11 \sim 0 \leftarrow k$

Status Affected

OP-Code 11 kkkk kkkk kkkk

Description GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC

bits <11:0>. GOTO is a two-cycle instruction.

Cycle 2

Example LABEL1 GOTO SUB1 B: PC =LABEL1

A: PC = SUB1

INCF Increment "f"

Syntax INCF f [,d] Operands $f: 00h \sim 7Fh$

Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code 00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCF CNT, 1 B : CNT = 0xFF, Z = 0

A : CNT = 0x00, Z = 1

INCFSZ Increment "f", Skip if 0

Syntax INCFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCFSZ CNT, 1 B : PC =LABEL1

GOTO LOOP A: CNT = CNT + 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

IORLW Inclusive OR Literal with W

SyntaxIORLW kOperands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) OR k$

Status Affected Z

OP-Code 01 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example IORLW 0x35 B: W = 0x9A

A : W = 0xBF, Z = 0

IORWF Inclusive OR W with "f"

Syntax IORWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) OR k$

Status Affected Z

OP-Code 00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWF RESULT, 0 B: RESULT =0x13, W =0x91

A: RESULT =0x13, W =0x93, Z =0

MOVFW Move "f" to W

SyntaxMOVFW fOperands $f:00h \sim 7Fh$ Operation $(W) \leftarrow (f)$

Status Affected -

OP-Code 00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle

Example MOVFW FSR B : FSR = 0xC2, W = ?

A: FSR =0xC2, W 0xC2

MOVLW Move Literal to W

 $\begin{tabular}{lll} Syntax & MOVLW & k\\ Operands & k:00h \sim FFh\\ Operation & (W) \leftarrow k \end{tabular}$

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle 1

Example MOVLW 0x5A B: W = ?

A: W = 0x5A

MOVWF Move W to "f"

SyntaxMOVWF fOperands $f:00h \sim 7Fh$ Operation $(f) \leftarrow (W)$

Status Affected

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWF REG1 B: REG1 =0xFF, W =0x4F

A : REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

SyntaxMOVWR rOperands $r:00h \sim 3Fh$ Operation $(r) \leftarrow (W)$

Status Affected -

OP-Code 01 1110 00rr rrrr

Description Move data from W register to register 'r'.

Cycle 1

Example MOVWR REG1 B: REG1 =0xFF, W =0x4F

A : REG1 = 0x4F, W = 0x4F

MOVRW Move "r" to W

 $\begin{array}{lll} \text{Syntax} & \text{MOVWR r} \\ \text{Operands} & \text{r}: 20\text{h} \\ \text{Operation} & (\text{W}) \leftarrow (\text{r}) \end{array}$

Status Affected

OP-Code 01 1111 00rr rrrr

Description Move data from register 'r' to register W.

Cycle 1

Example MOVRW EEPDT B: EEPDT =0xFE, W =0x4F

A: EEPDT =0xFE, W =0xFE

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example RETI A: PC =TOS, GIE =1

RETLW Return with Literal in W

SyntaxRETLW kOperands $k:00h \sim FFh$ Operation $PC \leftarrow TOS, (W) \leftarrow k$ Status Affected-OP-Code01 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

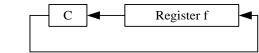
instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

A: W = value of k8

TABLE ADDWF PCL, 1 RETLW k1 RETLW k2


. ETLU

RETLW kn

RLF Rotate Left "f" through Carry

Syntax RLF f [,d]
Operands f: 00h = 7Fh

Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation

Status Affected C

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

Example RLF REG1, 0 B : REG1 = 1110 0110, C = 0

A: REG1 =1110 0110 W =1100 1100, C =1

RRF Rotate Right "f" through Carry

 $\begin{array}{ll} \text{Syntax} & \text{RRF f [,d]} \\ \text{Operands} & \text{f : 00h} \sim 7\text{Fh, d : 0, 1} \end{array}$

Operation C Register f

Status Affected C

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle 1

Example RRF REG1, 0 B: REG1 =1110 0110, C =0

A: REG1 =1110 0110 W =0111 0011, C=0

SLEEP Go into Power-down mode, Clock oscillation stops

SLEEP Syntax Operands Operation Status Affected TO, PD OP-Code 01 1110 0000 0011 Description

Go into Power-down mode with the oscillator stops.

Cycle

Example **SLEEP**

Subtract W from "f" **SUBWF**

SUBWF f [,d] Syntax Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - (W)$ Status Affected C, DC, Z OP-Code 00 0010 dfff ffff Description Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. Cycle Example SUBWF REG1, 1 B: REG1 =0x03, W =0x02, C =?, Z =? A: REG1 =0x01, W =0x02, C =1, Z =0

SUBWF REG1, 1 B: REG1 =0x02, W =0x02, C =?, Z =? A: REG1 =0x00, W =0x02, C =1, Z =1

SUBWF REG1, 1 B : REG1 = 0x01, W = 0x02, C = ?, Z = ?A: REG1 =0xFF, W =0x02, C =0, Z =0

SWAPF Swap Nibbles in "f"

Syntax SWAPF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation (destination, $7\sim4$) \leftarrow (f. $3\sim0$), (destination. $3\sim0$) \leftarrow (f. $7\sim4$) Status Affected OP-Code 00 1110 dfff ffff

Description The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is

placed in W register. If 'd' is 1, the result is placed in register 'f'.

Cycle

SWAPF REG, 0 B : REG1 = 0xA5Example

A: REG1 = 0xA5, W = 0x5A

TABRH Return DPTR high byte to W

Syntax TABRH

Operands -

Operation (W) \leftarrow ROM[DPTR] high byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected -

OP-Code 00 0000 0101 1000

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle

Example

MOVLW (TAB1&0xFF)

MOVWF FSR ;Where FSR is F-Plane register

MOVLW (TBA1>>8)&0xFF

MOVWF DPH ;Where DPH is F-Plane register

TABRL ;W =0x89TABRH ;W =0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 14 bits

TABRL Return DPTR low byte to W

Syntax TABRL

Operands -

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected

OP-Code 00 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

2

Cycle

Example

MOVLW (TAB1&0xFF)

MOVWF FSR ;Where FSR is F-Plane register

MOVLW (TBA1>>8)&0xFF

MOVWF DPH ;Where DPH is F-Plane register

TABRL ;W =0x89TABRH ;W =0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 14 bits

TESTZ Test if "f" is zero

SyntaxTESTZ fOperands $f: 00h \sim 7Fh$ OperationSet Z flag if (f) is 0

Status Affected Z

OP-Code 00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle

Example TESTZ REG1 B: REG1 =0, Z =?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

 $\begin{tabular}{lll} Syntax & XORLW & k \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow (W) XOR & k \\ \end{tabular}$

Status Affected Z

OP-Code 01 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle 1

Example XORLW 0xAF B: W=0xB5

A:W=0x1A

XORWF Exclusive OR W with "f"

SyntaxXORWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) XOR (f)$

Status Affected Z

OP-Code 00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWF REG, 1 B: REG=0xAF, W=0xB5

A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \,^{\circ}\text{C})$

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+40	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	

2. DC Characteristics ($T_A = 25$ °C, Vcc = 5.0V, unless otherwise specified)

Parameter	Sym	C	Conditions	Min	Тур	Max	Unit
		Fast Mode, 25°C, Fsys =16 MHz		2.4		5.5	
		Fast Mode, 25°C	C, Fsys =8 MHz	1.8		5.5	
Operating Voltage	V	Fast Mode, 25°C	C, Fsys =4 MHz	1.6		5.5	V
Operating voltage	V_{CC}	Fast Mode, 25°C	C, Fsys =1 MHz	1.5	1	5.5	·
		Slow Mode, 25°	°C, Fsys =SIRC	1.3	1	5.5	
		Slow Mode, 25°	°C, Fsys =32768 KHz	1.3		5.5	
Input High Voltage	$V_{ m IH}$	All Input, except PA7	V _{CC} =3~5V	0.7Vcc	ı	Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	0.8Vcc	1	Vcc	V
Input Low Voltage	V_{IL}	All Input, except PA7	V _{CC} =3~5V	Vss	ı	0.2Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	Vss	-	0.2Vcc	V
I/O Source Current	I_{OH}	All Output	$V_{CC} = 5V, V_{OH} = 4.5V$	6	12	_	mA
1/O Source Current		except PA7	$V_{CC} = 3V, V_{OH} = 2.7V$	2	4	_	111/4
		All Output	$V_{CC} = 5V, V_{OL} = 0.5V$	20	40	_	
I/O Sink Current	I_{OL}	except PA7	$V_{CC} = 3V, V_{OL} = 0.3V$	8	16	_	mA
70 Sink Current	IOL	PA7	$V_{CC} = 5V, V_{OL} = 0.5V$	10	20		
		rA/	$V_{CC} = 3V, V_{OL} = 0.3V$	4	8		
Input Leakage Current (pin high)	I_{ILH}	All Input	$V_{\rm IN} = V_{\rm CC}$	_	ı	1	uA
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{IN} = 0V$	_	_	-1	uA

DS-TM57ME15B_ME15CG_E 69 Rev 0.91, 2018/08/14

Parameter	Sym	C	onditions	Min	Тур	Max	Unit	
			V _{CC} =3V, Fsys 16 MHz	_	2.0	_		
			V _{CC} =5V, Fsys 16 MHz	_	2.6	_		
		FAST Mode	V _{CC} =3V, Fsys 8 MHz	_	1.3	_		
		LDO on,	V _{CC} =5V, Fsys 8 MHz	_	1.6	_		
		LVR on,	V _{CC} =3V, Fsys 4 MHz	_	1.0	_	mA	
		WDT disabled	V _{CC} =5V, Fsys 4 MHz	_	1.2	_		
			V _{CC} =3V, Fsys 1 MHz	_	0.7	_		
			V_{CC} =5V, Fsys 1 MHz	_	0.8	_		
			V _{CC} =3V, SIRC 128 KHz	_	250	_		
		SLOW mode	$V_{\rm CC}=5V$,	_	310	_	_	
		LDO on, LVR on,	SIRC 160 KHz $V_{CC}=3V$,	_	230	_	_	
		WDT disabled	SXT 32 KHz V _{CC} =5V,			_		
			SXT 32 KHz V _{CC} =3V,	_	300	_		
		SLOW mode LDO off, LVR on, WDT disabled	SIRC 128KHz	_	130	_	_	
	I_{CC}		V _{CC} =5V, SIRC 160 KHz	_	320	_	_	
Supply Current (no load)			V _{CC} =3V, SXT 32 KHz	_	110	_		
			V _{CC} =5V, SXT 32 KHz	_	270	_		
		IDLE mode, LDO on LVR off,	V _{C C} =5V, SIRC	_	136	_		
			160KHz V _{CC} =5V,		138	_	μ A	
		IDLE mode, LDO off	SXT 32 KHz $V_{CC}=3V$,		5			
			SIRC 128KHz	<u> </u>	3	_		
			V _{CC} =5V, SIRC 160KHz	_	17	-		
		LVR off, WDT disabled	V _{CC} =3V, SXT 32 KHz	_	3	_		
			V _{CC} =5V, SXT 32 KHz	_	12	_		
		STOP mode,	V _{CC} =3V	_	42	_		
		LDO off, LVR on, WDT disabled	V _{CC} =5V	-	60	_	-	
		STOP mode,	V _{CC} =3V	_	_	0.1		
		LDO off, LVR off, WDT disabled	V _{CC} =5V	-	-	0.1		
	1	V _{IN} =0 V	$V_{CC} = 5.0V$		40	_	W.O.	
D II D II	n	Ports A/B	V _{CC} =3.0V	_	80	_	ΚΩ	
Pull-up Resistor	R_{UP}	V _{IN} =0 V	V _{CC} =5.0V	_	40	_	W.O.	
		PA7	V _{CC} =3.0V	_	80	_	ΚΩ	

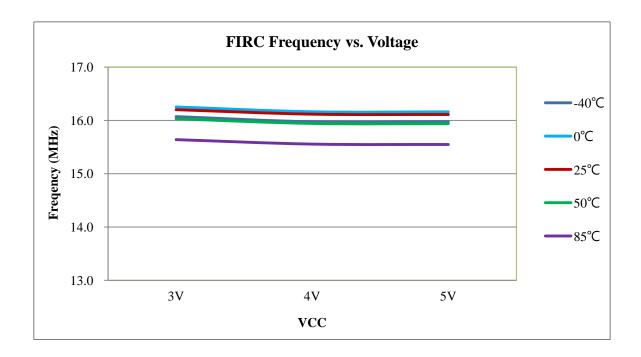
3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

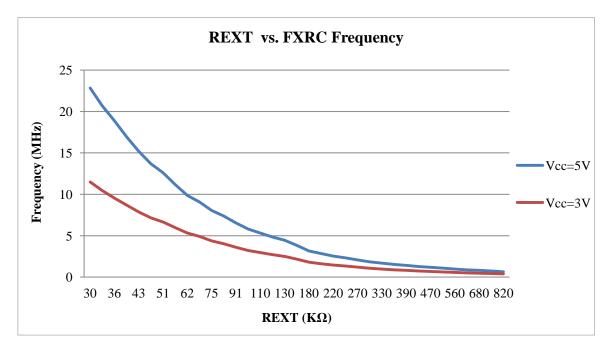
Parameter	Cond	ition	Min	Тур	Max	Unit
	25°C, V _C	_C =5.0 V	-1.2%	16	+1.0%	
FIRC Frequency (*)	0°C ~ +70°C, V	$t_{\rm CC} = 3.0 \sim 5.0 \text{V}$	-3.0%	16	+2.5%	MHz
	-40°C ~ +85°C,	$V_{\rm CC} = 3.0 \sim 5.0 \rm V$	-5.0%	16	+2.5%	
		$R_{EXT} = 47K$	_	6.7	_	MHz
	$25^{\circ}\text{C}, V_{\text{CC}} = 3.0\text{V}$	$R_{EXT} = 82K$	_	3.8	_	MHz
		$R_{EXT} = 150K$	_	2.1	_	MHz
EVDC Eraquanay (*)		$R_{EXT} = 620K$	_	0.5	_	MHz
FXRC Frequency (*)	25°C, V _{CC} = 5.0V	$R_{EXT} = 47K$	_	11.9	_	MHz
		$R_{EXT} = 82K$	_	6.6	_	MHz
		$R_{EXT} = 150K$	_	3.5	_	MHz
		$R_{EXT} = 620K$	_	0.8	_	MHz

^(*) FIRC/FXRC frequency can be divided by 1/2/4/16.

4. Reset Timing Characteristics ($T_A = -40$ °C to +85°C)

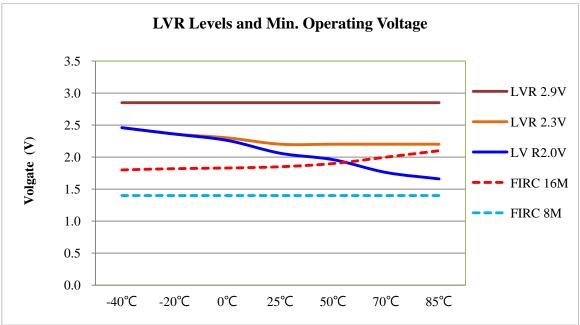
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	5	_	_	μs
WDT time	V _{CC} =3 V, WDTPSC=11		2048	+25%	
	V _{CC} =5 V, WDTPSC=11	V _{CC} =5 V, WDTPSC=11			ms
WKT time	V _{CC} =3 V, WKTPSC=11	-25%		+25%	me
WKI time	$V_{CC} = 5 \text{ V, WKTPSC} = 11$	-23%	96	T4370	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	4	_	ms


5. LVR Circuit Characteristics $(T_A = 25 \,^{\circ}\text{C})$


Parameter	Symbol	Min	Тур	Max	Unit
		1	2.0	1	
LVR Reference Voltage	$\mathrm{LVR}_{\mathrm{th}}$	ı	2.3	ı	V
		_	2.9	-	
LVR Hysteresis Voltage	$V_{ m HYST}$	-	±0.1	ı	V
Low Voltage Detection time	$t_{ m LVR}$	100	_	ı	μs

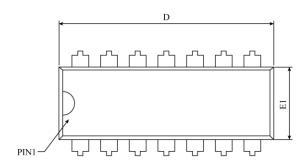
DS-TM57ME15B_ME15CG_E 71 Rev 0.91, 2018/08/14

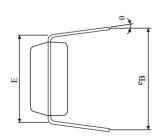
6. Characteristic Graphs

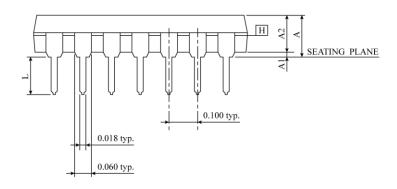


DS-TM57ME15B_ME15CG_E 72 Rev 0.91, 2018/08/14

Note: Due to variation of manufacturing process, the LVR2.0V will slightly vary between different chips.

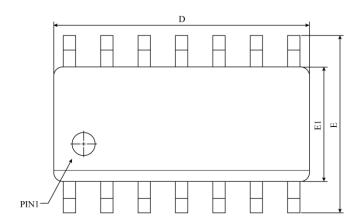

PACKAGING INFORMATION

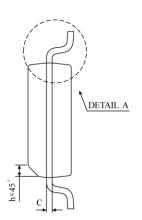

The ordering information:

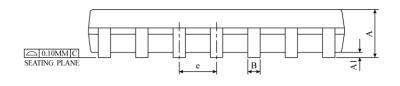

Ordering number	Package
TM57ME15B-MTP	Wafer/Dice blank chip
TM57ME15B-COD	Wafer/Dice with code
TM57ME15B-MTP-15	SOP 14-pin (150 mil)
TM57ME15B-MTP-02	DIP 14-pin (300 mil)
TM57ME15B-MTP-14	SOP 8-pin (150 mil)
TM57ME15B-MTP-01	DIP 8-pin (300 mil)
TM57ME15CG-MTP	Wafer/Dice blank chip
TM57ME15CG-COD	Wafer/Dice with code
TM57ME15CG-MTP-15	SOP 14-pin (150 mil)
TM57ME15CG-MTP-02	DIP 14-pin (300 mil)
TM57ME15CG-MTP-14	SOP 8-pin (150 mil)
TM57ME15CG-MTP-01	DIP 8-pin (300 mil)

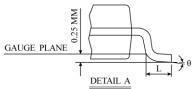
• DIP-14 (300mil) Package Dimension

CVMDOL	DI	MENSION IN M	ИM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	5.334	-	-	0.210	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	18.669	19.177	19.685	0.735	0.755	0.775	
Е		7.620 BSC		0.300 BSC			
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	2.921	3.366	3.810	0.115	0.133	0.150	
e _B	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC	MS-001 (AA)						

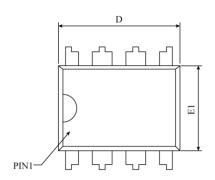

NOTES:

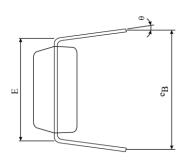

- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE II COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

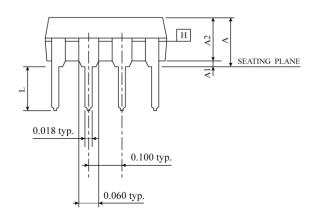

DS-TM57ME15B_ME15CG_E 75 Rev 0.91, 2018/08/14



• SOP-14 (150mil) Package Dimension

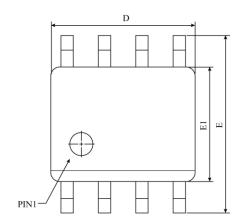


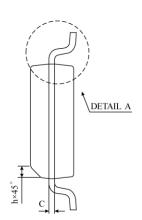

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	8.55	8.65	8.75	0.3367	0.3410	0.3444
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e	1.27 BSC			0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-012 (AB)					

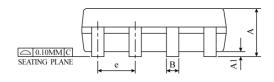

DS-TM57ME15B_ME15CG_E 76 Rev 0.91, 2018/08/14

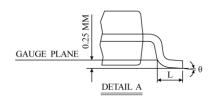
• DIP-8 (300mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	-	-	5.334	-	-	0.210
A1	0.381	-	-	0.015	-	-
A2	3.175	3.302	3.429	0.125	0.130	0.135
D	9.017	9.586	10.160	0.355	0.378	0.400
Е	7.620 BSC			0.300 BSC		
E1	6.223	6.350	6.477	0.245	0.250	0.255
L	2.921	3.366	3.810	0.115	0.133	0.150
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ	0°	7.5°	15°	0°	7.5°	15°
JEDEC	MS-001 (BA)					


NOTES:


- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


DS-TM57ME15B_ME15CG_E 77 Rev 0.91, 2018/08/14



• SOP-8 (300mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	4.80	4.90	5.00	0.1890	0.1939	0.1988	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e	1.27 BSC			0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AA)						

DS-TM57ME15B_ME15CG_E 78 Rev 0.91, 2018/08/14